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Abstract

Recent years have seen a flurry of activities in de-
signing provably efficient nonconvex optimization
procedures for solving statistical estimation prob-
lems. For various problems like phase retrieval or
low-rank matrix completion, state-of-the-art non-
convex procedures require proper regularization
(e.g. trimming, regularized cost, projection) in or-
der to guarantee fast convergence. When it comes
to vanilla procedures such as gradient descent,
however, prior theory either recommends highly
conservative learning rates to avoid overshooting,
or completely lacks performance guarantees. This
paper uncovers a striking phenomenon in several
nonconvex problems: even in the absence of ex-
plicit regularization, gradient descent follows a
trajectory staying within a basin that enjoys nice
geometry, consisting of points incoherent with the
sampling mechanism. This “implicit regulariza-
tion” feature allows gradient descent to proceed in
a far more aggressive fashion without overshoot-
ing, which in turn results in substantial compu-
tational savings. Focusing on two statistical esti-
mation problems, i.e. solving random quadratic
systems of equations and low-rank matrix comple-
tion, we establish that gradient descent achieves
near-optimal statistical and computational guaran-
tees without explicit regularization. As a byprod-
uct, for noisy matrix completion, we demonstrate
that gradient descent enables optimal control of
both entrywise and spectral-norm errors.
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1. Introduction
A wide spectrum of science and engineering applications
calls for solutions to a nonlinear system of equations. Imag-
ine we have collected a set of data points y = {yj}1≤j≤m,
generated by a nonlinear sensing system,

yj ≈ Aj
(
x\
)
, 1 ≤ j ≤ m,

where x\ is the unknown object of interest, and the Aj’s
are certain nonlinear maps known a priori. Can we hope to
reconstruct the underlying object x\ in a faithful yet efficient
manner? Problems of this kind abound in information and
statistical science, prominent examples including low-rank
matrix recovery (Keshavan et al., 2010; Candès & Recht,
2009), phase retrieval (Candès et al., 2013; Jaganathan et al.,
2015), and learning neural networks (Soltanolkotabi et al.,
2017; Zhong et al., 2017), to name just a few.

In principle, one can attempt reconstruction by seeking a
solution that minimizes the empirical loss, namely,

minimizex f(x) =

m∑

j=1

∣∣yj −Aj(x)
∣∣2. (1)

Unfortunately, this empirical loss minimization problem is,
in many cases, highly nonconvex, making it NP-hard in
general. For example, this non-convexity issue comes up in:

• Solving random quadratic systems of equations
(a.k.a. phase retrieval): where one wishes to solve for x\

in m quadratic equations yj =
(
a>j x

\
)2

, 1 ≤ j ≤ m,
with {aj}1≤j≤m denoting the known design vectors. In
this case, the empirical risk minimization is given by

minimizex∈Rn f(x) =
1

4m

m∑

j=1

[
yj −

(
a>j x

)2]2
. (2)

• Low-rank matrix completion: which aims to predict all
entries of a low-rank matrix M \ = X\X\> from partial
entries (those from an index subset Ω), where X\ ∈
Rn×r (r � n). Here, the nonconvex problem to solve is

minimize
X∈Rn×r

f(X) =
n2

4m

∑

(j,k)∈Ω

(
M \
j,k − e>j XX>ek

)2

.
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Table 1. Prior theory for gradient descent (with spectral initialization)

Vanilla gradient descent Regularized gradient descent
sample iteration step sample iteration type of

complexity complexity size complexity complexity regularization
Phase

n logn n log 1
ε

1
n

n log 1
ε

trimming
retrieval e.g. (Chen & Candès, 2017)

n/a n/a n/a
nr7 n

r
log 1

ε

regularized loss
Matrix e.g. (Sun & Luo, 2016)

completion
nr2 r2 log 1

ε

projection
e.g. (Chen & Wainwright, 2015)

1.1. Nonconvex Optimization via Regularized GD

First-order methods have been a popular heuristic in practice
for solving nonconvex problems including (1). For instance,
a widely adopted procedure is gradient descent (GD), which
follows the update rule

xt+1 = xt − ηt∇f
(
xt
)
, t ≥ 0, (3)

where ηt is the learning rate (or step size) and x0 is some
proper initial guess. Given that it only performs a single
gradient calculation ∇f(·) per iteration (which typically
can be completed within near-linear time), this paradigm
emerges as a candidate for solving large-scale problems.
The natural questions are: whether xt converges to the
global solution and, if so, how long it takes for convergence,
especially since (1) is highly nonconvex.

