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Abstract
Diffusion models, which convert noise into new data instances by learning to reverse a Markov diffusion

process, have become a cornerstone in contemporary generative modeling. While their practical power
has now been widely recognized, the theoretical underpinnings remain far from mature. In this work,
we develop a suite of non-asymptotic theory towards understanding the data generation process of
diffusion models in discrete time, assuming access to `2-accurate estimates of the (Stein) score functions.
For a popular deterministic sampler (based on the probability flow ODE), we establish a convergence
rate proportional to 1/T (with T the total number of steps), improving upon past results; for another
mainstream stochastic sampler (i.e., a type of the denoising diffusion probabilistic model), we derive a
convergence rate proportional to 1/

√
T , matching the state-of-the-art theory. Imposing only minimal

assumptions on the target data distribution (e.g., no smoothness assumption is imposed), our results
characterize how `2 score estimation errors affect the quality of the data generation processes. In contrast
to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach
without resorting to toolboxes for SDEs and ODEs. Further, we design two accelerated variants, improving
the convergence to 1/T 2 for the ODE-based sampler and 1/T for the DDPM-type sampler, which might
be of independent theoretical and empirical interest.

Keywords: diffusion models, score-based generative modeling, non-asymptotic theory, probability flow ODE,
reverse SDE, denoising diffusion probabilistic model
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1 Introduction
Diffusion models have emerged as a cornerstone in contemporary generative modeling, a task that learns to
generate new data instances (e.g., images, text, audio) that look similar in distribution to the training data
(Ho et al., 2020; Sohl-Dickstein et al., 2015; Song and Ermon, 2019; Dhariwal and Nichol, 2021; Jolicoeur-
Martineau et al., 2021; Chen et al., 2021; Kong et al., 2021; Austin et al., 2021). Originally proposed by
Sohl-Dickstein et al. (2015) and later popularized by Song and Ermon (2019); Ho et al. (2020), the mainstream
diffusion generative models — e.g., denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) and
denoising diffusion implicit models (DDIMs) (Song et al., 2020a) — have underpinned major successes in
content generators like DALL·E 2 (Ramesh et al., 2022), Stable Diffusion (Rombach et al., 2022) and Imagen
(Saharia et al., 2022), claiming state-of-the-art performance in the now broad field of generative artificial
intelligence (AI). See Yang et al. (2022); Croitoru et al. (2023) for overviews of recent development.

In a nutshell, a diffusion generative model is based upon two stochastic processes in Rd:

1) a forward process
X0 → X1 → · · · → XT (1)

that starts from a sample drawn from the target data distribution (e.g., of natural images) and gradually
diffuses it into a noise-like distribution (e.g., standard Gaussians);

2) a reverse process
YT → YT−1 → · · · → Y0 (2)

that starts from pure noise (e.g., standard Gaussians) and successively converts it into new samples
sharing similar distributions as the target data distribution.
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Transforming data into noise in the forward process is straightforward, often hand-crafted by increasingly
injecting more noise into the data at hand. What is challenging is the construction of the reverse process:
how to generate the desired information out of pure noise? To do so, a diffusion model learns to build a
reverse process (2) that imitates the dynamics of the forward process (1) in a time-reverse fashion; more
precisely, the design goal is to ascertain distributional proximity1

Yt
d
≈ Xt, t = T, · · · , 1 (3)

through proper learning based on how the training data propagate in the forward process. Encouragingly,
there often exist feasible strategies to achieve this goal as long as faithful estimates about the (Stein) score
functions — the gradients of the log marginal density of the forward process — are available, an intriguing
fact that can be illuminated by the existence and construction of reverse-time stochastic differential equations
(SDEs) (Anderson, 1982; Haussmann and Pardoux, 1986) (see Section 2.2 for more precise discussions).
Viewed in this light, a diverse array of diffusion models are frequently referred to as score-based generative
modeling (SGM). The popularity of SGM was initially motivated by, and has since further inspired, numerous
recent studies on the problem of learning score functions, a subroutine that also goes by the name of score
matching (e.g., Hyvärinen (2005, 2007); Vincent (2011); Song et al. (2020b); Koehler et al. (2023)).

Nonetheless, despite the mind-blowing empirical advances, a mathematical theory for diffusion generative
models is still in its infancy. Given the complexity of developing a full-fledged end-to-end theory, a divide-
and-conquer approach has been advertised, decoupling the score learning phase (i.e., how to estimate score
functions reliably from training data) and the generative sampling phase (i.e., how to generate new data
instances given the score estimates). In particular, the past two years have witnessed growing interest and
remarkable progress from the theoretical community towards understanding the generative sampling phase
(Block et al., 2020; De Bortoli et al., 2021; Liu et al., 2022; De Bortoli, 2022; Lee et al., 2023; Pidstrigach, 2022;
Chen et al., 2022b,a, 2023c; Tang, 2023; Tang and Zhao, 2024). For instance, polynomial-time convergence
guarantees have been established for stochastic samplers (e.g., Chen et al. (2022b,a); Benton et al. (2023a);
Tang (2023)) and deterministic samplers (e.g., Chen et al. (2023c); Benton et al. (2023b)), both of which
accommodated a fairly general family of data distributions.

This paper. The present paper contributes to this growing list of theoretical endeavors by developing a
new suite of non-asymptotic theory for several score-based generative modeling algorithms. We concentrate
on two types of samplers (Song et al., 2021b) in discrete time: (i) a deterministic sampler based on a sort of
ordinary differential equations (ODEs) called probability flow ODEs (which is closely related to the DDIM
sampler); and (ii) a DDPM-type stochastic sampler motivated by reverse-time SDEs. We impose only minimal
assumptions on the target data distribution (e.g., no smoothness condition is needed), and would like to
quantify the impact of `2 score estimation errors. In comparisons to past works, our main contributions are
three-fold.

• Non-asymptotic convergence guarantees. For a popular deterministic sampler, we demonstrate that the
number of steps needed to yield ε-accuracy — meaning that the total variation (TV) distance between
the distribution of X1 and that of Y1 is no larger than ε — is proportional to 1/ε (in addition to other
polynomial dimension dependency). This improves upon prior convergence guarantees considerably
(Chen et al., 2023c) and does not exhibit exponential dependency on the smoothness or regularity
conditions as in Chen et al. (2023c); Benton et al. (2023b) (e.g., the regularity parameter used in Benton
et al. (2023b) might even scale with the dimension d). For another DDPM-type stochastic sampler, we
establish an iteration complexity proportional to 1/ε2 via a new non-asymptotic analysis framework,
matching existing theory Chen et al. (2022b,a); Benton et al. (2023a) in terms of the ε-dependency.

• `2 score estimation errors for the determinstic sampler. Our theory for the deterministic sampler reveals
that the TV distance between X1 and Y1 are shown to be proportional to the `2 score estimation error
as well as the associated mean Jacobian errors. As far as we know, this is the first result for this
deterministic sampler that accounts for score estimation errors in discrete time. In comparison, existing
theoretical results that accommodate score errors for the probability flow ODE approach either study

1Two random vectors X and Y are said to obey X d
= Y (resp. X

d
≈ Y ) if they are equivalent (resp. close) in distribution.
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stochastic variations of this deterministic sampler (Chen et al., 2023b) (so that the samplers are no
longer the original deterministic sampler) or fall short of accommodating discretization errors (Benton
et al., 2023b).

• An elementary non-asymptotic analysis framework. From the technical point of view, the analysis
framework laid out in this paper is fully non-asymptotic in nature. In contrast to prior theoretical
analyses that take a detour to study the continuum limits and then control the discretization error, our
approach tackles the discrete-time processes directly using elementary analysis strategies. No knowledge
of SDEs or ODEs is required for establishing our theory, thereby resulting in a more versatile framework
and sometimes lowering the technical barrier towards understanding diffusion models.

