
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 6, JUNE 2013 3953

On the Role of Mobility for Multimessage Gossip
Yuxin Chen, StudentMember, IEEE, Sanjay Shakkottai, SeniorMember, IEEE, and Jeffrey G. Andrews, Fellow, IEEE

Abstract—We consider information dissemination in a large
-user wireless network in which users wish to share a unique
message with all other users. Each of the users only has knowl-
edge of its own contents and state information; this corresponds
to a one-sided push-only scenario. The goal is to disseminate
all messages efficiently, hopefully achieving an order-optimal
spreading rate over unicast wireless random networks. First, we
show that a random-push strategy—where a user sends its own
or a received packet at random—is order-wise suboptimal in a
random geometric graph: specifically, times slower than
optimal spreading. It is known that this gap can be closed if each
user has “full” mobility, since this effectively creates a complete
graph. We instead consider velocity-constrained mobility where
at each time slot the user moves locally using a discrete random
walk with velocity that is much lower than full mobility. We
propose a simple two-stage dissemination strategy that alternates
between individual message flooding (“self promotion”) and
random gossiping. We prove that this scheme achieves a close to
optimal spreading rate (within only a logarithmic gap) as long as
the velocity is at least . The key insight is that
the mixing property introduced by the partial mobility helps users
to spread in space within a relatively short period compared to the
optimal spreading time, which macroscopically mimics message
dissemination over a complete graph.

Index Terms—Gossip algorithms, information dissemination,
mobility, wireless random networks.

I. INTRODUCTION

I N wireless ad hoc or social networks, a variety of scenarios
require agents to share their individual information or

resources with each other for mutual benefits. A partial list
includes file sharing and rumor spreading [2]–[5], distributed
computation and parameter estimation [6]–[10], and scheduling
and control [11], [12]. Due to the huge centralization overhead
and unpredictable dynamics in large networks, it is usually
more practical to disseminate information and exchange mes-
sages in a decentralized and asynchronous manner to combat
unpredictable topology changes and the lack of global state
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information. This motivates the exploration of dissemination
strategies that are inherently simple, distributed, and asyn-
chronous while achieving optimal spreading rates.

A. Motivation and Related Work

Among distributed asynchronous algorithms, gossip algo-
rithms are a class of protocols which propagate messages
according to rumor-style rules, initially proposed in [13].
Specifically, suppose that there are distinct pieces of
messages that need to be flooded to all users in the network.
Each agent in each round attempts to communicate with one
of its neighbors in a random fashion to disseminate a lim-
ited number of messages. There are two types of push-based
strategies on selecting which message to be sent in each round:
1) one-sided protocols that are based only on the disseminator’s
own current state; and 2) two-sided protocols based on current
states of both the sender and the receiver. Encouragingly, a
simple uncoded one-sided push-only gossip algorithm with
random message selection and peer selection is sufficient for
efficient dissemination in some cases like a static complete
graph, which achieves a spreading time of ,1 within
only a logarithmic gap with respect to the optimal lower
limit [14]–[16]. This type of one-sided gossiping has
the advantages of being easily implementable and inherently
distributed.
Since each user can receive at most one message in any single

slot, it is desirable for a protocol to achieve close to the fastest
possible spreading time (e.g., within a factor).
It has been pointed out, however, that the spreading rate of one-
sided random gossip algorithms is frequently constrained by
the network geometry, e.g., the conductance of the graph [15],
[17]. For instance, for one-sided rumor-style all-to-all spreading
(i.e., ), the completion time is much lower in a com-
plete graph than in a ring . In-
tuitively, since each user can only communicate with its nearest
neighbors, the geometric constraints in these graphs limit the
location distribution of all copies of each message during the
evolution process, which largely limits how fast the informa-
tion can flow across the network. In fact, for message spreading
over static wireless networks, one-sided uncoded push-based
random gossiping can be quite inefficient: specifically up to

times slower than the optimal lower limit

(i.e., a polynomial factor away from the lower bound),
as will be shown in Theorem 2.

1The standard notion means ;

means ; means a

constant such that ; means a constant
such that ; means constants and such
that .
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Although one-sided random gossiping is not efficient for
static wireless networks, it may potentially achieve better
performance if each user has some degree of mobility—an
intrinsic feature of many wireless and social networks. For
instance, full mobility2 changes the geometric graph with

transmission range to a complete graph in the

unicast scenario. Since random gossiping achieves a spreading
time of for all-to-all spreading over a complete
graph [15], [16], this allows near-optimal spreading time to
be achieved within a logarithmic factor from the fundamental
lower limit . However, how much benefit can be obtained
from more realistic mobility—which may be significantly
lower than idealized best-case full mobility—is not clear.
Most existing results on uncoded random gossiping center on
evolutions associated with static homogeneous graph structure
or a fixed adjacency matrix, which cannot be readily extended
for dynamic topology changes. To the best of our knowledge,
the first work to analyze gossiping with mobility was [18],
which focused on energy-efficient distributed averaging instead
of time-efficient message propagation. Another line of work
by Clementi et al. investigate the speed limit for information
flooding over Markovian evolving graphs (see, e.g., [19]–[21]),
but they did not study the spreading rate under multimessage
gossip. Recently, Pettarin et al. [22] explored the information
spreading over sparse mobile networks with no connected
components of size , which does not account for the
dense (interference-limited) network model we consider in this
paper.
For a broad class of graphs that include both static and dy-

namic graphs, the lower limit on the spreading time can be
achieved through random linear coding where a random com-
bination of all messages is transmitted instead of a specific mes-
sage [23], or by employing a two-sided protocol which always
disseminates an innovative message if possible [16]. Specifi-
cally, through a unified framework based on dual-space anal-
ysis, recent work [24] demonstrated that the optimal all-to-all
spreading time can be achieved for a large class of graphs
[24] including complete graphs, geometric graphs, and the re-
sults hold in these network models even when the topology
is allowed to change dynamically at each time. However, per-
forming random network coding incurs very large computation
overhead for each user, and is not always feasible in practice.
On the other hand, two-sided protocols inherently require addi-
tional feedback that increases communication overhead. Also,
the state information of the target may sometimes be unob-
tainable due to privacy or security concerns. Furthermore, if
there are messages that need to be disseminated over a
static uncoordinated unicast wireless network or a random geo-

metric graph with transmission radius ,
neither network coding nor two-sided protocols can approach
the lower limit of spreading time . This arises due to

2By full mobility, we mean that the location of the mobile is distributed inde-
pendently and uniformly random over the entire network over consecutive time
steps (i.e., the velocity of the mobile can be “arbitrarily large”). This is some-
times also referred to in literature as the i.i.d. mobility model. In this paper, we
consider nodes with “velocity-limited” mobility capability.