Fortunately, despite the worst-case hardness, appealing con-
vergence properties have been discovered in various sta-
tistical estimation problems; the blessing being that the
statistical models help rule out ill-behaved instances. For
the average case, the empirical loss often enjoys benign ge-
ometry, particularly in a local region surrounding the global
optimum. In light of this, an effective nonconvex iterative
method typically consists of two parts:

1. an initialization scheme (e.g. spectral methods);
2. an iterative refinement procedure (e.g. gradient descent).

This strategy has recently spurred a great deal of interest,
owing to its promise of achieving computational efficiency
and statistical accuracy at once for a growing list of prob-
lems, e.g. (Keshavan et al., 2010; Jain et al., 2013; Chen &
Wainwright, 2015; Sun & Luo, 2016; Candès et al., 2015;
Chen & Candès, 2017). However, rather than directly apply-
ing vanilla GD (3), existing theory often suggests enforcing
proper regularization. Such explicit regularization enables
improved computational convergence by properly “stabi-
lizing” the search directions. The following regularization
schemes, among others, have been suggested to obtain or
improve computational guarantees. We refer to these algo-
rithms collectively as Regularized Gradient Descent.

• Trimming/truncation, which truncates a subset of the gra-
dient components when forming the descent direction.
For instance, when solving quadratic systems of equa-
tions, one can modify the gradient descent update rule as

xt+1 = xt − ηtT
(
∇f
(
xt
))
, (4)

where T is an operator that effectively drops samples
bearing too much influence on the search direction (Chen
& Candès, 2017; Zhang et al., 2016b; Wang et al., 2017).
• Regularized loss, which attempts to optimize a regular-

ized empirical risk function through

xt+1 = xt − ηt
(
∇f
(
xt
)

+∇R
(
xt
))
, (5)

where R(x) stands for an additional penalty term in the
empirical loss. For example, in matrix completion, R(·)
penalizes the `2 row norm (Keshavan et al., 2010; Sun &
Luo, 2016) as well as the Frobenius norm (Sun & Luo,
2016) of the decision matrix.

• Projection, which projects the iterates onto certain sets
based on prior knowledge, that is,

xt+1 = P
(
xt − ηt∇f

(
xt
))
, (6)

where P is a certain projection operator used to enforce,
for example, incoherence properties. This strategy has
been employed in low-rank matrix completion (Chen &
Wainwright, 2015; Zheng & Lafferty, 2016).

Equipped with such regularization procedures, existing
works uncover appealing computational and statistical prop-
erties under various statistical models. Table 1 summarizes
the performance guarantees derived in the prior literature;
for simplicity, only orderwise results are provided.

1.2. Regularization-free Procedures?

The regularized gradient descent algorithms, while exhibit-
ing appealing performance, usually introduce more tuning
parameters depending on the assumed statistical models.
In contrast, vanilla gradient descent (cf. (3)) — which is
perhaps the very first method that comes into mind and re-
quires minimal tuning parameters — is far less understood
(cf. Table 1). Take matrix completion as an example: to
the best of our knowledge, there is currently no theoretical
guarantee derived for vanilla gradient descent.

The situation is better for phase retrieval: the local conver-
gence of vanilla gradient descent, also known as Wirtinger
flow (WF), has been investigated in (Candès et al., 2015).
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Figure 1. Relative `2 error of xt (modulo the global phase) vs. iter-
ation count for phase retrieval under i.i.d. Gaussian design, where
m = 10n and ηt = 0.1.
Under i.i.d. Gaussian design and with near-optimal sam-
ple complexity, WF (combined with spectral initialization)
provably achieves ε-accuracy (in a relative sense) within
O(n log(1/ε)) iterations. Nevertheless, the computational
guarantee is significantly outperformed by the regularized
version (called truncated Wirtinger flow (Chen & Candès,
2017)), which only requires O(log(1/ε)) iterations to con-
verge with similar per-iteration cost. On closer inspection,
the high computational cost of WF is largely due to the
vanishingly small step size ηt = O(1/(n‖x\‖22)) — and
hence slow movement — suggested by the theory (Candès
et al., 2015). While this is already the largest possible
step size allowed in the theory published in (Candès et al.,
2015), it is considerably more conservative than the choice
ηt = O

(
1/‖x\‖22

)
theoretically justified for the regularized

version (Chen & Candès, 2017; Zhang et al., 2016b).

The lack of understanding and the suboptimal results about
vanilla GD raise a natural question: are regularization-free
iterative algorithms inherently suboptimal for solving non-
convex statistical estimation problems?