• Accelerating data generation processes. In order to further speed up the sampling processes, we develop
an accelerated variant for each of the above two samplers, taking advantage of estimates of a small
number of additional quantities. As it turns out, these variants achieve more rapid convergence, with
the deterministic (resp. stochastic) variant exhibiting a 1/

√
ε (resp. 1/ε) scaling in the accuracy level ε

(again measured in terms of the TV distance).

Notation. Before proceeding, we introduce a couple of notation to be used throughout. For any two functions
f(d, T ) and g(d, T ), we adopt the notation f(d, T ) . g(d, T ) or f(d, T ) = O(g(d, T )) (resp. f(d, T ) & g(d, T ))
to mean that there exists some universal constant C1 > 0 such that f(d, T ) ≤ C1g(d, T ) (resp. f(d, T ) ≥
C1g(d, T )) for all d and T ; moreover, the notation f(d, T ) � g(d, T ) indicates that f(d, T ) . g(d, T ) and
f(d, T ) & g(d, T ) hold at once. The notation Õ(·) is defined similar to O(·) except that it hides the logarithmic
dependency. Additionally, the notation f(d, T ) = o

(
g(d, T )

)
means that f(d, T )/g(d, T )→ 0 as d, T tend to

infinity. We shall often use capital letters to denote random variables/vectors/processes, and lowercase letters
for deterministic variables. For any two probability measures P and Q, the total variation (TV) distance
between them is defined to be TV(P,Q) := 1

2

∫
|dP − dQ|. Throughout the paper, pX(·) (resp. pX |Y (· | ·))

denotes the probability density function of X (resp. X given Y ). For any matrix A, we denote by ‖A‖
(resp. ‖A‖F) the spectral norm (resp. Frobenius norm) of A. Also, for any vector-valued function f , we let Jf
or ∂f

∂x represent the Jacobian matrix of f .

2 Preliminaries
In this section, we introduce the basics of diffusion generative models. The ultimate goal of a generative
model can be concisely stated: given data samples drawn from an unknown distribution of interest pdata in
Rd, we wish to generate new samples whose distributions closely resemble pdata.

2.1 Diffusion generative models
Towards achieving the above goal, a diffusion generative model typically encompasses two Markov processes:
a forward process and a reverse process, as described below.

The forward process. In the forward chain, one progressively injects noise into the data samples to
diffuse and obscure the data. The distributions of the injected noise are often hand-picked, with the standard
Gaussian distribution receiving widespread adoption. More specifically, the forward Markov process produces
a sequence of d-dimensional random vectors X1 → X2 → · · · → XT as follows:

X0 ∼ pdata, (4a)

Xt =
√

1− βtXt−1 +
√
βtWt, 1 ≤ t ≤ T, (4b)

where {Wt}1≤t≤T indicates a sequence of independent noise vectors drawn from Wt
i.i.d.∼ N (0, Id). The

hyper-parameters {βt ∈ (0, 1)} represent prescribed learning rate schedules that control the variance of the
noise injected in each step. If we define

αt := 1− βt, αt :=

t∏
k=1

αk, 1 ≤ t ≤ T, (5)
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then it can be straightforwardly verified that for every 1 ≤ t ≤ T ,

Xt =
√
αtX0 +

√
1− αtW t for some W t ∼ N (0, Id). (6)

Clearly, if the covariance of X0 is also equal to Id, then the covariance of Xt is preserved throughout the
forward process; for this reason, this forward process (4) is sometimes referred to as variance-preserving (Song
et al., 2021b). Throughout this paper, we employ the notation

qt := law
(
Xt

)
(7)

to denote the distribution of Xt. As long as αT is vanishingly small, one has the following property for a
general family of data distributions:

qT ≈ N (0, Id). (8)

The reverse process. The reverse chain YT → YT−1 → . . . → Y1 is designed to (approximately) revert
the forward process, allowing one to transform pure noise into new samples with matching distributions as
the original data. To be more precise, by initializing it as

YT ∼ N (0, Id), (9a)

we seek to design a reverse-time Markov process with nearly identical marginals as the forward process,
namely,

(goal) Yt
d
≈ Xt, t = T, T − 1, · · · , 1. (9b)

Throughout the paper, we shall often employ the following notation to indicate the distribution of Yt:

pt := law
(
Yt
)
. (10)

2.2 Deterministic vs. stochastic samplers: a continuous-time interpretation
Evidently, the most crucial step of the diffusion model lies in effective design of the reverse process. Two
mainstream approaches stand out:

• Deterministic samplers. Starting from YT ∼ N (0, Id), this approach selects a set of functions
{Φt(·)}1≤t≤T and computes:

Yt−1 = Φt
(
Yt
)
, t = T, · · · , 1. (11)

Clearly, the sampling process is fully deterministic except for the initialization YT .

• Stochastic samplers. Initialized again at YT ∼ N (0, Id), this approach computes another collection of
functions {Ψt(·, ·)}1≤t≤T and performs the updates:

Yt−1 = Ψt

(
Yt, Zt

)
, t = T, · · · , 1, (12)

where the Zt’s are independent noise vectors obeying Zt
i.i.d.∼ N (0, Id).

In order to elucidate the feasibility of the above two approaches, we find it helpful to look at the continuum
limit through the lens of SDEs and ODEs. It is worth emphasizing, however, that the development of our
main theory does not rely on any knowledge of SDEs and ODEs.

• The forward process. A continuous-time analog of the forward diffusion process can be modeled as

dXt = f(Xt, t)dt+ g(t)dWt (0 ≤ t ≤ T ), X0 ∼ pdata (13)

for some functions f(·, ·) and g(·) (denoting respectively the drift and diffusion coefficient), where Wt

denotes a d-dimensional standard Brownian motion. As a special example, the continuum limit of (4)
takes the following form2 (Song et al., 2021b)

dXt = −1

2
β(t)Xtdt+

√
β(t) dWt (0 ≤ t ≤ T ), X0 ∼ pdata (14)

for some function β(t). As before, we denote by qt the distribution of Xt in (13).
2To see its connection with (4), it suffices to derive from (4) that Xt − Xt−dt =

√
1− βtXt−dt − Xt−dt +

√
βtWt ≈

− 1
2
βtXt−dt +

√
βtWt.
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• The reverse process. As it turns out, the following two reverse processes are both capable of reconstructing
the distribution of the forward process, motivating the design of two distinctive samplers. Here and
throughout, we use ∇ log qt(X) to abbreviate ∇X log qt(X) for notational simplicity.

– One feasible approach is to resort to the so-called probability flow ODE (Song et al., 2021b)

dY ode
t =

(
− f

(
Y ode
t , T − t

)
+

1

2
g(T − t)2∇ log qT−t

(
Y ode
t

))
dt (0 ≤ t ≤ T ), Y ode

0 ∼ qT ,
(15)

which exhibits matching distributions as follows:

Y ode
T−t

d
= Xt, 0 ≤ t ≤ T.

The deterministic nature of this approach often enables faster sampling. It has been shown that
this family of deterministic samplers is closely related to the DDIM sampler (Karras et al., 2022;
Song et al., 2021b).

– In view of the classical results Anderson (1982); Haussmann and Pardoux (1986), one can also
construct a “reverse-time” SDE

dY sde
t =

(
− f

(
Y sde
t , T − t

)
+ g(T − t)2∇ log qT−t

(
Y sde
t

))
dt+ g(T − t)dZsde

t (0 ≤ t ≤ T ) (16)

with Y sde
0 ∼ qT and Zsde

t being a standard Brownian motion. Strikingly, this process also satisfies

Y sde
T−t

d
= Xt, 0 ≤ t ≤ T.

The popular DDPM sampler (Ho et al., 2020; Nichol and Dhariwal, 2021) falls under this category.

Interestingly, in addition to the functions f and g that define the forward process, construction of both (15)
and (16) relies only upon the knowledge of the gradient of the log density ∇ log qt(·) of the intermediate
steps of the forward diffusion process — often referred to as the (Stein) score function. Consequently, a key
enabler of the above paradigms lies in reliable learning of the score function, and hence the name score-based
generative modeling.