the fact that the diameter of the underlying graph with trans-

mission range scales as ,

and hence, each message may need to be relayed through

hops in order to reach the node farthest

to the source.
Another line of work has studied spreading scaling laws

using more sophisticated nongossip schemes over static wire-
less networks (see, e.g., [25] and [26]). Recently, Resta and
Santi [27] began investigating broadcast schemes for mobile
networks with a single static source constantly propagating
new data, while we focus on a different problem with multiple
mobile sources each sharing distinct message. Besides, Resta
and Santi [27] analyzed how to combat the adverse effect
of mobility to ensure the same pipelined broadcasting as in
static networks, whereas we are interested in how to take
advantage of mobility to overcome the geometric constraints.
In fact, with the help of mobility, simply performing random
gossiping—which is simpler than most nongossip schemes and
does not require additional overhead—is sufficient to achieve
optimality.
Finally, we note that gossip algorithms have also been em-

ployed and analyzed for other scenarios like distributed aver-
aging, where each node is willing to compute the average of
all initial values given at all nodes in a decentralized manner
(see, e.g., [6] and [8]). The objective of such distributed con-
sensus is to minimize the total number of computations. It turns
out that the convergence rates of both message sharing and dis-
tributed averaging are largely dependent on the eigenvalues or,
more specifically, the mixing times of the graph matrices asso-
ciated with the network geometry [8], [15].

B. Problem Definition and Main Modeling Assumptions

Suppose there are users randomly located over a square of
unit area. The task is to disseminate distinct messages
(each contained in one user initially) among all users. The mes-
sage spreading can be categorized into two types: 1) single-mes-
sage dissemination: a single user (or users) wishes to flood
its message to all other users; 2) multimessage dissemination: a
large number of users wish to spread individual mes-
sages to all other users. We note that distinct messages may not
be injected into the network simultaneously. They may arrive
in the network (possibly in batches) sequentially, but the arrival
time information is unknown in the network.
Our objective is to design a gossip-style one-sided algorithm

in the absence of coding, such that it can take advantage of the
intrinsic feature of mobility to accelerate dissemination. Only
the “push” operation is considered in this paper, i.e., a sender
determines which message to transmit solely based on its own
current state, and in particular not using the intended receiver’s
state. We are interested in identifying the range of the degree
of mobility within which our algorithm achieves near-optimal
spreading time for each message regardless
of message arrival patterns. Specifically, our MOBILE PUSH
protocol achieves a spreading time as stated in
Theorem 3 for the mobility that is significantly lower than the
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idealized full mobility. As an aside, it has been shown in [16]
and [23] that with high probability, the completion time for one-
sided uncoded random gossip protocol over complete graphs is
lower bounded by , which implies that, in general,
the logarithmic gap from the universal lower limit cannot
be closed with uncoded one-sided random gossiping.
Our basic network model is as follows. Initially, there are

users uniformly distributed over a unit square. We ignore edge
effects so that every node can be viewed as homogeneous. Our
models and analysis are mainly based on the context of wireless
ad hoc networks, but one can easily apply them to other network
scenarios that can be modeled as a random geometric graph of

transmission radius .
Physical-Layer Transmission Model: Each transmitter em-

ploys the same amount of power , and the noise power den-
sity is assumed to be . The path-loss model is used such that
node receives the signal from transmitter with power ,
where denotes the Euclidean distance between and with

being the path loss exponent. Denote by the set of
transmitters at time . We assume that a packet from transmitter
is successfully received by node at time if

(1)

where is the signal-to-interference-plus-noise ratio
(SINR) at at time , and the SINR threshold required for
successful reception. For simplicity, we suppose only one fixed-
size message or packet can be transmitted for each transmission
pair in each time instance.
Suppose that each node can move with velocity in this

mobile network. We provide a precise description of the mo-
bility pattern as follows.
Mobility Model: We use a mobility pattern similar to [28,

Sec. VIII], which ensures that at steady state, each user lies in
each subsquare with equal probability. Specifically, we divide
the entire square into subsquares each of area

(where denotes the velocity of the mobile nodes),
which forms a discrete torus. At each time instance,
every nodemoves according to a randomwalk on the
discrete torus. More precisely, if a node resides in a subsquare

at time , it may choose to stay in
or move to any of the eight adjacent subsquares each with prob-
ability 1/9 at time . If a node is on the edge and is selected to
move in an infeasible direction, then it stays in its current sub-
square. The position inside the new subsquare is selected uni-
formly at random. See Fig. 1 for an illustration.
We note that when , the pattern reverts to

the full mobility model. In this random-walk model, each node
moves independently according to a uniform ergodic distribu-
tion. In fact, a variety of mobility patterns have been proposed
to model mobile networks, including i.i.d. (full) mobility [29],
random walk (discrete-time) model [30], [31], and Brownian
motion (continuous-time) pattern [32]. For simplicity, wemodel
it as a discrete-time random walk pattern, since it already cap-
tures intrinsic features of mobile networks like uncontrolled
placement and movement of nodes.

Fig. 1. Unit square is equally divided into subsquares. Each
node can jump to one of its eight neighboring subsquares or stay in its current
subsquare with equal probability 1/9 at the beginning of each slot.

C. Contributions and Organization

The main contributions of this paper include the following.
1) Single-message dissemination over mobile networks.
We derive an upper bound on the single-message

spreading time using push-only random
gossiping (called RANDOM PUSH) in mobile networks.
A gain of in the spreading rate can
be obtained compared with static networks, which is,
however, still limited by the underlying geometry unless
there is full mobility.

2) Multimessage dissemination over static networks. We
develop a lower bound on the multimessage spreading
time under RANDOM PUSH protocol over static net-
works. It turns out that there may exist a gap as large as

between its spreading time and the optimal

lower limit . The key intuition is that the copies of
each message tend to cluster around the source at
all time instances, which results in capacity loss. This
inherently constrains how fast the information can flow
across the network.

3) Multimessage dissemination over mobile networks. We
design a one-sided uncoded message-selection strategy
called MOBILE PUSH that accelerates multimessage
spreading with mobility. An upper bound
on the spreading time is derived, which is the main result

of this paper. Once (which is still

significantly smaller than full mobility), the near-op-
timal spreading time can be achieved with
high probability. The underlying intuition is that if the
mixing time arising from the mobility model is smaller
than the optimal spreading time, the mixing property
approximately uniformizes the location of all copies of
each message, which allows the evolution to mimic the
propagation over a complete graph.

The remainder of this paper is organized as follows. In
Section II, we describe our unicast physical-layer transmis-
sion strategy and two types of message selection strategies,
including RANDOM PUSH and MOBILE PUSH. Our main
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theorems are stated in Section II as well, with proof ideas illus-
trated in Section III. Detailed derivation of auxiliary lemmas
are deferred to the Appendix.