1.3. Numerical Surprise of Unregularized GD

To answer the preceding question, it is perhaps best to first
collect some numerical evidence. In what follows, we test
the performance of vanilla GD for solving random quadratic
systems using a constant step size. The initial guess is
obtained by means of the standard spectral method.

For each n, set m = 10n, take x\ ∈ Rn to be a ran-
dom vector with unit norm, and generate the design vectors
aj

i.i.d.∼ N (0, In), 1 ≤ j ≤ m. Figure 1 illustrates the rela-
tive `2 error min{‖xt−x\‖2, ‖xt+x\‖2}/‖x\‖2 (modulo
the unrecoverable global phase) vs. the iteration count. The
results are shown for n = 20, 100, 200, 1000, with the step
size taken to be ηt = 0.1 in all settings.

In all settings, vanilla gradient descent enjoys remarkable
linear convergence, always yielding an accuracy of 10−5 (in
a relative sense) within around 200 iterations. In particular,
the step size is taken to be ηt = 0.1 although we vary the
problem size from n = 20 to n = 1000. The consequence is
that the convergence rates experience little changes when the

problem sizes vary. In comparison, the theory published in
(Candès et al., 2015) seems overly pessimistic, as it suggests
a diminishing step size inversely proportional to n and, as a
result, an iteration complexity that worsens as the problem
size grows.

In short, the above empirical results are surprisingly posi-
tive yet puzzling. Why was the computational efficiency of
vanilla gradient descent unexplained or substantially under-
estimated in prior theory?

1.4. This Paper

The main contribution of this paper is towards demystify-
ing the “unreasonable” effectiveness of regularization-free
nonconvex gradient methods. As asserted in previous work,
regularized gradient descent succeeds by properly enforc-
ing/promoting certain incoherence conditions throughout
the execution of the algorithm. In contrast, we discover that

Vanilla gradient descent automatically forces the iterates
to stay incoherent with the measurement mechanism, thus
implicitly regularizing the search directions.

This “implicit regularization” phenomenon is of fundamen-
tal importance, suggesting that vanilla gradient descent pro-
ceeds as if it were properly regularized. This explains the
remarkably favorable performance of unregularized gra-
dient descent in practice. Focusing on two fundamental
statistical estimation problems, our theory guarantees both
statistical and computational efficiency of vanilla gradient
descent under random designs and spectral initialization.
With near-optimal sample complexity, to attain ε-accuracy,
vanilla gradient descent converges in an almost dimension-
free O(log(1/ε)) iterations, possibly up to a log n factor.
As a byproduct of our theory, we show that gradient de-
scent provably controls the entrywise and spectral-norm
estimation errors for noisy matrix completion.

2. Implicit Regularization – A Case Study
To reveal reasons behind the effectiveness of vanilla gradient
descent, we first examine the existing theory of gradient de-
scent and identify the geometric properties that enable linear
convergence. We then develop an understanding as to why
prior theory is conservative, and describe the phenomenon
of implicit regularization that helps explain the effectiveness
of vanilla gradient descent. To facilitate discussion, we will
use the problem of solving random quadratic systems of
equations (or phase retrieval) and Wirtinger flow as a case
study, but our diagnosis applies more generally.

2.1. Gradient Descent Theory Revisited

It is well-known that for an unconstrained optimization prob-
lem, if the objective function f is both α-strongly convex
and β-smooth, then vanilla gradient descent (3) enjoys `2
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error contraction (Bubeck, 2015), namely, for t ≥ 0

∥∥xt+1 − x\‖2 ≤
(

1− 2

β/α+ 1

)∥∥xt − x\
∥∥

2
, (7)

as long as the step size is chosen as ηt = 2/(α + β).
Here, x\ denotes the global minimum. This immediately
reveals the iteration complexity for gradient descent: the
number of iterations taken to attain ε-accuracy is bounded
by O((β/α) log(1/ε)). In other words, the iteration com-
plexity is dictated by and scales linearly with the condition
number — the ratio β/α of smoothness to strong convexity
parameters.

Moving beyond convex optimization, one can easily extend
the above theory to nonconvex problems with local strong
convexity and smoothness. More precisely, suppose the
objective function f satisfies

∇2f(x) � αI and
∥∥∇2f(x)

∥∥ ≤ β

over a local `2 ball surrounding the global minimum x\:

Bδ(x) :=
{
x | ‖x− x\‖2 ≤ δ‖x\‖2

}
. (8)

The contraction result (7) continues to hold, as long as the
algorithm starts with an initial point that falls inside Bδ(x).