3 Algorithms and main results
In this section, we analyze a couple of diffusion generative models, including both deterministic and stochastic
samplers. While the proofs for our main theory are all postponed to the appendix, it is worth emphasizing
upfront that our analysis framework directly tackles the discrete-time processes without resorting to any
toolbox of SDEs and ODEs tailored to the continuous-time limits. This elementary approach might potentially
be versatile for analyzing a broad class of variations of these samplers. For instance, prior ODE-based theory
(e.g., Chen et al. (2023b,c)) encountered certain technical challenges when analyzing the deterministic sampler
directly, and our elementary approach is able to shed new light on the convergence of this important sampler.

3.1 Assumptions and learning rates
Before proceeding, we impose some assumptions on the score estimates and the target data distributions, and
specify the hypter-parameters {αt} that shall be adopted throughout all cases.

Score estimates. Given that the score functions are an essential component in score-based generative
modeling, we assume access to faithful estimates of the score functions ∇ log qt(·) across all intermediate
steps t, thus disentangling the score learning phase and the data generation phase. Towards this end, let us
first formally introduce the true score function as follows.

Definition 1 (Score function). The score function, denoted by s?t : Rd → Rd (1 ≤ t ≤ T ), is defined as

s?t (X) := ∇ log qt(X), 1 ≤ t ≤ T. (17)
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As has been pointed out by previous works concerning score matching (e.g., Hyvärinen (2005); Vincent
(2011); Chen et al. (2022b)), the score function s?t admits an alternative form as follows (owing to properties
of Gaussian distributions):

s?t := arg min
s:Rd→Rd

E
W∼N (0,Id),X0∼pdata

[∥∥∥∥s(√αtX0 +
√

1− αtW
)

+
1√

1− αt
W

∥∥∥∥2

2

]
, (18)

which takes the form of the minimum mean square error estimator for − 1√
1−αt

W given
√
αtX0 +

√
1− αtW

and is often more amenable to training.
With Definition 1 in place, we can readily introduce the following assumptions that capture the quality of

the score estimate {st}1≤t≤T we have available.

Assumption 1. Suppose that the score function estimate {st}1≤t≤T obeys

1

T

T∑
t=1

E
X∼qt

[∥∥st(X)− s?t (X)
∥∥2

2

]
≤ ε2

score. (19)

Assumption 2. For each 1 ≤ t ≤ T , assume that st(·) is continuously differentiable, and denote by Js?t =
∂s?t
∂x

and Jst = ∂st
∂x the Jacobian matrices of s?t (·) and st(·), respectively. Assume that the score function estimate

{st}1≤t≤T obeys

1

T

T∑
t=1

E
X∼qt

[∥∥Jst(X)− Js?t (X)
∥∥] ≤ εJacobi. (20)

In a nutshell, Assumption 1 reflects the `2 score estimation error, whereas Assumption 2 is concerned with
the estimation error in terms of the corresponding Jacobian matrix (so as to ensure certain continuity of the
score estimator). Both assumptions consider the average estimation errors over all T steps. As we shall see
momentarily, our theory for the deterministic sampler relies on both Assumptions 1 and 2, while the theory
for the stochastic sampler requires only Assumption 1. We shall discuss in Section 3.2.1 the insufficiency of
Assumption 1 alone for the deterministic sampler.

Target data distributions. Our goal is to uncover the effectiveness of diffusion models in generating a
broad family of data distributions. Throughout this paper, the only assumptions we need to impose on the
target data distribution pdata are the following:

• X0 is an absolutely continuous random vector, and

P
(
‖X0‖2 ≤ R = T cR | X0 ∼ pdata

)
= 1 (21)

for some arbitrarily large constant cR > 0.

This assumption allows the radius of the support of pdata to be exceedingly large (given that the exponent cR
can be arbitrarily large).

Learning rate schedule. Let us also take a moment to specify the learning rates to be used for our
theory and analyses. For some large enough numerical constants c0, c1 > 0, we set

β1 = 1− α1 =
1

T c0
; (22a)

βt = 1− αt =
c1 log T

T
min

{
β1

(
1 +

c1 log T

T

)t
, 1

}
. (22b)

Remark 1. As will be seen in the analysis, in general the discretization error depends crucially on the
quantity 1−αt

1−αt , whereas the initialization error relies on α1 and αT . Our learning rates (22) are designed to
make 1−αt

1−αt as small as possible, while guaranteeing α1 (resp. αT ) is close to 1 (resp. 0); see the properties
in (39). In addition, note that our theoretical framework can readily accommodate much broader choices of
learning rates, although the resultant convergence rates might vary.
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3.2 Deterministic samplers
We begin by analyzing a deterministic sampler: a discrete-time version of the probability flow ODE.

3.2.1 An ODE-based deterministic sampler

Armed with the score estimates {st}1≤t≤T , a discrete-time version of the probability flow ODE approach
(cf. (15)) adopts the following update rule:

YT ∼ N (0, Id), Yt−1 = Φt
(
Yt
)

for t = T, · · · , 1, (23a)

where Φt(·) is taken to be

Φt(x) :=
1
√
αt

(
x+

1− αt
2

st(x)

)
. (23b)

This approach, based on the probability flow ODE (15), often achieves faster sampling compared to the
stochastic counterpart (Song et al., 2021b). Despite the empirical advances, however, the theoretical
understanding of this type of deterministic samplers remained far from mature.

We first derive non-asymptotic convergence guarantees — measured by the total variation distance between
the forward and the reverse processes — for the above deterministic sampler (23). The proof of this result is
postponed to Section 5.2.

Theorem 1. Suppose that (21) holds true. Assume that the score estimates st(·) (1 ≤ t ≤ T ) satisfy
Assumptions 1 and 2. Then the sampling process (23) with the learning rate schedule (22) satisfies

TV
(
q1, p1

)
≤ C1

d2 log4 T

T
+ C1

d6 log6 T

T 2
+ C1

√
d log3 Tεscore + C1d(log T )εJacobi (24)

for some universal constants C1 > 0, where we recall that p1 (resp. q1) represents the distribution of Y1

(resp. X1).

Remark 2. Note that our theory is concerned with convergence to q1 (the first step of the forward process).
Given that X1 ∼ q1 and X0 ∼ q0 are exceedingly close due to the choice of α1, focusing on the convergence
w.r.t. q1 instead of q0 remains practically relevant.

Let us remark on the main implications of Theorem 1, as well as several points worth discussing. Before
proceeding, we shall note that our theory is concerned with convergence to q1. Given that X1 ∼ q1 and
X0 ∼ q0 are very close due to the choice of α1, focusing on the convergence w.r.t. q1 instead of q0 remains
practically relevant.

Iteration complexity. Consider first the scenario that has access to perfect score estimates (i.e., εscore = 0).
In order to achieve ε-accuracy (in the sense that TV(q1, p1) ≤ ε), the number of steps T only needs to exceed3

Õ

(
d2

ε
+
d3

√
ε

)
. (25)

Stability. Turning to the more general case with imperfect score estimates (i.e., εscore > 0), the deterministic
sampler (23) yields a distribution whose distance to the target distribution (measured again by the TV
distance) scales proportionally with εscore and εJacobi. It is noteworthy that in addition to the `2 score
estimation errors, we are in need of an assumption on the stability of the associated Jacobian matrices, which
plays a pivotal in ensuring that the reverse-time deterministic process does not deviate considerably from the
desired process.

3As a technical note, the suboptimal d-dependency in our theory for the deterministic sampler comes mainly from Lemma 4;
the main difficulty to improve Lemma 4 lies in obtaining tighter control of some quantities regarding the conditional distribution
of x0 given xt (e.g., the Jacobian matrix of st).
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Insufficiency of the score estimation error assumption alone. The careful reader might wonder why
we are in need of additional assumptions beyond the `2 score error stated in Assumption 1. To answer this
question, we find it helpful to look at a simple example below.