II. STRATEGIES AND MAIN RESULTS

The strategies and main results of this study are outlined in
this section, where only the unicast scenario is considered. The
dissemination protocols for wireless networks are a class of
scheduling algorithms that can be decoupled into 1) physical-
layer transmission strategies (link scheduling) and 2) message
selection strategies (message scheduling).
One physical-layer transmission strategy and two message

selection strategies are described separately, along with the
order-wise performance bounds.

A. Strategies

1) Physical-Layer Transmission Strategy: In order to
achieve efficient spreading, it is natural to resort to a decentral-
ized transmission strategy that supports the order-wise largest
number [i.e., ] of concurrent successful transmissions
per time instance. The following strategy is a candidate that
achieves this objective with local communication.

UNICAST Physical-Layer Transmission Strategy:

• At each time slot, each node is designated as a sender
independently with constant probability , and a potential
receiver otherwise. Here, is independent of
and .

• Every sender attempts to transmit one message to its
nearest potential receiver .

This simple “link” scheduling strategy, when combined with
appropriate push-based message selection strategies, leads to
the near-optimal performance in this paper. We note that the
authors in [29], by adopting a slightly different strategy in which
nodes are randomly designated as senders (as opposed to

link-by-link random selection as in our paper), have shown that
the success probability for each unicast pair is a constant. Using
the same proof as for [29, Th. III-5], we can see (which we omit
here) that there exists a constant such that

(2)

holds for our strategy. Here, is a constant irrespective of ,
but may depend on other salient parameters , and . That
said, concurrent transmissions can be successful, which
is order-optimal. For ease of analysis and exposition, we further
assume that physical-layer success events are temporally inde-
pendent for simplicity of analysis and exposition. Indeed, even
accounting for the correlation yields the same scaling results,
detailed in Remark 1.
Remark 1: In fact, the physical-layer success events are cor-

related across different time slots due to our mobility model
and transmission strategy. However, we observe that our anal-
ysis frameworkwould only require that the transmission success
probability at time is always a constant irrespective of

given the node locations at time . To address this concern, we
show in Lemma 1 that for any , the number
of nodes residing in each subsquare is bounded within

with probability at least . Conditional on this
high-probability event that with all nodes in
each subsquare uniformly located, we can use the same proof
as [29, Th. III-5] to show that holds
for some constant .
Although this physical-layer transmission strategy supports

concurrent local transmissions, it does not tell us how to
take advantage of these resources to allow efficient propagation.
This will be specified by the message-selection strategy, which
potentially determines how each message is propagated and for-
warded over the entire network.
2) Message Selection Strategy: We now turn to the objective

of designing a one-sided message-selection strategy (only based
on the transmitter’s current state) that is efficient in the absence
of network coding. We are interested in a decentralized strategy
in which no user has prior information on the number of distinct
messages existing in the network. One common strategy within
this class is:

RANDOM PUSH Message Selection Strategy:

• In every time slot: each sender randomly selects one of
the messages it possesses for transmission.

This is a simple gossip algorithm solely based on random
message selection, which is surprisingly efficient in many cases
like a complete graph. It will be shown later, however, that
this simple strategy is inefficient in a static unicast wireless
network or a random geometric graph with transmission range

.

In order to take advantage of the mobility, we propose the
following alternating strategy within this class:

MOBILE PUSH Message Selection Strategy:

• Denote by the message that source wants to spread,
i.e., its own message.

• In every odd time slot: for each sender , if it has an
individual message , then selects for transmission;
otherwise randomly selects one of the messages it
possesses for transmission.

• In every even time slot: each sender randomly selects
one of the messages it has received for transmission.

In the above strategy, each sender alternates between random
gossiping and self-promotion. This alternating operation is cru-
cial if we do not know a priori the number of distinct messages.
Basically, random gossiping enables rapid spreading by taking
advantage of all available throughput and provides a nondegen-
erate approach that ensures an approximately “uniform” evolu-
tion for all distinct messages. On the other hand, individual mes-
sage flooding step plays the role of self-advocating, which guar-
antees that a sufficiently large number of copies of eachmessage
can be forwarded with the assistance of mobility (which is not
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true in static networks). This is critical at the initial stage of the
evolution.

B. Main Results (Without Proof)

Now we proceed to state our main theorems, each of which
characterizes the performance for one distinct scenario. Detailed
analysis is deferred to Section III.
1) Single-Message Dissemination in Mobile Networks With

RANDOM PUSH: The first theorem states the limited benefits
of mobility on the spreading rate for single-message spreading
when RANDOM PUSH is employed. We note that MOBILE
PUSH reverts to RANDOM PUSH for single-message dissem-
ination and, hence, has the same spreading time.
Theorem 1: Assume that the velocity obeys

, and that the number of distinct messages obeys
. RANDOM PUSH message selection strategy is

assumed to be employed in the unicast scenario. Denote by
the time taken for all users to receive message after

is injected into the network, then with probability at least
we have

and

(3)
Since the single-message flooding time is

under RANDOM PUSH over static wireless networks
or random geometric graphs of radius
[17], the gain in dissemination rate due to mobility is

. When the mobility is large enough

(e.g., ), it plays the role of increasing

the transmission radius, thus resulting in the speedup. It can
be easily verified, however, that the universal lower bound on
the spreading time is , which can only be achieved
in the presence of full mobility. To summarize, while the
speedup can be achieved in the regime

, RANDOM PUSH cannot achieve
near-optimal spreading time for single-mes-
sage dissemination unless full mobility is present.
2) Multimessage Dissemination in Static Networks With

RANDOM PUSH: Now we turn to multimessage spreading
over static networks with uncoded random gossiping. Our
analysis is developed for the regime where there are distinct
messages that satisfies , which subsumes
most multispreading cases of interest. For its complement
regime where , an apparent lower bound

on the spreading time can be obtained by
observing that the diameter of the underlying graph with trans-

mission radius is at least .