2.2. Local Geometry for Solving Quadratic Systems

To invoke generic gradient descent theory, it is critical
to characterize the local strong convexity and smoothness
properties of the loss function. Take the problem of solv-
ing random quadratic systems as an example. Consider
the i.i.d. Gaussian design in which aj

i.i.d.∼ N (0, In),
1 ≤ j ≤ m, and suppose without loss of generality that the
underlying signal obeys ‖x\‖2 = 1.

In the regime where m � n log n (which is the regime
considered in (Candès et al., 2015)), local strong convexity
is present, in the sense that f(·) as defined in (2) obeys

∇2f(x) � (1/2) · In, ∀x :
∥∥x− x\

∥∥
2
≤ δ
∥∥x\

∥∥
2

with high probability, provided that δ > 0 is sufficiently
small (see (Soltanolkotabi, 2014; White et al., 2015) and
(Ma et al., 2017)). The smoothness parameter, however,
is not well-controlled. In fact, it can be as large as (up to
logarithmic factors)

∥∥∇2f(x)
∥∥ . n even when we restrict

attention to the local `2 ball (8) with δ > 0 being a fixed
small constant. This means that the condition number β/α
(defined in Section 2.1) may scale as O(n), leading to the
step size recommendation ηt � 1/n, and, as a consequence,
a high iteration complexity O(n log(1/ε)). This underpins
the analysis in (Candès et al., 2015).

In summary, the geometric properties of the loss function
— even in the local `2 ball centering around the global min-
imum — is not as favorable as one anticipates. A direct

application of generic gradient descent theory leads to an
overly conservative learning rate and a pessimistic conver-
gence rate, unless the number of samples is enormously
larger than the number of unknowns.

2.3. Which Region Enjoys Nicer Geometry?

Interestingly, our theory identifies a local region surrounding
x\ with a large diameter that enjoys much nicer geometry.
This region does not mimic an `2 ball, but rather, the inter-
section of an `2 ball and a polytope. We term it the region
of incoherence and contraction (RIC). For phase retrieval,
the RIC includes all points x ∈ Rn obeying

∥∥x− x\
∥∥

2
≤ δ
∥∥x\

∥∥
2

and (9a)

max
1≤j≤m

∣∣a>j
(
x− x\

)∣∣ .
√

log n
∥∥x\

∥∥
2
, (9b)

where δ > 0 is some small numerical constant. As will be
formalized in (Ma et al., 2017), with high probability the
Hessian matrix satisfies

(1/2) · In � ∇2f(x) � O(log n) · In
simultaneously for all x in the RIC. In words, the Hessian
matrix is nearly well-conditioned (with the condition num-
ber bounded by O(log n)), as long as (i) the iterate is not
very far from the global minimizer (cf. (9a)), and (ii) the it-
erate remains incoherent1 with respect to the sensing vectors
(cf. (9b)). See Figure 2(a) for an illustration.

The following observation is thus immediate: one can safely
adopt a far more aggressive step size (as large as ηt =
O(1/ log n)) to achieve acceleration, as long as the iterates
stay within the RIC. This, however, fails to be guaranteed
by generic gradient descent theory. To be more precise, if
the current iterate xt falls within the desired region, then
in view of (7), we can ensure `2 error contraction after one
iteration, namely,

‖xt+1 − x\‖2 ≤ ‖xt − x\‖2
and hence xt+1 stays within the local `2 ball and hence
satisfies (9a). However, it is not immediately obvious that
xt+1 would still stay incoherent with the sensing vectors
and satisfy (9b). If xt+1 leaves the RIC, then it no longer en-
joys the benign local geometry of the loss function, and the
algorithm has to slow down in order to avoid overshooting.
See Fig. 2(b) for a visual illustration. In fact, in almost all
regularized gradient descent algorithms mentioned in Sec-
tion 1.1, the regularization procedures are mainly proposed
to enforce such incoherence constraints.