• Example. Consider the case where X0 ∼ N (0, 1), and hence X1 ∼ N (0, 1). Suppose that the reverse
process for time t = 2 can lead to the desired distribution if exact score function is employed, namely,

Y ?1 :=
1
√
α2

(
Y2 −

1− α2

2
s?2(Y2)

)
∼ N (0, 1).

Now, suppose that the score estimate s2(·) we have available obeys

s2(y2) = s?2(y2) +
2
√
α2

1− α2

{
y?1 − L

⌊
y?1
L

⌋}
with y?1 :=

1
√
α2

(
y2 −

1− α2

2
s?2(y2)

)
for some L > 0, where bzc is the greatest integer not exceeding z. It follows that

Y1 = Y ?1 +
1− α2

2
√
α2

[
s?2(Y2)− s2(Y2)

]
= L

⌊
Y ?1
L

⌋
.

Clearly, the score estimation error EX2∼N (0,1)

[
|s2(X2) − s?2(X2)|2

]
can be made arbitrarily small by

taking L to be sufficiently small. However, the discrete nature of Y1 forces the TV distance to be

TV(Y1, X1) = 1.

The above example demonstrates that, for the deterministic sampler, the TV distance between Y1 and X1

might not improve as the score error decreases. As we shall see in Section 3.3.1, this is in stark contrast to
the stochastic sampler. If we wish to eliminate the need of imposing Assumption 2, one potential way is to
resort to other metrics (e.g., the Wasserstein distance) instead of the TV distance between Y1 and X1.

Relaxing the boundedness assumption on X0. As it turns out, the assumption (21) can also be relaxed.
Supposing that P

(
‖X0‖2 ≤ B | X0 ∼ pdata

)
= 1 for some quantity B > 0 (which is allowed to grow faster

than a polynomial in T ), we can readily extend our analysis to obtain

TV
(
q1, p1

)
≤ C1

d2 log4 T log2 B

T
+ C1

d6 log6 T log3 B

T 2
+ C1

√
d log3 T logBεscore + C1d(log T )εJacobi.

Importantly, the convergence rate depends only logarithmically in B.

Comparisons to previous works. Next, let us compare our results with past works. To the best of our
knowledge, the only non-asymptotic analysis for the discretized probability flow ODE approach in prior
literature was derived by a very recent work Chen et al. (2023c), which established the first non-asymptotic
convergence guarantees that exhibit polynomial dependency in both d and 1/ε (see, e.g., Chen et al. (2023c,
Theorem 4.1)). However, it fell short of providing concrete polynomial dependency in d and 1/ε, suffered
from exponential dependency in the Lipschitz constant of the score function, and relied on exact score
estimates. In contrast, our result in Theorem 1 uncovers a concrete d2/ε scaling (ignoring lower-order
and logarithmic terms) without imposing any smoothness assumption on the target data distribution, and
makes explicit the effect of `2 score estimation errors, both of which were previously unavailable for such
discrete-time deterministic samplers. Another recent work Benton et al. (2023b) studied the convergence of
the probability flow ODE approach without accounting for the discretization error; the result therein also
exhibited exponential dependency on a certain Lipschitz constant w.r.t. the forward flow and a regularity
parameter (denoted by λ therein, which might scale with the dimension d). Finally, while we were wrapping
up the current paper, we became aware of the independent work Chen et al. (2023b) establishing improved
polynomial dependency for two variants of the probability flow ODE. By inserting an additional stochastic
corrector step — based on overdamped (resp. underdamped) Langevin diffusion — in each iteration of the
probability flow ODE (so strictly speaking, these variations are no longer deterministic samplers), Chen et al.
(2023b) showed that Õ(L3d/ε2) (resp. Õ(L2

√
d/ε)) steps are sufficient, where L denotes the Lipschitz constant

of the score function. In comparison, our result demonstrates for the first time that the plain probability flow
ODE already achieves the 1/ε scaling without requiring either a corrector step; one limitation of our result,
however, is the sub-optimal d-dependency compared to the variants studied in Chen et al. (2023b).
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3.2.2 An accelerated deterministic sampler

Thus far, we have demonstrated that the iteration complexity of the deterministic sampler (23) is proportional
to 1/ε (for small enough ε). A natural question is whether this convergence rate can be further improved.

As it turns out, if we have access to perfect estimates of two additional quantities in addition to exact
score estimates, then a modified version of the sampler (23) is able to achieve much improved convergence
guarantees. These estimates are made precise in the following assumption.

Assumption 3. Suppose that we have access to the estimates wt : Rd → Rd (1 ≤ t ≤ T ) defined as follows:

wt := arg min
w:Rd→Rd

E
[∥∥∥‖W‖22( 1√

1− αt
W + s?t

(
Xt

))
+WW>s?t

(
Xt

)
− w

(
Xt

)∥∥∥2

2

]
, (26)

where Xt =
√
αtX0 +

√
1− αtW . Here, the expectation is with respect to W ∼ N (0, Id) and X0 ∼ pdata.

Armed with the score estimate in Assumption 1 and the additional estimates in Assumption 3, we are
ready to introduce an accelerated variant of (23) as follows:

YT ∼ N (0, Id), Yt−1 = Φt
(
Yt
)

for t = T, · · · , 1, (27a)

where the mapping Φt(·) is chosen to be

Φt(x) =
1
√
αt

(
x+

(1− αt
2

+
(1− αt)2

8(1− αt)
− (1− αt)2

8

∥∥s?t (x)
∥∥2

2

)
s?t (x) +

(1− αt)2

8(1− αt)
wt(x)

)
. (27b)

Notably, this new variant (27) is closely related to the original sampler (23); in fact, they both move along the
direction specified by the score estimate st, except that the accelerated variant includes a proper correction
term chosen based on higher-order expansion.

Encouragingly, our non-asymptotic analysis framework can be extended to derive enhanced convergence
guarantees for the sampler (27), assuming access to exact score functions. The proof of our convergence
result below is postponed to Section D.1.

Theorem 2. Suppose that (21) holds true and that the score estimates are perfect (i.e., st = s?t ). Equipped
with the estimates in Assumptions 3 and the learning rate schedule (22), the sampling process (27) obeys

TV
(
q1, p1

)
≤ C1

d6 log6 T

T 2
(28)

for some universal constants C1 > 0, where p1 (resp. q1) is the distribution of Y1 (resp. X1).

Theorem 2 reveals that: in order to achieve TV(q1, p1) ≤ ε, the accelerated deterministic sampler (27)
only requires the number of steps T to be on the order of

Õ

(
d3

√
ε

)
, (29)

thus improving the dependency on ε from Õ(1/ε) (cf. (25)) to Õ(1/
√
ε) for small enough ε. Consequently,

the improved convergence result underscores the crucial role of bias correction when selecting the search
direction.

3.3 Stochastic samplers
3.3.1 A DDPM-type stochastic sampler

Armed with the score estimates {st}, we can readily introduce the following stochastic sampler that operates
in discrete time, motivated by the reverse-time SDE (16):

YT ∼ N (0, Id), Yt−1 = Ψt(Yt, Zt) for t = T, · · · , 1 (30a)
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where Zt
i.i.d.∼ N (0, Id), and

Ψt(y, z) =
1
√
αt

(
y + (1− αt)st(y)

)
+ σtz with σ2

t =
1

αt
− 1. (30b)

The key difference between this sampler and the deterministic sampler (23) is that: (i) there exists an
additional pre-factor of 1/2 on st in the deterministic sampler; and (ii) the stochastic sampler injects
additional noise Zt in each step.

In contrast to deterministic samplers, the stochastic samplers have received more theoretical attention,
with the state-of-the-art results established by Chen et al. (2022b,a) as well as a very recent paper Benton et al.
(2023a). The elementary approach developed in the current paper is also applicable towards understanding
this type of samplers, leading to the following non-asymptotic theory.