This immediately indicates a gap between
the spreading time and the lower limit .
The spreading time in the regime

is formally stated in Theorem 2, which implies that simple
RANDOM GOSSIP is inefficient in static wireless networks,
under a message injection scenario where users start message
dissemination sequentially. The setting is as follows:
of the sources inject their messages into the network at some

time prior to the th source. At a future time when each user
in the network has at least messages,
the th message (denoted by ) is injected into the network.
This pattern occurs, for example, when a new message is
injected into the network much later than other messages, and
hence, all other messages have been spread to a large number
of users. We will show that without mobility, the spreading
time under MOBILE PUSH in these scenarios is at least of
the same order as that under RANDOM PUSH,3 which is a
polynomial factor away from the universal lower limit .
In fact, the individual message flooding operation of MOBILE
PUSH does not accelerate spreading since each source has only

potential neighbors to communicate.
The main objective of analyzing the above scenario is to un-

cover the fact that uncoded one-sided random gossiping fails
to achieve near-optimal spreading for a large number of mes-
sage injection scenarios over static networks. This is in contrast
to mobile networks, where protocols like MOBILE PUSH with
the assistance of mobility is robust to all initial message injec-
tion patterns and can always achieve near-optimal spreading, as
will be shown later.
Theorem 2: Assume that a new message arrives in a

static network later than other messages, and suppose that
is first injected into the network from a state such that each

node has received at least distinct mes-
sages. Denote by the time until every user receives using
RANDOM PUSH; then for any constant we have

(4)

with probability exceeding .
Remark 2: Our main goal is to characterize the spreading in-

efficiency when each node has received a few messages, which
becomes most significant when each has received mes-
sages. In contrast, when only a constant number of messages
are available at each user, the evolution can be fairly fast since
the piece selection has not yet become a bottleneck. Hence,
we consider , which captures most of the
spreading-inefficient regime .
The spreading can be quite slow for various message-in-
jection process over static networks, but can always be
completed within with the assistance of mobility

regardless of the message-injection
process, as will be shown in Theorem 3.
Theorem 2 implies that if is injected into the network

when each user contains messages for any
, then RANDOM PUSH is unable to approach the fastest

possible spreading time . In particular, if the message is
first transmitted when each user contains
messages, then at least time slots
are required to complete spreading. Since can be arbitrarily
small, there may exist a gap as large as between

the lower limit and the spreading time using RANDOM

3We note that this section is devoted to showing the spreading inefficiency
under two uncoded one-sided push-only protocols. It has recently been shown
in [24] that a network coding approach can allow the optimal spreading time

to be achieved over static wireless networks or random geometric graphs.
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PUSH. The reason is that as each user receives many distinct
messages, a bottleneck of spreading rate arises due to the
low piece-selection probability assigned for each message. A
number of transmissions are wasted due to the blindness of
the one-sided message selection, which results in capacity loss
and hence largely constrain how efficient information can flow
across the network. The copies of each message tend to cluster
around the source—the density of the copies decays rapidly
with the distance to the source. Such inefficiency becomes
more severe as the evolution proceeds, because each user will
assign an increasingly smaller piece-selection probability for
each message.
3) Multimessage Dissemination in Mobile Networks With

MOBILE PUSH: Although the near-optimal spreading
time for single-message dissemination
can only be achieved when there is near-full mobility

, a limited degree of velocity
turns out to be remarkably helpful in the multimessage case as
stated in the following theorem.
Theorem 3: Assume that the velocity obeys

, where the number of distinct messages obeys

. MOBILE PUSH message selection
strategy is employed along with unicast transmission strategy.
Let be the time taken for all users to receive message
after is first injected into the network; then with probability
at least , we have

(5)

Since each node can receive at most one message in each
time slot, the spreading time is lower bounded by for any
graph. Thus, our strategy with limited velocity spreads the infor-
mation essentially as fast as possible. Intuitively, this is due to
the fact that the velocity (even with restricted magnitude) helps
uniformize the locations of all copies of each message, which
significantly increases the conductance of the underlying graph
in each slot. Although the velocity is significantly smaller than
full mobility (which simply results in a complete graph), the
relatively low mixing time helps to approximately achieve the
same objective of uniformization. On the other hand, the low
spreading rates in static networks arise from the fact that the
copies of each message tend to cluster around the source at any
time instant, which decreases the number of flows going toward
new users without this message.
Remark 3: Note that there is a gap between this

spreading time and the lower limit . We conjecture that
is the exact order of the spreading time, where the

logarithmic gap arises from the blindness of peer and piece
selection. A gap of was shown to be indispensable
for complete graphs when one-sided random push is used
[23]. Since the mobility model simply mimics the evolution in
complete graphs, a logarithmic gap appears to be unavoidable
when using our algorithm. Nevertheless, we conjecture that
with a finer tuning of the concentration of measure techniques,
the current gap can be narrowed to . See
Remark 5.

III. PROOFS AND DISCUSSIONS OF MAIN RESULTS

The proofs of Theorem 1–3 are provided in this section.
Before continuing, we would like to state some preliminaries
regarding the mixing time of a random walk on a 2-D grid,
some related concentration results, and a formal definition of
conductance.

A. Preliminaries

1) Mixing Time: Define the probability of a typical
node moving to subsquare at time as starting
from any subsquare, and denote by the steady-state
probability of a node residing in subsquare . Define
the mixing time of our random walk mobility model as

, which characterizes
the time until the underlying Markov chain is close to its
stationary distribution. It is well known that the mixing time of
a random walk on a grid satisfies (e.g., see [33, Corollary 2.3]
and [33, Appendix C]):

(6)

for some constant . We take throughout this paper,
so holds with . After
amount of time slots, all the nodes will reside in any subsquare
almost uniformly likely. In fact, is very conservative and
a much larger suffices for our purpose, but this gives us a good
sense of the sharpness of the mixing time order. See [34, Sec.
6] for detailed characterization of the mixing time of random
walks on graphs.
2) Concentration Results: The following concentration re-

sult is also useful for our analysis.
Lemma 1: Assume that nodes are thrown independently

into subsquares. Suppose for any subsquare , the proba-
bility of each node being thrown to is bounded as

(7)

Then, for any constant , the number of nodes falling in
any subsquare at any time
satisfies
a) if and , then

b) if , then

Proof: See Appendix A.
This implies that the number of nodes residing in each

subsquare at each time of interest will be reasonably close to
the true mean. This concentration result follows from standard
Chernoff bounds [35, Appendix A] and forms the basis for our
analysis.
3) Conductance: Conductance is an isoperimetric measure

that characterizes the expansion property of the underlying
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graph. Consider an irreducible reversible transition matrix
with its states represented by . Assume that the
stationary distribution is uniform over all states. In spectral
graph theory, the conductance associated with is [34]

(8)

which characterizes how easy the probability flow can cross
from one subset of nodes to its complement. If the transition
matrix is chosen such that

if
else

(9)

where denotes the degree of vertex , then the conductance
associated with random geometric graph with radius obeys

[33], where is the transmission radius.

B. Single-Message Dissemination in Mobile Networks

We only briefly sketch the proof for Theorem 1 in this paper,
since the approach is somewhat standard (see [15]). Lemma 1
implies that with high probability, the number of nodes residing
in each subsquare will exhibit sharp concentration around the
mean once . For each message , de-
note by the number of users containing at time . The
spreading process is divided into two phases:
and .
As an aside, if we denote by the probability that success-

fully transmit to in the next time slot conditional on the event
that there are users residing in each subsquare, then if

, one has

if and can move to the same
subsquare in the next time slot
else.