2.4. Implicit Regularization

However, is regularization really necessary for the iterates
to stay within the RIC? To answer this question, we plot

1If x is aligned with (and hence very coherent with) one vector
aj , then with high probability one has

∣∣a>j (x−x\
)
| &

∣∣a>j x| �√
n‖x‖2, which is significantly larger than

√
logn‖x‖2.
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Figure 2. (a) The shaded region is an illustration of the incoherence region, which satisfies
∣∣a>j (x− x\)

∣∣ . √logn for all points x in
the region. (b) When x0 resides in the desired region, we know that x1 remains within the `2 ball but might fall out of the incoherence
region (the shaded region). Once x1 leaves the incoherence region, we lose control and may overshoot. (c) Our theory reveals that with
high probability, all iterates will stay within the incoherence region, enabling fast convergence.
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of the

gradient iterates vs. iteration count for the phase retrieval problem.
The results are shown for n ∈ {20, 100, 200, 1000} and m =
10n, with the step size taken to be ηt = 0.1. The problem instances
are generated in the same way as in Figure 1.

in Fig. 3 the incoherence measure
maxj|a>j (xt−x\)|√

logn‖x\‖2
vs. the

iteration count in a typical Monte Carlo trial, generated
in the same way as for Figure 1. Interestingly, the inco-
herence measure remains bounded by 2 for all iterations
t > 1. This important observation suggests that one may
adopt a substantially more aggressive step size throughout
the whole algorithm. The main objective of this paper is
thus to provide a theoretical validation of the above em-
pirical observation. As we will demonstrate shortly, with
high probability all iterates throughout the execution of the
algorithm (as well as the spectral initialization) are prov-
ably constrained within the RIC, implying fast convergence
of vanilla gradient descent (cf. Figure 2(c)). The fact that
the iterates stay incoherent with the measurement mecha-
nism automatically, without explicit enforcement, is termed
“implicit regularization” in the current work.

2.5. A Glimpse of the Analysis: A Leave-one-out Trick

In order to rigorously establish (9b) for all iterates, the
current paper develops a powerful mechanism based on
the leave-one-out perturbation argument, a trick rooted
and widely used in probability and random matrix theory
(El Karoui, 2015; Javanmard & Montanari, 2015; Sur et al.,

2017; Zhong & Boumal, 2017; Chen et al., 2017; Abbe et al.,
2017). Note that the iterate xt is statistically dependent of
the design vectors {aj}. Under such circumstances, one
often resorts to generic bounds like the Cauchy-Schwarz
inequality when bounding a>l (xt − x\), which would not
yield a desirable estimate. To address this issue, we in-
troduce a sequence of auxiliary iterates {xt,(l)} for each
1 ≤ l ≤ m (for analytical purposes only), obtained by run-
ning vanilla gradient descent using all but the lth sample. As
one expects, such auxiliary trajectories serve as extremely
good surrogates of {xt} in the sense that

xt ≈ xt,(l), 1 ≤ l ≤ m, t ≥ 0, (10)

since their constructions only differ by a single sample.
Most importantly, since xt,(l) is statistically independent
of the lth design vector, it is much easier to control its
incoherence w.r.t. al to the desired level:

∣∣a>l
(
xt,(l) − x\

)∣∣ .
√

log n
∥∥x\

∥∥
2
. (11)

Combining (10) and (11) then leads to (9b). See Figure 4
for a graphical illustration of this argument.

3. Main Results
This section formalizes the implicit regularization phe-
nomenon underlying unregularized GD, and presents its
consequences, namely near-optimal statistical and computa-
tional guarantees for phase retrieval and matrix completion.
The complete proofs can be found in (Ma et al., 2017).

3.1. Solving Random Quadratic Systems / Phase
Retrieval

Suppose the m quadratic equations

yj =
(
a>j x

\
)2
, j = 1, 2, . . . ,m (12)

are collected using random design vectors, namely, aj
i.i.d.∼

N (0, In), and the nonconvex problem to solve is

minimizex∈Rn f(x) :=
1

4m

m∑

j=1

[(
a>j x

)2 − yj
]2
. (13)
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Figure 4. Illustration of the leave-one-out sequence w.r.t. al. (a) The sequence {xt,(l)}t≥0 is constructed without using the lth sample.
(b) Since the auxiliary sequence {xt,(l)} is constructed without using al, the leave-one-out iterates stay within the incoherence region
w.r.t. al with high probability. Meanwhile, {xt} and {xt,(l)} are expected to remain close as their construction differ only in one sample.

The Wirtinger flow (WF) algorithm, first introduced in
(Candès et al., 2015), is a combination of spectral initializa-
tion and vanilla gradient descent; see Algorithm 1.

Algorithm 1 Wirtinger flow for phase retrieval
Input: {aj}1≤j≤m and {yj}1≤j≤m.
Spectral initialization: Let λ1 (Y ) and x̃0 be the lead-
ing eigenvalue and eigenvector of

Y =
1

m

∑m

j=1
yjaja

>
j , (14)

respectively, and set x0 =
√
λ1 (Y ) /3 x̃0.

Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

xt+1 = xt − ηt∇f
(
xt
)
. (15)

Recognizing that the global phase/sign is unrecoverable
from quadratic measurements, we introduce the `2 distance
modulo the global phase as follows

dist(x,x\) := min
{
‖x− x\‖2, ‖x + x\‖2

}
. (16)

Our finding is summarized in the following theorem.
Theorem 1. Let x\ ∈ Rn be a fixed vector. Suppose
aj

i.i.d.∼ N (0, In) for each 1 ≤ j ≤ m and m ≥ c0n log n
for some sufficiently large constant c0 > 0. Assume the
learning rate obeys ηt ≡ η = c1/

(
log n · ‖x0‖22

)
for any

sufficiently small constant c1 > 0. Then there exist some
absolute constants 0 < ε < 1 and c2 > 0 such that with
probability at least 1−O

(
mn−5

)
, the Wirtinger flow iter-

ates (Algorithm 1) satisfy that for all t ≥ 0,

dist(xt,x\) ≤ ε(1− η‖x\‖22/2)t‖x\‖2, (17a)

max
1≤j≤m

∣∣a>j
(
xt − x\

)∣∣ ≤ c2
√

log n‖x\‖2. (17b)

Theorem 1 reveals a few intriguing properties of WF.

• Implicit regularization: Theorem 1 asserts that the inco-
herence properties are satisfied throughout the execution

of the algorithm, including the spectral initialization (see
(17b)), which formally justifies the implicit regularization
feature we hypothesized.

• Near-constant step size: Consider the case where
‖x\‖2 = 1. Theorem 1 establishes near-linear conver-
gence of WF with a substantially more aggressive step
size η � 1/ log n. Compared with the choice η . 1/n
admissible in (Candès et al., 2015), Theorem 1 allows
WF to attain ε-accuracy within O(log n log(1/ε)) itera-
tions. The resulting computational complexity of WF
is O (mn log n log(1/ε)) , which significantly improves
upon the result O

(
mn2 log (1/ε)

)
derived in (Candès

et al., 2015). As a side note, if the sample size fur-
ther increases to m � n log2 n, then η � 1 is also
feasible, resulting in an iteration complexity log(1/ε).
This follows since with high probability, the entire tra-
jectory resides within a more refined incoherence region
maxj

∣∣a>j
(
xt −x\

)∣∣ . ‖x\‖2. We omit the details here.

Finally, we remark that similar implicit regularization phe-
nomenon holds even in the presence of random initialization.
See (Chen et al., 2018) for details.

3.2. Low-rank Matrix Completion

We move on to the low-rank matrix completion problem.

Let M \ ∈ Rn×n be a positive semidefinite matrix2 with
rank r, and suppose its eigendecomposition is

M \ = U \Σ\U \>, (18)

where U \ ∈ Rn×r consists of orthonormal columns, and
Σ\ is an r × r diagonal matrix with eigenvalues in a de-
scending order, i.e. σmax = σ1 ≥ · · · ≥ σr = σmin > 0.
Throughout this paper, we assume the condition number
κ := σmax/σmin is bounded by a fixed constant, inde-
pendent of the problem size (i.e. n and r). Denoting

2Here, we assume M \ to be positive semidefinite to simplify
the presentation, but note that our analysis easily extends to asym-
metric low-rank matrices.
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Algorithm 2 Vanilla gradient descent for matrix completion
(with spectral initialization)

Input: Y = [Yj,k]1≤j,k≤n, r, p.
Spectral initialization: Let U0Σ0U0> be the rank-r
eigendecomposition of

M0 := p−1PΩ(Y ) = p−1PΩ

(
M \ + E

)
,

and set X0 = U0
(
Σ0
)1/2

.
Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

Xt+1 = Xt − ηt∇f
(
Xt
)
. (21)

X\ = U \(Σ\)1/2 allows us to factorize M \ as

M \ = X\X\>. (19)

Consider a random sampling model such that each entry of
M \ is observed independently with probability 0 < p ≤ 1,
i.e. for 1 ≤ j ≤ k ≤ n,

Yj,k =

{
M \
j,k + Ej,k with probability p,

0, else,
(20)

where the entries of E = [Ej,k]1≤j≤k≤n are independent
sub-Gaussian noise with sub-Gaussian norm σ (see (Ver-
shynin, 2012)). We denote by Ω the set of locations being
sampled, and PΩ(Y ) represents the projection of Y onto
the set of matrices supported in Ω. We note here that the
sampling rate p, if not known, can be faithfully estimated
by the sample proportion |Ω|/n2.