Theorem 3. Suppose that (21) holds true. Equipped with the estimates in Assumption 1 and the learning
rate schedule (22), the stochastic sampler (30) achieves

TV
(
q1, p1

)
≤
√

1

2
KL
(
q1 ‖ p1) ≤ C1

d2 log3 T√
T

+ C1

√
dεscore log2 T (31)

for some universal constants C1 > 0, provided that T ≥ C2d
4 log6 T for some large enough constant C2 > 0.

Theorem 3 establishes non-asymptotic convergence guarantees for the stochastic sampler (30). As asserted
by the theorem, if we have access to perfect score estimates, then the number of steps needed to attain
ε-accuracy (measured by the TV distance between p1 and q1) is proportional to 1/ε2, matching the state-
of-the-art ε-dependency derived in Chen et al. (2022a), albeit exhibiting a worse dimensional dependency.
In addition, in the presence of score estimation error, the sampler achieves a TV distance proportional to
εscore, again consistent with prior results. Our analysis follows a completely different path compared with the
SDE-based approach in Chen et al. (2022a), thus offering complementary interpretations for this important
sampler. In order to further illustrate the versatility of our analysis approach, we shall demonstrate how it
can be applied to study an accelerated version in the next subsection.

3.3.2 An accelerated stochastic sampler

In this subsection, we come up with a potential strategy to speed up the stochastic sampler (30), assuming
access to reliable estimates of additional objects as described below.

Assumption 4. Suppose that we have access to the estimates vt : Rd × Rd → Rd (1 ≤ t ≤ T ) as follows:

vt := arg min
v:Rd×Rd→Rd

E
[∥∥∥WW>Z − v

(√
αtX +

√
1− αtW,Z

)∥∥∥2

2

]
, 1 ≤ t ≤ T, (32)

where X,W,Z are independently generated obeying X ∼ pdata, W ∼ N (0, Id), and Z ∼ N (0, Id).

With perfect score estimates as well as the additional estimates in Assumption 1 and Assumption 4 in
place, we are positioned to introduce the proposed accelerated sampler as follows:

YT ∼ N (0, Id), Yt−1 = Ψt(Yt, Zt) for t = T, · · · , 1, (33a)

where we choose the mapping Ψt(·, ·) as follows

Ψt(y, z) =
1
√
αt

(
y + (1− αt)st(y)

)
+ σt

{
z − 1− αt

2(1− αt)
[
z + (1− αt)st(y)st(y)>z − vt(y, z)

]}
(33b)

with

σ2
t =

1

αt
− 1. (33c)

Clearly, the modified update mapping (33b) is still mainly a linear combination of the score estimate st−1

and the additive noise Zt, except that a correction term vt (learned by solving (32)) needs to be included for
acceleration purposes.

We now apply our analysis strategy to establish performance guarantees for the above stochastic sampler.
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Theorem 4. Suppose that (21) holds true and that the score estimates are exact (i.e., st = s?t ). Equipped
with the estimates in Assumption 1, 4 and the learning rate schedule (22), the sampling process (33) satisfies

TV
(
q1, p1

)
≤
√

1

2
KL
(
q1 ‖ p1) ≤ C1

d3 log4.5 T

T
(34)

for some universal constants C1 > 0, provided that T ≥ C2d
3 log4.5 T for some large enough constant C2 > 0.

The proof of this result is provided in Section E.1. In comparison to the stochastic sampler (30), Theorem 4
asserts that the iteration complexity of the sampler (33) is at most

Õ

(
d3

ε

)
, (35)

thus significantly reducing the scaling Õ(1/ε2) for the original sampler (30) to Õ(1/ε) regarding the ε-
dependency. All in all, our theory reveals that having information about a small number of additional objects
might substantially speed up the data generation process.

4 Other related works

Theory for SGMs. Early theoretical efforts in understanding the convergence of score-based stochastic
samplers suffered from being either not quantitative (De Bortoli et al., 2021; Liu et al., 2022; Pidstrigach,
2022), or the curse of dimensionality (e.g., exponential dependencies in the convergence guarantees) (Block
et al., 2020; De Bortoli, 2022). The recent work Lee et al. (2022) provided the first polynomial convergence
guarantee in the presence of L2-accurate score estimates, for any smooth distribution satisfying the log-Sobelev
inequality. Chen et al. (2022b); Lee et al. (2023); Chen et al. (2022a) subsequently lifted such a stringent
data distribution assumption. More concretely, Chen et al. (2022b) accommodated a broad family of data
distributions under the premise that the score functions over the entire trajectory of the forward process are
Lipschitz; Lee et al. (2023) only required certain smoothness assumptions but came with worse dependence
on the problem parameters; and more recent results in Chen et al. (2022a) applied to literally any data
distribution with bounded second-order moment. In addition, Wibisono and Yang (2022) also established a
convergence theory for score-based generative models, assuming that the error of the score estimator has
a bounded moment generating function and that the data distribution satisfies the log-Sobelev inequality.
Turning attention to samplers based on the probability flow ODE, Chen et al. (2023c) derived the first
non-asymptotic bounds for this type of samplers. Improved convergence guarantees have recently been
provided by a concurrent work Chen et al. (2023b), with the assistance of additional corrector steps inerspersed
in each iteration of the probability flow ODE. It is worth noting that the corrector steps proposed therein
are based on Langevin-type diffusion and inject additive noise, and hence the resulting sampling processes
are not deterministic. Additionally, theoretical justifications for DDPM in the context of image in-painting
have been developed by Rout et al. (2023). Moreover, convergence results based on the Wasserstein distance
have recently been derived as well (e.g., Tang (2023); Benton et al. (2023b)), although these results typically
exhibit exponential dependency on the Lipschitz constants of the score functions.

Score matching. Hyvärinen (2005) showed that the score function can be estimated via integration by
parts, a result that was further extended in Hyvärinen (2007). Song et al. (2020b) proposed sliced score
matching to tame the computational complexity in high dimension. The consistency of the score matching
estimator was studied in Hyvärinen (2005), with asymptotic normality established in Forbes and Lauritzen
(2015). Optimizing the score matching loss has been shown to be intimately connected to minimizing upper
bounds on the Kullback-Leibler divergence (Song et al., 2021a) and Wasserstein distance (Kwon et al., 2022)
between the generated distribution and the target data distribution. Furthermore, the recent work Koehler
et al. (2023) studied the statistical efficiency of score matching by connecting it with the isoperimetric
properties of the target data distribution.
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Other theory for diffusion models. Oko et al. (2023) studied the approximation and generalization
capabilities of diffusion modeling for distribution estimation. Assuming that the data are supported on a
low-dimensional linear subspace, Chen et al. (2023a) developed a sample complexity bound for diffusion
models. Moreover, Ghimire et al. (2023) adopted a geometric perspective and showed that the forward and
backward processes of diffusion models are essentially Wasserstein gradient flows operating in the space of
probability measures. Recently, the idea of stochastic localization, which is closely related to diffusion models,
is adopted to sample from posterior distributions (Montanari and Wu, 2023; El Alaoui et al., 2022), which
has been implemented using the approximate message passing algorithm (Donoho et al. (2009); Li and Wei
(2022)).

5 Analysis
In this section, we describe our non-asymptotic proof strategies for two simpler samplers (i.e., (23) and (30)).
The analyses for the two accelerated variants follow similar arguments as their non-accelerated counterparts,
and are hence postponed to the appendices.

5.1 Preliminary facts
Before proceeding, we gather a couple of facts that will be useful for the proof, with most proofs postponed
to Appendix A.