Concentration results imply that for any given time and any
user , there are users that can lie within the same sub-
square as with high probability. On the other hand, for a geo-
metric random graph with , the transi-
tion matrix defined in (9) satisfies for all inside
the transmission range of (where there are with high proba-
bility users inside the transmission range). Therefore,
if we define the conductance related to this mobility model as

, then this is order-wise
equivalent to the conductance of the geometric random graph
with , and hence .
1) Phase 1: Look at the beginning of each slot, all senders

containing may transmit it to any nodes in the nine sub-
squares equally likely with constant probability by the end of
this slot. Using the same argument as [15], one can see that the
expected increment of by the end of this slot can be lower
bounded by the number of nodes times the conductance
related to the mobility model defined above.
We can thus conclude that before

holds for some constant and . Following the same martin-
gale-based proof technique used for single-message dissemina-
tion in [15, Th. 3.1], we can prove that for any , the time

by which holds with probability at least
can be bounded by

(10)

Take ; then is bounded by with prob-

ability at least .
2) Phase 2: This phase starts at and ends when
. Since the roles of and are symmetric, the probability of
having as the nearest neighbor is equal to the probability of
having as the nearest neighbor. This further yields by
observing that the transmission success probability is the same
for each designated pair. Therefore, we can see

(11)

(12)

Denote by the duration of Phase 2. We can follow the
same machinery in [17] to see

(13)

with probability exceeding .
By combining the duration of Phases 1 and 2 and applying

the union bound over all distinct messages, we can see that

holds for all distinct messages with high

probability. When , at any time instance, each
node can only transmit a message to nodes at a distance at most

, and hence, it will take at least time in-
stances for to be relayed to the node farthest from at time 0,
which is a universal lower bound on the spreading time. There-
fore, is only a logarithmic factor away from the funda-

mental lower bound . It can be seen that the bottleneck
of this upper bound lies in the conductance of the underlying

random network. When , mobility acceler-

ates spreading by increasing the conductance. The mixing time
duration is much larger than the spreading time, which implies
that the copies of each message is still spatially constrained in
a fixed region (typically clustering around the source) without
being spread out over the entire square. We note that with full
mobility, the spreading time in single-message dissemination
case achieves the universal lower bound , which is
much smaller than that with a limited degree of velocity.
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C. Multimessage Spreading in Static Networks With RANDOM
PUSH

The proof idea of Theorem 2 is sketched in this subsection.
1) Lower Bound on the Spreading Time: To begin our anal-

ysis, we partition the entire unit square as follows:
a) The unit square is divided into a set of nonoverlapping
tiles each of side length as illustrated
in Fig. 2 (Note that this is a different partition from sub-
squares resulting from the mobility model).

b) The above partition also allows us to slice the
network area into vertical strips each of width

and length 1. Label the vertical strips

as in increasing order

from left to right, and denote by and the
number and the set of nodes in that contains by
time .

c) The vertical strips are further grouped into ver-
tical blocks each containing strips, i.e.,

.
Remark 4: Since each tile has an area of , con-

centration results (see Lemma 1) imply that there are
nodes residing in each tile with high probability. Since each
sender only attempts to transmit to its nearest receiver, then
with high probability the communication process occurs only
to nodes within the same tile or in adjacent tiles.
Without loss of generality, we assume that the source of

resides in the leftmost vertical strip . We aim at counting the
time taken for to cross each vertical block horizontally. In
order to decouple the counting for different vertical blocks, we
construct a new spreading process as follows.

Spreading in Process :

1) At , distribute to all nodes residing in vertical
strip .

2) Each node adopts RANDOM PUSH as the message
selection strategy

3) Define as the first time that

reaches vertical block . For all , distribute
to all nodes residing in either or the leftmost

strip of at time .

It can be verified using a coupling approach that evolves
stochastically faster than the true process. By enforcing manda-
tory dissemination at every , we enable separate counting
for spreading time in different blocks—the spreading in
after is independent of what has happened in . Roughly

speaking, since there are blocks, the spreading time

over the entire region is times the spreading

time over a typical block.
We perform a single-block analysis in the following lemma,

and characterize the rate of propagation across different strips
over a typical block in . By Property 3 of , the time taken to
cross each typical block is equivalent to the crossing time in .
Specifically, we demonstrate that the time taken for a message to

Fig. 2. Plot illustrates that the number of nodes containing in
vertical strip by time is decaying rapidly with geometric rate.

cross a single block is at least for any positive . Since
the crossing time for each block in is statistically equivalent,
this single-block analysis further allows us to lower bound the
crossing time for the entire region.
Lemma 2: Consider the spreading of over in the

original process . Suppose each node contains at least
messages initially. Define , and de-

fine . Then, with prob-
ability at least , we have
a)
b) , there exists a constant such that

(14)

c) .

Sketch of Proof of Lemma 2: The proof makes use of the
fixed-point type of argument. The detailed derivation is deferred
to Appendix B.
The key observation from the above lemma is that the number

of nodes in containing is decaying rapidly as increases,
which is illustrated in Fig. 2. We also observe that de-
creases to before .
While Lemma 2 determines the number of copies of

inside by time , it does not indicate whether
has crossed the block or not by . It order to char-

acterize the crossing time, we still need to examine the evolu-
tion in strips . Since communication occurs
only between adjacent strips or within the same strip, all copies
lying to the right of must be relayed via a path that starts
from and passes through . That said, all copies in

by time must have been forwarded (pos-
sibly in a multihop manner) via some nodes having received

by . If we denote by the set of nodes in
having received by in , then we can con-

struct a process in which all nodes in receive
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from the very beginning , and hence, the evolution
in can be stochastically faster than by time .

Spreading in Process :

1) Initialize (a): at , for all , distribute
to all nodes residing in the same tile as

2) Initialize (b): at , if and are two nodes in
such that and are less than tiles

away from each other, then distribute to all nodes in
all tiles between and in . After this step, tiles
that contain forms a set of nonoverlapping substrips.

3) By time , the evolution to the left of
occurs exactly the same as in .

4) At the first time slot in which any node in the above
substrips selects for transmission, distribute to
all nodes in all tiles adjacent to any of these substrips. In
other words, we expand all substrips outwards by one tile.

5) Repeat from 4) but consider the new set of substrips after
expansion.

By our construction of , the evolution to the left of
stays completely the same as that in , and hence,

there is no successful transmission of between nodes in
and those in but not contained in

. Therefore, in our new process , the evolution
to the left of by time is decoupled with that to the
right of by time .
Our objective is to examine how likely

is smaller than . It can be
observed that any two substrips would never merge before
since they are initially spaced at least tiles from each
other. This allows us to treat them separately. Specifically, the
following lemma provides a lower bound on by studying
the process .
Lemma 3: Suppose and each node contains at

least distinct messages since . Then, we have

(15)

Proof: See Appendix C.
This lemma indicates that is unable to cross by time

in . Since is stochastically faster than the orig-
inal process, the time taken for to cross a vertical block in
the original process exceeds with high probability. In other
words, the number of nodes having received by vanishes
within no more than further strips.