To fix ideas, we consider the following nonconvex optimiza-
tion problem

minimize
X∈Rn×r

f (X) :=
1

4p

∑

(j,k)∈Ω

(
e>j XX>ek − Yj,k

)2
.

The vanilla gradient descent algorithm (with spectral initial-
ization) is summarized in Algorithm 2.

Before proceeding to the main theorem, we first introduce a
standard incoherence parameter required for matrix comple-
tion (Candès & Recht, 2009).
Definition 1 (Incoherence for matrix completion). A rank-r
matrix M \ with eigendecomposition M \ = U \Σ\U \> is
said to be µ-incoherent if

∥∥U \
∥∥

2,∞ ≤
√
µ/n

∥∥U \
∥∥

F
=
√
µr/n, (22)

where ‖ · ‖2,∞ denotes the largest `2 norm of the rows.

In addition, recognizing that X\ is identifiable only up to
orthogonal transformation, we define the optimal transform
from the tth iterate Xt to X\ as

Ĥt := argmin
R∈Or×r

∥∥XtR−X\
∥∥

F
, (23)

where Or×r is the set of r × r orthonormal matrices. With
these definitions in place, we have the following theorem.

Theorem 2. Let M \ be a rank r, µ-incoherent PSD matrix,
and its condition number κ is a fixed constant. Suppose
the sample size satisfies n2p ≥ Cµ3r3n log3 n for some
sufficiently large constant C > 0, and the noise satisfies

σ

√
n

p
� σmin√

κ3µr log3 n
. (24)

With probability at least 1−O
(
n−3

)
, the iterates of Algo-

rithm 2 satisfy

∥∥XtĤt −X\
∥∥
F
≤
(
C4ρ

tµr
1
√
np

+
C1σ

σmin

√
n

p

)∥∥X\
∥∥
F
,

∥∥XtĤt −X\
∥∥
2,∞ ≤

(
C5ρ

tµr

√
logn

np
+
C8σ

σmin

√
n logn

p

)
·
∥∥X\

∥∥
2,∞,∥∥XtĤt −X\

∥∥ ≤ (C9ρ
tµr

1
√
np

+
C10σ

σmin

√
n

p

)∥∥X\
∥∥

for all 0 ≤ t ≤ T = O(n5),3 where C1, C4, C5, C8,
C9 and C10 are some absolute positive constants and 1−
(σmin/5) · η ≤ ρ < 1, provided that 0 < ηt ≡ η ≤
2/ (25κσmax).

Theorem 2 provides the first theoretical guarantee of un-
regularized gradient descent for matrix completion, demon-
strating near-optimal statistical accuracy and computational
complexity, under near-minimal sample complexity.

• Implicit regularization: In Theorem 2, we bound the
`2/`∞ error of the iterates in a uniform manner. Note
that

∥∥X −X\
∥∥

2,∞ = maxj
∥∥e>j

(
X −X\

)∥∥
2
, which

implies the iterates remain incoherent with the sensing
vectors throughout and have small incoherence param-
eters, including the spectral initialization (cf. (22)). In
comparison, prior works either include a penalty term
on {‖e>j X‖2}1≤j≤n (Keshavan et al., 2010; Sun & Luo,
2016) and/or ‖X‖F (Sun & Luo, 2016) to encourage
an incoherent and/or low-norm solution, or add an ex-
tra projection operation to enforce incoherence (Chen &
Wainwright, 2015; Zheng & Lafferty, 2016). Our results
demonstrate that such explicit regularization is unneces-
sary for the success of gradient descent.

• Constant step size: Without loss of generality we may
assume that σmax = ‖M \‖ = O(1), which can be done
by choosing proper scaling of M \. Hence we have a
constant step size ηt � 1. Actually it is more convenient
to consider the scale invariant parameter ρ: Theorem
2 guarantees linear convergence of the vanilla gradient
descent at a constant rate ρ. Remarkably, the convergence

3Theorem 2 remains valid if the total number T of iterations
obeys T = nO(1). In the noiseless case where σ = 0, the theory
allows arbitrarily large T .
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occurs with respect to three different unitarily invariant
norms: the Frobenius norm ‖·‖F, the `2/`∞ norm ‖·‖2,∞,
and the spectral norm ‖ · ‖. As far as we know, the latter
two are established for the first time. Note that our result
even improves upon that for regularized GD; see Table 1.