Properties related to the score function. First of all, in view of the alternative expression (18) for the
score function and the property of the minimum mean square error (MMSE) estimator (e.g., Hajek (2015,
Section 3.3.1)), we know that the true score function s?t is given by the conditional expectation

s?t (x) = E
[
− 1√

1− αt
W

∣∣∣∣√αtX0 +
√

1− αtW = x

]
=

1

1− αt
E
[√
αtX0 − x

∣∣√αtX0 +
√

1− αtW = x
]

= − 1

1− αt

∫
x0

(
x−
√
αtx0

)
pX0|Xt(x0 |x)dx0︸ ︷︷ ︸

=: gt(x)

. (36)

Let us also introduce the Jacobian matrix associated with gt(·) as follows:

Jt(x) :=
∂gt(x)

∂x
, (37)

which can be equivalently rewritten as

Jt(x) = Id +
1

1− αt

{
E
[
Xt −

√
αtX0 | Xt = x

](
E
[
Xt −

√
αtX0 | Xt = x

])>
− E

[(
Xt −

√
αtX0

)(
Xt −

√
αtX0

)> | Xt = x
]}
. (38)

Properties about the learning rates. Next, we isolate a few useful properties about the learning rates
as specified by {αt} in (22):

αt ≥ 1− c1 log T

T
≥ 1

2
, 1 ≤ t ≤ T (39a)

1

2

1− αt
1− αt

≤ 1

2

1− αt
αt − αt

≤ 1− αt
1− αt−1

≤ 4c1 log T

T
, 2 ≤ t ≤ T (39b)

1 ≤ 1− αt
1− αt−1

≤ 1 +
4c1 log T

T
, 2 ≤ t ≤ T (39c)

αT ≤
1

T c2
, (39d)
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provided that T is large enough. Here, c1 is defined in (22), and c2 ≥ 1000 is some large numerical constant.
In addition, if d(1−αt)

αt−αt . 1, then one has( 1− αt
αt − αt

)d/2
= 1 +

d(1− αt)
2(αt − αt)

+
d(d− 2)(1− αt)2

8(αt − αt)2
+O

(
d3
( 1− αt
αt − αt

)3
)
. (39e)

The proof of these properties is postponed to Appendix A.2.

Properties of the forward process. Additionally, recall that the forward process satisfies Xt
d
=
√
αtX0 +√

1− αtW withW ∼ N (0, Id). We have the following tail bound concerning the random vector X0 conditional
on Xt, whose proof can be found in Appendix A.3.

Lemma 1. Suppose that there exists some numerical constant cR > 0 obeying

P
(
‖X0‖2 ≤ R

)
= 1 and R = T cR . (40)

Consider any y ∈ R, and let

θ(y) := max

{
− log pXt(y)

d log T
, c6

}
(41)

for some large enough constant c6 ≥ 2cR + c0. Then for any quantity c5 ≥ 2, conditioned on Xt = y one has∥∥√αtX0 − y
∥∥

2
≤ 5c5

√
θ(y)d(1− αt) log T (42)

with probability at least 1− exp
(
− c25θ(y)d log T

)
. In addition, it holds that

E
[∥∥√αtX0 − y

∥∥
2

∣∣Xt = y
]
≤ 12

√
θ(y)d(1− αt) log T , (43a)

E
[∥∥√αtX0 − y

∥∥2

2

∣∣Xt = y
]
≤ 120θ(y)d(1− αt) log T, (43b)

E
[∥∥√αtX0 − y

∥∥3

2

∣∣Xt = y
]
≤ 1040

(
θ(y)d(1− αt) log T

)3/2
, (43c)

E
[∥∥√αtX0 − y

∥∥4

2

∣∣Xt = y
]
≤ 10080

(
θ(y)d(1− αt) log T

)2
. (43d)

In order to interpret Lemma 1, let us look at the case with θ(y) = c6, corresponding to the scenario where
pXt(y) ≥ exp(−c6d log T ) (so that pXt(y) is not exceedingly small). In this case, Lemma 1 implies that
conditional on Xt = y taking on a “typical” value, the vector

√
αtX0 −Xt =

√
1− αtW t (see (6)) might

still follow a sub-Gaussian tail, whose expected norm remains on the same order of that of an unconditional
Gaussian vector N (0, (1− αt)Id).

The next lemma singles out another useful fact that controls the tail of pXt of the forward process; the
proof is postponed to Appendix A.4.

Lemma 2. Consider any two points xt, xt−1 ∈ Rd obeying

− log pXt(xt) ≤
1

2
c6d log T, and

∥∥∥∥xt−1 −
xt√
αt

∥∥∥∥
2

≤ c3
√
d(1− αt) log T (44)

for some large constants c6, c3 > 0. If we define xt(γ) := γxt−1 + (1− γ)xt/
√
αt for any γ ∈ [0, 1], then

− log pXt−1

(
xt(γ)

)
≤ c6d log T, ∀γ ∈ [0, 1]. (45)

In other words, if xt falls within a typical range of Xt and if the point xt−1 is not too far away from
xt/
√
αt, then xt−1 is also a typical value of the previous point Xt−1. As an immediate consequence, combining

Lemma 2 with Lemma 1 reveals that: if the assumption (44) holds, then conditional on Xt−1 = xt(γ) for any
γ ∈ [0, 1], one has∥∥√αt−1X0 − xt(γ)

∥∥
2
≤ 5c5

√
c6d(1− αt−1) log T (46a)∥∥∥∥√αt−1X0 −

xt√
αt

∥∥∥∥
2

≤
∥∥√αt−1X0 − xt(γ)

∥∥
2

+

∥∥∥∥xt(γ)− xt√
αt

∥∥∥∥
2

≤ (5c5 + c3)
√
c6d(1− αt−1) log T (46b)

with probability exceeding 1− exp
(
− c25c6d log T

)
, where the last inequality invokes the property (39b).
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Distance between pT and qT . We now record a simple result that demonstrates the proximity between
pT and qT , whose proof is provided in Appendix A.5.

Lemma 3. For any large enough T , it holds that(
TV(pXT ‖ pYT )

)2 ≤ 1

2
KL(pXT ‖ pYT ) .

1

T 200
. (47)

Additional notation about score errors. For any vector x ∈ Rd and any 1 < t ≤ T , let us define

εscore,t(x) :=
∥∥st(x)− s?t (x)

∥∥
2

and εJacobi,t(x) :=
∥∥Jst(x)− Js?t (x)

∥∥, (48)

with Jst and Js?t the Jacobian matrices of st(·) and s?t (·), respectively. Under Assumption 1, we have

1

T

T∑
t=1

EX∼qt
[
εscore,t(X)

]
≤
(

1

T

T∑
t=1

EX∼qt
[
εscore,t(X)2

])1/2

≤ εscore. (49a)

Also, Assumption 2 says that

1

T

T∑
t=1

EX∼qt
[
εJacobi,t(X)

]
≤ εJacobi. (49b)

5.2 Analysis for the sampler based on probability flow ODE (Theorem 1)
We now present the proof for our main result (i.e., Theorem 1) tailored to the deterministic sampler (23)
based on the probability flow ODE. Given that the total variation distance is always bounded above by 1, it
suffices to assume

T ≥ C1d
2 log4 T +

√
C1d

3 log3 T (50a)

εscore ≤
1

C1

√
d log2 T

(50b)

εJacobi ≤
1

C1d log2 T
(50c)

throughout the proof; otherwise the claimed result (24) becomes trivial.

Preparation. Before proceeding, we find it convenient to introduce a function

φ?t (x) = x+
1− αt

2
s?t (x) = x− 1− αt

2(1− αt)

∫
x0

(
x−
√
αtx0

)
pX0|Xt(x0 |x)dx0, (51a)

φt(x) = x+
1− αt

2
st(x), (51b)

where the first line follows from (36). The update rule (23) can then be expressed as follows:

Yt−1 = Φt(Yt) =
1
√
αt
φt(Yt). (52)

Moreover, for any point yT ∈ Rd (resp. y′T ∈ Rd), let us define the corresponding deterministic sequence

yt−1 =
1
√
αt
φt(yt), y′t−1 =

1
√
αt
φt(y

′
t), t = T, T − 1, · · · (53)

In other words, {yT−1, . . . , y1} (resp. {y′T−1, . . . , y
′
1}) is the (reverse-time) sequence generated by the probabil-

ity flow ODE (cf. (52)) when initialized to YT = yT (resp. YT = y′T ). We also define the following quantities
for any point yT ∈ Rd and its associated sequence {yT−1, . . . , y1}:

ξt(yT ) :=
log T

T

(
dεJacobi,t(yt) +

√
d log Tεscore,t(yt)

)
; (54a)
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St(yT ) :=
∑

1<k≤t

ξk(yk), for t ≥ 2, and S1(yT ) = 0. (54b)

In words, for any given starting point yT , ξt(yt) captures the (properly weighted) score error incurred in the
t-th iteration, whereas St(yT ) quantifies the aggregate weighted score error up to the t-th iteration.