Since there are vertical blocks in total,

and crossing each block takes at least time slots, the
time taken for to cross all blocks can thus be bounded as

(16)

with high probability.
2) Discussion: Theorem 2 implies that if a message
is injected into the network when each user contains

messages, the spreading time for is

for arbitrarily small . That said,

there exists a gap as large as from op-
timality. The tightness of this lower bound can be verified by
deriving an upper bound using the conductance-based approach
as follows.
We observe that the message selection probability for is

always lower bounded by . Hence, we can couple a new
process adopting a different message-selection strategy such
that a transmitter containing selects it for transmission with
state-independent probability at each time. It can be veri-
fied that this process evolves stochastically slower than the orig-
inal one. The conductance associated with the new evolution for

is . Applying similar

analysis as in [17] yields

(17)

with probability exceeding , which is only a poly-loga-
rithmic gap from the lower bound we derived.
The tightness of this upper bound implies that the propagation

bottleneck is captured by the conductance-based measure—the
copies of each message tend to cluster around the source at any
time instead of spreading out (see Fig. 4). That said, only the
nodes lying around the boundary are likely to forward the mes-
sage to new users. Capacity loss occurs to the users inside the
cluster since many transmissions occur to receivers who have
already received the message and are thus wasted. This graph
expansion bottleneck can be overcome with the assistance of
mobility.

D. Multimessage Spreading in Mobile Networks With
MOBILE PUSH

The proof of Theorem 3 is sketched in this section. We divide
the entire evolution process into three phases. The duration of
Phase 1 is chosen to allow each message to be forwarded to a
sufficiently large number of users. After this initial phase (which
acts to “seed” the network with a sufficient number of all the
messages), random gossiping ensures the spread of all messages
to all nodes.
1) Phase 1: This phase accounts for the first

time
slots, where , , and are constants independent of and
. At the end of this phase, each message will be contained in
at least nodes. The time intended for
this phase largely exceeds the mixing time of the random walk
mobility model, which enables these copies to “uniformly”
spread out over space.
We are interested in counting how many nodes will contain a

particular message by the end of Phase 1. Instead of counting
all potential multihop relaying of , we only look at the set of
nodes that receive directly from source in odd slots. This
approach provides a crude lower bound on at the end of
Phase 1, but it suffices for our purpose.
Consider the following scenario: at time , node attempts to

transmit its message to receiver . Denote by
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the subsquare position of node , and define the relative co-
ordinate . Clearly, forms another
2-D random walk on a discrete torus. For notional convenience,
we introduce the notation to de-
note the conditional measure given . The fol-
lowing lemma characterizes the hitting time of this randomwalk
to the boundary.
Lemma 4: Consider the symmetric random walk de-

fined above. Denote the set of subsquares on the boundary
as

and define the first hitting time to the boundary as
; then, there is a constant such that

(18)

Proof: See Appendix D.
Besides, the following lemma provides an upper bound on the

expected number of time slots by time during which the walk
returns to (0, 0).
Lemma 5: For the random walk defined above, there

exist constants and such that for any :

(19)
Here, denotes the indicator function.
Sketch of Proof of Lemma 5: Denote by the event that

hits the boundary (as defined in Lemma 4) before
. Conditional on , the prob-

ability of returning to (0, 0) at time can then be
bounded as

(20)

Now, observe that when restricted to the set of sample paths
where does not reach the boundary by , we can couple
the sample paths of to the sample paths of a random walk

over an infinite plane before the corresponding hitting
time to the boundary. Denote by the event that hits

by , then

The return probability obeys for a

random walk over an infinite plane [36], and will be
bounded in Lemma 4. Summing up all yields (19). See
Appendix E for detailed derivation.
In order to derive an estimate on the number of distinct nodes

receiving directly from source , we need to calculate the
number of slots where fails to forward to a new user. In
addition to physical-layer outage events, some transmissions
occur to users already possessing , and hence are not suc-
cessful. Recall that we are using one-sided push-only strategy,
and hence, we cannot always send an innovative message. De-
note by the number of wasted transmissions from to

Fig. 3. Phase 1 is divided into subphases. Each odd subphase
accounts for slots, during which all nodes perform message
spreading. Each even subphase contains slots, during which no
transmissions occur; it allows all nodes containing a typical message to be
uniformly spread out.

some users already containing by time . This can be esti-
mated as in the following lemma.
Lemma 6: For , the number of wasted transmis-

sions defined above obeys

(21)

for some fixed constant with probability exceeding .
Sketch of Proof of Lemma 6: Consider a particular pair of

nodes and , where is the source and contains . A wasted
transmission occurs when (a) and meets in the same sub-
square again, and (b) is designated as a sender with being
the intended receiver. The probability of event (a) can be calcu-
lated using Lemma 5. Besides, the probability of (b) is
due to sharp concentration on . See Appendix F.
The above result is helpful in estimating the expected

number of distinct users containing . However, it is not
obvious whether exhibits desired sharp concentration.
The difficulty is partly due to the dependence among
for different arising from its Markov property. Due to their
underlying relation with location of , and are
not independent either for . However, this difficulty
can be circumvented by constructing different processes that
exhibit approximate mutual independence as follows.
The time duration

of Phase 1 is divided into nonoverlapping subphases
for some constant . Each odd sub-

phase accounts for time slots, whereas each even
subphase contains slots. See Fig. 3 for an illustration.
Instead of studying the true evolution, we consider different
evolutions for each subphase. In each odd subphase, source at-
tempts to transmit message to its intended receiver as in the
original process. But in every even subphase, all new transmis-
sions will be immediately deleted. The purpose for constructing
these clearance or relaxation processes in even subphases is
to allow for approximately independent counting for odd sub-
phases. The duration of each even subphase, which
is larger than the typical mixing time duration of the random
walk, is sufficient to allow each user to move to everywhere al-
most uniformly likely.
Lemma 7: Set to be , which

is the end time slot of Phase 1. The number of users containing
each message can be bounded as

(22)

with probability at least .
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Fig. 4. Left plot illustrates the clustering phenomena of in the evolution
in a static network. However, even restricted mobility may allow these nodes to
spread out within the mixing time duration as illustrated in the right plot.