• Near-minimal Euclidean error: As the number of it-
erations t increases, the Euclidean error of vanilla GD
converges to

∥∥XtĤt −X\
∥∥

F
. σ

σmin

√
n

p

∥∥X\
∥∥

F
, (25)

which coincides with the theoretical guarantee in (Chen
& Wainwright, 2015) and matches the minimax lower
bound established in (Negahban & Wainwright, 2012;
Koltchinskii et al., 2011).

• Near-optimal entrywise error: The `2/`∞ error bound
immediately yields entrywise control of the empirical
risk. Specifically, as soon as the number of iterations t is
sufficiently large, we have

∥∥XtXt> −M \
∥∥
∞ . σ

σmin

√
n log n

p

∥∥M \
∥∥
∞ .

Compared with the Euclidean loss (25), this implies that
when r = O(1), the entrywise error of XtXt> is uni-
formly spread out across all entries. As far as we know,
this is the first result that reveals near-optimal entrywise
error control for noisy matrix completion using noncon-
vex optimization, without resorting to sample splitting.

4. Related Work
Convex relaxations have received much attention for solving
nonlinear systems of equations in the past decade. Instead
of directly attacking the nonconvex formulation, convex re-
laxation lifts the object of interest into a higher dimensional
space and then attempts recovery via semidefinite program-
ming (e.g. (Recht et al., 2010; Candès et al., 2013; Candès
& Recht, 2009)). This has enjoyed great success in both
theory and practice. Despite appealing statistical guarantees,
SDP is in general prohibitively expensive when processing
large-scale datasets.

In comparison, nonconvex approaches have been under ex-
tensive study in the last few years, due to their computational
advantages. There is a growing list of statistical estimation
problems for which nonconvex approaches are guaranteed
to find global optimal solutions, including but not limited to
phase retrieval (Netrapalli et al., 2013; Candès et al., 2015;
Chen & Candès, 2017), low-rank matrix sensing and com-
pletion (Tu et al., 2016; Bhojanapalli et al., 2016; Park et al.,
2016; Chen & Wainwright, 2015; Zheng & Lafferty, 2015;
Ge et al., 2016), dictionary learning (Sun et al., 2017), blind
deconvolution (Li et al., 2016a; Cambareri & Jacques, 2016;
Lee et al., 2017), tensor decomposition (Ge & Ma, 2017),
joint alignment (Chen & Candès, 2018), learning shallow

neural networks (Soltanolkotabi et al., 2017; Zhong et al.,
2017). In several problems (Sun et al., 2016; 2017; Ge &
Ma, 2017; Ge et al., 2016; Li et al., 2016b; Li & Tang, 2016;
Mei et al., 2016; Maunu et al., 2017), it is further suggested
that the optimization landscape is benign under sufficiently
large sample complexity, in the sense that all local min-
ima are globally optimal, and hence nonconvex iterative
algorithms become promising in solving such problems.

When it comes to noisy matrix completion, to the best of our
knowledge, no rigorous guarantees have been established for
gradient descent without explicit regularization. A notable
exception is (Jin et al., 2016), which studies unregularized
stochastic gradient descent for online matrix completion
with fresh samples used in each iteration.

Finally, we note that the notion of implicit regularization
— broadly defined — arises in settings far beyond what
considered herein. For instance, it has been in matrix fac-
torization, over-parameterized stochastic gradient descent
effectively enforces certain norm constraints, allowing it
to converge to a minimal-norm solution as long as it starts
from the origin (Li et al., 2017; Gunasekar et al., 2017).
The stochastic gradient methods have also been shown to
implicitly enforce Tikhonov regularization in several statis-
tical learning settings (Lin et al., 2016). More broadly, this
phenomenon seems crucial in enabling efficient training of
deep neural networks (Neyshabur et al., 2017; Zhang et al.,
2016a; Soudry et al., 2017; Keskar et al., 2016).

5. Discussions
This paper showcases an important phenomenon in non-
convex optimization: even without explicit enforcement of
regularization, the vanilla form of gradient descent effec-
tively achieves implicit regularization for a large family of
statistical estimation problems. We believe this phenomenon
arises in problems far beyond the two cases studied herein,
and our results are initial steps towards understanding this
fundamental phenomenon. That being said, there are nu-
merous avenues that remain open. For instance, it remains
unclear how to generalize the proposed leave-one-out tricks
for more general designs beyond the i.i.d. Gaussian design.
It would also be interesting to see whether the message
conveyed in this paper can shed light on why simple forms
of gradient descent and variants work so well in learning
complicated neural networks. We leave these for future
investigation.
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