With the above notation in place, we can readily proceed to our proof, which consists of several steps.

Step 1: bounding the density ratios of interest. To begin with, we note that for any vectors yt−1

and yt, elementary properties about transformation of probability distributions give

pYt−1
(yt−1)

pXt−1
(yt−1)

=
p√αtYt−1

(
√
αtyt−1)

p√αtXt−1
(
√
αtyt−1)

=
p√αtYt−1

(
√
αtyt−1)

pYt(yt)
·
(
p√αtXt−1

(
√
αtyt−1)

pXt(yt)

)−1

· pYt(yt)
pXt(yt)

, (55)

thus converting the density ratio of interest into the product of three other density ratios. Noteworthily, this
observation (55) connects the target density ratio

pYt−1

pXt−1
at the (t− 1)-th step with its counterpart pYt

pXt
at the

t-th step, motivating us to look at the density changes within adjacent steps in both the forward and the
reverse processes (i.e., pXt−1

vs. pXt and pYt−1
vs. pYt). In light of this expression, we develop a key lemma

related to some of these density ratios, which plays a central role in establishing Theorem 1. The proof of
this lemma is postponed to Appendix B.1.

Lemma 4. For any x ∈ Rd, let

θt(x) := max

{
− log pXt(x)

d log T
, c6

}
(56)

for some large enough constant c6 ≥ 2cR + c0, and suppose that 40c1εscore,t(x) log
3
2 T

T ≤
√
θt(x)d. Then one has

p√αtXt−1

(
φt(x)

)
pXt(x)

≤ 2 exp

((
5εscore,t(x)

√
θt(x)d log T + 60θt(x)d log T

) 1− αt
αt − αt

)
. (57)

If, in addition, we have C10
θt(x)d log2 T+εscore,t(x)

√
θt(x)d log3 T

T ≤ 1 for some large enough constant C10 > 0,
then it holds that

p√αtXt−1
(φt(x))

pXt(x)

= 1 +
d(1− αt)
2(αt − αt)

+
(1− αt)

(∥∥ ∫ (x−√αtx0

)
pX0 |Xt(x0 |x)dx0

∥∥2

2
−
∫ ∥∥x−√αtx0

∥∥2

2
pX0 |Xt(x0 |x)dx0

)
2(αt − αt)(1− αt)

+O

(
θt(x)2d2

( 1− αt
αt − αt

)2

log2 T + εscore,t(x)
√
θt(x)d log T

( 1− αt
αt − αt

))
. (58a)

Moreover, for any random vector Y , one has

pφt(Y )(φt(x))

pY (x)

= 1 +
d(1− αt)
2(αt − αt)

+
(1− αt)

(∥∥ ∫ (x−√αtx0

)
pX0 |Xt(x0 |x)dx0

∥∥2

2
−
∫ ∥∥x−√αtx0

∥∥2

2
pX0 |Xt(x0 |x)dx0

)
2(αt − αt)(1− αt)

+O

(
θt(x)2d2

( 1− αt
αt − αt

)2

log2 T + θt(x)3d6 log3 T
( 1− αt
αt − αt

)3

+ (1− αt)dεJacobi,t(x)

)
, (58b)

provided that C11
d2 log2 T+dεJacobi,t(x) log T

T ≤ 1 for some large enough constant C11 > 0.
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Remark 3. Combining Lemma 4 with Lemma 1 and (39), gives: if C10
θt(x)d log2 T+εscore,t(x)

√
θt(x)d log3 T

T ≤ 1
and if θt(x) . 1, then (58a) tells us that

log
p√αtXt−1

(φt(x))

pXt(x)
≤ 4c1d log T

T
+ C10

{
d2 log4 T

T 2
+
d6 log6 T

T 3
+
εscore,t(x)

√
d log3 T

T

}
(59)

under our sample size assumption (50), where C10 > 0 is some large enough constant. Here, we have made
use of the fact that the second-to-last term in (58a) is non-positive due to Jensen’s inequality.

Step 2: decomposing the TV distance based on “typical” points. To bound the TV distance of
interest, it is helpful to isolate the following sets

E :=
{
y : q1(y) > max

{
p1(y), exp

(
− c6d log T

)}}
, (60)

where c6 > 0 is some large enough universal constant introduced in Lemma 4. In words, this set E contains
all y that can be viewed as “typical” values under the distribution q1 (meaning that q1(y) is not exceedingly
small), while at the same time obeying q1(y) > p1(y).

In view of the basic properties about the TV distance, we can derive

TV
(
q1, p1

)
=

∫
y:q1(y)>p1(y)

(
q1(y)− p1(y)

)
dy

=

∫
y∈E

(
q1(y)− p1(y)

)
dy +

∫
y:p1(y)<q1(y)≤exp(−c6d log T )

(
q1(y)− p1(y)

)
dy. (61)

In order to bound the second term on the right-hand side of (61), we make note of a basic fact: since

Xt
(d)
=
√
αtX0 +

√
1− αtW with W ∼ N (0, Id) and P(‖X0‖2 ≤ T cR) = 1, it holds that

P
{
‖Xt‖2 ≥ T cR+2

}
≤ P

{
‖W‖2 ≥ T 2

}
< exp (−c6d log T ) (62)

under our assumption (50) on T , thereby indicating that∫
y:‖y‖2≥T cR+2

qt(y)dy < exp (−c6d log T ) . (63)

This basic fact in turn reveals that∫
y:p1(y)<q1(y)≤exp(−c12d log T )

(
q1(y)− p1(y)

)
dy ≤

∫
y:q1(y)≤exp(−c6d log T )

q1(y)dy

≤ exp(−c6d log T )

∫
y:‖y‖2≤T cR+2

dy + exp (−c6d log T )

≤ exp(−c6d log T )
(
2T cR+2

)d
+ exp (−c6d log T )

≤ exp
(
− 0.5c6d log T

)
,

provided that c6 ≥ 4(cR + 2). Substitution into (61) then yields

TV
(
q1, p1

)
≤ EY1∼p1

[( q1(Y1)

p1(Y1)
− 1
)
1 {Y1 ∈ E}

]
+ exp

(
− c6d log T

)
, (64)

with the proviso that c6 ≥ 4(cR + 2).
To proceed, let us isolate the following set

I1 :=
{
yT | ST

(
yT
)
≤ c14

}
(65)

for some small enough constant c14 > 0. In words, I1 is composed of a set of points whose aggregate score
error along the backward trajectory is well-controlled; in fact, these are points that exhibit “typical” behavior
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under the assumptions (50b) and (50c). As a result, we can decompose the first term of (64) into the influence
of “typical” points and that of the remaining points as follows:

E
Y1∼p1

[( q1(Y1)

p1(Y1)
− 1
)
1 {Y1 ∈ E}

]
= E
YT∼pT

[( q1(Y1)

p1(Y1)
− 1
)
1 {Y1 ∈ E}

]
= E
YT∼pT

[( q1(Y1)

p1(Y1)
− 1
)
1 {Y1 ∈ E , YT ∈ I1}

]
+ E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT /∈ I1}

]
, (66)

where the first identity holds since Y1 is determined purely by YT via deterministic update rules. The
decomposition (66) leaves us with two terms to control, which we accomplish in the next two steps.

Step 3: controlling the first term on the right-hand side of (66). This step analyzes the first term
on the right-hand side of (66). We would like to make the analysis in this step slightly more general than
needed, given that it will be useful for the subsequent analysis as well.