Proof: See Appendix G.
In fact, if holds, the above lemma can be fur-

ther refined to . This implies that, by the
end of Phase 1, each message has been flooded to
users. They are able to cover all subsquares (i.e., the messages’
locations are roughly uniformly distributed over the unit square)
after a further mixing time duration.
2) Phase 2: This phase starts from the end of Phase 1 and

ends when for all . We use to denote the
starting slot of Phase 2 for convenience of presentation. Instead
of directly looking at the original process, we generate a new
process which evolves slower than the original process . De-
fine and as the set of messages that node contains at
time in and , with and denoting their cardinality,
respectively. For more clear exposition, we divide the entire
phase into several time blocks each of length ,
and use to label different time blocks. We define to
denote with being the starting time of time block .
is generated from : everything in these two processes re-

mains the same (including locations, movements, physical-layer
outage events, etc.) except message selection strategies, detailed
as follows:

Message Selection Strategy in the Coupled Process :

1) Initialize: At , for all , copy the set of all
messages that contains to . Set .

2) In the next time slots, all new messages
received in this subphase are immediately deleted, i.e., no
successful forwarding occurs in this subphase regardless
of the locations and physical-layer conditions.

3) In the next slots, for every sender , each message it
contains is randomly selected with probability for
transmission.

4) For all , if the number of nodes containing is larger
than , delete from some of these nodes so
that by the end of this time block.

5) Set . Repeat from (2) until for all .

Thus, each time block consists of a relaxation period and
a spreading period. The key idea is to simulate an approxi-

mately spatially-uniform evolution, which is summarized as
follows.
1) After each spreading subphase, we give the process a relax-
ation period to allow each node to move almost uniformly
likely to all subsquares. This is similar to the relaxation pe-
riod introduced in Phase 1.

2) Trimming the messages alone does not necessarily gen-
erate a slower process, because it potentially increases the
selection probability for eachmessage. Therefore, we force
the message selection probability to be a lower bound ,
which is state-independent. Surprisingly, this conservative
bound suffices for our purpose because it is exactly one of
the bottlenecks for the evolution.

The following lemma makes a formal comparison of and .
Lemma 8: evolves stochastically slower than , i.e.,

(23)

where and

are the stopping time

of Phase 2 for and , respectively.
Proof: Whenever a node sends a message to in

: (a) if , then selects with probability ,
and a random useless message otherwise; (b) if ,
always sends a random noise message. The initial condition

guarantees that always holds with this cou-
pling method. Hence, the claimed stochastic order holds.
Lemma 9: Denote by

the stopping

time block of Phase 2 in . Then, there exists a constant
independent of such that

Sketch of Proof of Lemma 9: We first look at a particular mes-
sage and use union bound later after we derive the concentra-
tion results on the stopping time associated with this message.
We observe the following facts: after a mixing time duration,
the number of users containing at each subsquare
is approximately uniform. Since is the lower bound

on the number of copies of across this time block, concen-
tration results suggest that . Ob-
serving from the mobility model that the position of any node
inside a subsquare is i.i.d. chosen, we can derive

(24)

for some constant . A standard martingale argument then
yields an upper bound on the stopping time. See Appendix H
for detailed derivation.
This lemma implies that after at most time blocks,

the number of nodes containing all messages will exceed
with high probability. Therefore, the duration of Phase 2 of
satisfies with high probability. This gives

us an upper bound on of the original evolution .
3) Phase 3: This phase ends when for all with

denoting the end of Phase 2. Assume that
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for all and all ; otherwise, we can let the process further
evolve for another mixing time duration .
Lemma 10: Denote by the duration of Phase 3, i.e.,

. Then, there
exists a constant such that

(25)

Sketch of Proof of Lemma 10: The random push strategies are
efficient near the start (exponential growth), but the evolution
will begin to slow down after Phase 2. The concentration effect
allows us to obtain a different evolution bound as

Constructing a different submartingale based on yields
the above results. See Appendix I.
4) Discussion: Combining the stopping time in all

three phases, we can see that the spreading time
satisfies

It can be observed that the mixing time bottleneck will not be
critical in multimessage dissemination. The reason is that the

mixing time in the regime is much smaller

than the optimal spreading time. Hence, the nodes have suffi-
cient time to spread out to everywhere. The key step is how to
seed the network with a sufficiently large number of copies at
the initial stage of the spreading process, which is accomplished
by the self-promotion phase of MOBILE PUSH.
Remark 5: It can be observed that the upper bounds on

spreading timewithin Phases 2 and 3 are order-wise tight, since a
gap of exists even for complete graphs [16]. The upper
bound for Phase 1, however, might not be necessarily tight.
We note that the factor arises in the analysis stated
in Lemma 7, where we assume that each relaxation subphase
is of duration for ease of analysis. Since we con-
sider subphases in total, we do not necessarily need

slots for each relaxation subphase in order to allow
spreading of all copies. We conjecture that with a finer tuning of
the concentration of measures and coupling techniques, it may
be possible to obtain a spreading time of .

IV. CONCLUDING REMARKS

In this paper, we design a simple distributed gossip-style
protocol that achieves near-optimal spreading rate for multi-
message dissemination, with the assistance of mobility. The
key observation is that random gossiping over static geometric
graphs is inherently constrained by the expansion property of
the underlying graph—capacity loss occurs since the copies
are spatially constrained instead of being spread out. Encour-
agingly, this bottleneck can indeed be overcome in mobile
networks, even with fairly limited degree of velocity. In fact,
the velocity-constrained mobility assists in achieving a large
expansion property from a long-term perspective, which simu-
lates a spatially uniform evolution.

TABLE I
SUMMARY OF NOTATION

APPENDIX

A. Proof of Lemma 1

Let us look at a typical time slot at subsquare . We know
that . For each node , define
the indicator variable . Then,

forms a set of i.i.d. random variables
each satisfying .
Define another two sets of i.i.d. Bernoulli random variables

and such that

We also define and

. The following stochastic orders can be immedi-

ately observed through simple coupling arguments:

(26)

i.e., for any positive , we have

Applying Chernoff bound yields

We can thus observe through union bound that

Similarly, the stochastic order implies that
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Therefore, we have

When , holds for any

positive constant ; when and ,
taking completes our proof.

B. Proof of Lemma 2

Consider first the vertical strip . Obviously, the spreading
within will be influenced by nodes residing in adjacent strips

, , and itself. Define a set of i.i.d. Bernoulli random
variables such that

(27)

For any , the proba-
bility of node selecting for transmission at time can
be bounded above by . Simple coupling argument
yields the following stochastic order:

(28)

where denotes stochastic order. If
, then we have

(29)

(30)

where (30) follows from the stochastic order (28), and the last
inequality follows from large deviation bounds and the obser-
vation that

Besides, if , then we
have

(31)

where . Hence,
with probability . Let

. By applying [35, Th. A.1.12], we can show that
there exist constants and such that

(32)

Define and
. Since
, we can derive with similar spirit

that

with probability at least . Similarly, if
, we can derive

with high probability. But if
, it can still be shown that

(33)

by observing that . Combining all
these facts yields

Simple manipulation gives us
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with high probability. Proceeding with similar spirit gives us:
for all

(34)

holds with probability at least . By iteratively applying
(34) we can derive that for any ,

where the last inequality arises from the fact that there are
at most nodes residing in each strip with high
probability.
This shows the geometric decaying rate of in . Sup-

pose that ; then, we have

where contradiction arises. Hence, with high prob-
ability.
Additionally, we can derive an upper bound on

using the same fixed-point arguments as follows:

with probability at least .

C. Proof of Lemma 3

Define a set of Bernoulli random variables such that
if there is at least one node inside these substrips se-

lecting for transmission at time and otherwise.
By observing that the size of each “substrip” will not exceed

tiles before and that each tile contains
nodes, the probability can be bounded above by

for some constant . This in-
spires us to construct the following set of i.i.d. Bernoulli random
variables through coupling as follows:

otherwise.
(35)

That said

otherwise.
(36)

Our way for constructing implies that

(37)

Additionally, large deviation bounds yields

(38)

Defining , [35, Th. A.1.12]
gives

(39)

which further results in

(40)

To conclude, the message is unable to cross by time
with high probability.

D. Proof of Lemma 4

Define two sets of random variables and
to represent the coordinates of in two dimensions, re-
spectively, i.e., . Therefore, for any

, we can observe

Besides, we notice that and
; then, large deviation results

implies

(41)

for some constant . We thus derive

for any , which leads to
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E. Proof of Lemma 5

It can be observed that is a discrete-time random walk
which at each step randomly moves to one of 25 sites each with
some constant probability. Formally, we can express it as fol-
lows: for , :

(42)

holds before hits the boundary, where are
fixed constants independent of , and .

We construct a new process such that
is a random walk over an “infinite” plane with

Define the event where
is the hitting time to the boundary as defined in Lemma 4. When
restricted to the sample paths where does not hit the
boundary by , we can couple the sample paths of to those
of before the corresponding hitting time to the boundary.
It is well known that for a randomwalk over an infinite

2-D plane, the return probability obeys [36]. Specif-
ically, there exists a constant such that

(43)

Hence, the return probability of
the original walk satisfies

(44)

(45)

where (45) arises from the coupling of and , and
the upper bound on is derived in Lemma 4. Hence, the
expected number of time slots in which and move to the same
subsquare by time can be bounded above
as

for some constant .

F. Proof of Lemma 6

Define as the first time slot that receives . A “con-
flict” event related to is said to occur if at any time slot the

source moves to a subsquare that coincides with any user al-
ready possessing . Denote by the total amount of con-

flict events related to that happen before ,
which can be characterized as follows:

(46)

(47)

(48)

where (47) arises from the facts that and is sta-
tionary, and (48) follows from Lemma 5. Lemma 1 implies that
there will be more than users residing in each subsquare
with high probability. If this occurs for every subsquare in each
of slots, whenever and happens to stay in the same sub-
square, the probability that can successfully transmit to
can be bounded above as . Therefore, the

amount of successful “retransmissions” can be bounded as

(49)

for some fixed constant . Setting yields

(50)

This inequality is based on the assumption that and
that concentration effect occurs, which happens with probability
at least .

G. Proof of Lemma 7

Recall that denotes the subphase of Phase 1. There-
fore, in the first odd subphase, the total number of successful
transmissions from (including “retransmissions”), denoted by
, can be bounded as

(51)

with probability exceeding for some constants and
and . This follows from simple concentration inequality

and the fact that . It can be noted that
exhibits sharp concentration based on simple large deviation

argument. Also, Markov bound yields

(52)
Since the duration of any odd subphase
obeys , this implies that the number of dis-
tinct new users that can receive within this odd subphase,
denoted by , can be stochastically bounded as

(53)
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for some constant . Note that we use the bound here instead
of in order to account for the deviation of .
We observe that there are in total slots for

spreading in Phase 1; therefore, the total number of dis-
tinct nodes receiving in Phase 1 is bounded above by

. Mixing behavior combined with concen-
tration effect thus indicates that during any odd subphase, there
are at least nodes not containing in each subsquare,
and each transmitter is able to contact a new receiver (who does
not have ) in each slot with probability at least 1/12. This
motivates us to construct the following stochastically slower
process for odd subphase : 1) there are nodes residing
in the entire square; 2) each transmission event is declared
“failure” regardless any other state with probability 11/12; 3)
the evolution in different odd subphases are independent; 4)
other models and strategies remain the same as the original
process.
Obviously, this constructed process allows us to derive a

lower bound on by the end of Phase 1. Proceeding with
similar spirit in the analysis for first odd subphase, we can
see that the number of distinct new users receiving in odd
subphase of our constructed process, denoted by ,
can be lower bounded as

(54)

for some constant . By noticing that are mutually
independent, simple large deviation inequality yields

Taking such that , we can see that

(55)

holds with probability at least . Since in
the original process is stochastically larger than the total
number of distinct users receiving in any subphase

, we can immediately observe:
by the end of Phase 1 with high prob-

ability. Furthermore, applying union bound over all distinct
messages completes the proof of this lemma.

H. Proof of Lemma 9

We consider the evolution for a typical time block .
During any time slot in this time block, each node
lying in subsquare will receive from a node in
with probability at least

for constants and , because concentration results imply
that: 1) there will be at least nodes belonging to

residing in each subsquare ; 2) there are at most
nodes in each subsquare; 3) each successful transmission

allows to receive a specificmessage with state-independent
probability . Therefore, each node will receive
from a node in by with probability exceeding

for some constant .

Since there are in total nodes not containing at
the beginning of this time block, we have

Moreover, after the relaxation period of time
slots, all these nodes containing will be spread out to all sub-
squares; then, similar arguments will hold for a new time block.
The mixing time period plays an important role in maintaining
an approximately uniform distribution of the locations of each
node. Thus, we can derive the following evolution equation:

(56)

(57)

(58)

(59)

for some constant , where the inequality (58) follows
from the fact guaranteed by Step (4).

Let , and define

. Simple manipulation yields

which indicates that forms a non-
negative supermartingale. We further define a stopping time

, which satisfies . The Stop-
ping Time Theorem yields [37, Th. 5.7.6]

(60)

Set ; then, we have
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The fact that gives

Finally, applying union bound yields

I. Proof of Lemma 10

Define as the stopping time for
all . In each time slot, any node will receive
with probability at least for a constant simply be-
cause each transmitter in will select for transmission
to with probability at least . This yields the following in-
equality:

(61)

Define ; then by manip-
ulation, we get which
indicates that forms a submartingale. Taking

, we have

Moreover, applying union bound yields

Let . Combining the above results, we can see
that the duration of Phase 3 satisfies with
probability at least .
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