To begin with, let us introduce the following quantity:

τ(yT ) := max
{

2 ≤ t ≤ T + 1 : St−1

(
yT
)
≤ c14

}
, (67)

meaning that the score errors exhibit “typical” behavior up to the
(
τ(yT )− 1

)
-th iteration. As can be clearly

seen from the definition (65) of I1,

τ(yT ) = T + 1, ∀yT ∈ I1. (68)

In the sequel, we first single out the following lemma, whose proof is deferred to Appendix B.2.

Lemma 5. Consider any yT and its associated sequence {yT−1, · · · , y1} (see (53)). If − log q1(y1) ≤ c6d log T ,
then one has

− log qk(yk) ≤ 2c6d log T (69)

for any 1 ≤ k < τ(yT ) (cf. (67)), provided that c6 ≥ 3c1.

As a consequence of Lemma 5, we are able to control the density ratio qt/pt up to the
(
τ(yT ) − 1

)
-th

iteration, as stated in the following lemma. The proof can be found in Appendix B.3.

Lemma 6. Consider any yT , along with the deterministic sequence {yT−1, · · · , y1} (cf. (53))), and set
τ = τ(yT ) (cf. (67)). Then one has

q1(y1)

p1(y1)
=

{
1 +O

(
d2 log4 T

T
+
d6 log6 T

T 2
+ Sτ−1(yτ−1)

)}
qτ−1(yτ−1)

pτ−1(yτ−1)
, (70a)

and
qk(yk)

2pk(yk)
≤ q1(y1)

p1(y1)
≤ 2

qk(yk)

pk(yk)
, ∀k < τ. (70b)

Now let us look at the set I1. Taking τ(yT ) = T + 1 (cf. (68)) in Lemma 6 yields

E
YT∼pT

[( q1(Y1)

p1(Y1)
− 1
)
1 {Y1 ∈ E , YT ∈ I1}

]
= E
YT∼pT

[({
1 +O

(
d2 log4 T

T
+
d6 log6 T

T 2
+ ST (yT )

)}
qT (YT )

pT (YT )
− 1

)
1 {Y1 ∈ E , YT ∈ I1}

]

=

∫ {(
1 +O

(
d2 log4 T

T
+
d6 log6 T

T 2
+ ST (yT )

))
qT (yT )− pT (yT )

}
1 {y1 ∈ E , yT ∈ I1} dyT

≤
∫ ∣∣qT (yT )− pT (yT )

∣∣dyT +O

(
d2 log4 T

T
+
d6 log6 T

T 2

)∫
qT (yT )dyT +O

(√
d log3 Tεscore + (d log T )εJacobi

)
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.
d2 log4 T

T
+
d6 log6 T

T 2
+

√
d log3 Tεscore + (d log T )εJacobi. (71)

Here, the last line holds since TV(pT , qT ) . T−100 (according to Lemma 4), and the penultimate line follows
from the observation below:∫

ST (yT )qT (yT )1 {y1 ∈ E , yT ∈ I1} dyT

=
log T

T

T∑
t=1

∫ (
dεJacobi,t(yt) +

√
d log Tεscore,t(yt)

)
qT (yT )1 {y1 ∈ E , yT ∈ I1} dyT

≤ 4 log T

T

T∑
t=1

∫ (
dεJacobi,t(yt) +

√
d log Tεscore,t(yt)

) qt(yt)
pt(yt)

pT (yT )1 {y1 ∈ E , yT ∈ I1} dyT

≤ 4 log T

T

T∑
t=1

EYT∼pT
[(
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

) qt(Yt)
pt(Yt)

]

=
4 log T

T

T∑
t=1

EYt∼pt
[(
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

) qt(Yt)
pt(Yt)

]

=
4 log T

T

T∑
t=1

EYt∼qt
[
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

]
. (d log T )εJacobi +

√
d log3 Tεscore,

where the first inequality is due to (70), and the last relation comes from (49).

Step 4: controlling the second term on the right-hand side of (66). In this step, we find it helpful
to introduce the following sets (in addition to I1 defined in (65)), where we again abbreviate τ = τ(yT ) as
long as it is clear from the context:

I2 :=
{
yT : c14 ≤ Sτ

(
yT
)
≤ 2c14

}
, (72a)

I3 :=

{
yT : Sτ−1

(
yT
)
≤ c14, ξτ

(
yT
)
≥ c14,

qτ−1(yτ−1)

pτ−1(yτ−1)
≤ 8qτ (yτ )

pτ (yτ )

}
, (72b)

I4 :=

{
yT : Sτ−1

(
yT
)
≤ c14, ξτ

(
yT
)
≥ c14,

qτ−1(yτ−1)

pτ−1(yτ−1)
>

8qτ (yτ )

pτ (yτ )

}
. (72c)

It follows immediately from the definition that I1 ∪ I2 ∪ I3 ∪ I4 = Rd. In words, for any point yT in I2,
the resulting score error remains well-controlled in the τ -th iteration; in comparison, the points in I3 and
I4 might incur large score errors in the τ -th iteration. The difference between I3 and I4 then lies in the
comparison between the density ratios qt/pt in the (τ − 1)-th and the τ -th iteration.

We shall tackle each of these sets separately, with the combined result summarized in the lemma below.

Lemma 7. It holds that

E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I2 ∪ I3 ∪ I4}

]
.
d2 log4 T

T
+
d6 log6 T

T 2
+

√
d log3 Tεscore + (d log T )εJacobi.

(73)

See Appendix B.4 for the proof of this lemma.

Step 5: putting all pieces together. Recall that I1 ∪ I2 ∪ I3 ∪ I4 = Rd. Taking (193), (66), (71) and
(73) collectively, we conclude that

TV(p1, q1) ≤ E
YT∼pT

[( q1(Y1)

p1(Y1)
− 1
)
1
{
Y1 ∈ E , YT ∈ I1

}]
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+ E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I2 ∪ I3 ∪ I4}

]
+ exp(−c6d log T )

.
d2 log4 T

T
+
d6 log6 T

T 2
+

√
d log3 Tεscore + dεJacobi log T

as claimed.

5.3 Analysis for the DDPM-type sampler (Theorem 3)
Turning attention to the DDPM-type stochastic sampler (30), we now present the main steps for the proof of
Theorem 3.

Preparation. Let us first introduce the following mapping

µ?t (xt) :=
1
√
αt

(
xt + (1− αt)s?t (xt)

)
=

1
√
αt
xt −

1− αt√
αt(1− αt)

∫
x0

pX0 |Xt(x0 |xt)
(
xt −

√
αtx0

)
dx0, (74a)

µt(xt) :=
1
√
αt

(
xt + (1− αt)st(xt)

)
, (74b)

where the first line relies on the expression (36). For any t, let us also introduce an auxiliary vector

Y ?t−1 :=
1
√
αt

(
Yt + (1− αt)s?t (Yt)

)
+ σtZt, (75)

which applies the DDPM update rule from Yt using the true score function s?t . From the update rule (30)
and (75), we can write

pYt−1 |Yt(xt−1 |xt) =
1(

2π 1−αt
αt

)d/2 exp

(
− αt

2(1− αt)
∥∥xt−1 − µt(xt)

∥∥2

2

)
(76a)

pY ?t−1 |Yt(xt−1 |xt) =
1(

2π 1−αt
αt

)d/2 exp

(
− αt

2(1− αt)
∥∥xt−1 − µ?t (xt)

∥∥2

2

)
(76b)

for any two points xt, xt−1 ∈ Rd. For notational simplicity, we shall also use the following notation throughout:

x̂t :=
1
√
αt
xt. (77)

Armed with this set of notation, we are ready to present the proof of Theorem 3, which consists of several
steps below.

Step 1: decomposition of the KL divergence. The celebrated Pinsker inequality (see, e.g., Tsybakov
(2009, Lemma 2.5)) tells us that

TV(pX1
, pY1

) ≤
√

1

2
KL(pX1

‖ pY1
), (78)

and hence it suffices to work with the KL divergence. Recall that X1 → · · · → XT and YT → · · · → Y1 are
both Markov chains (so are their reverse processes). In order to compute the KL divergence between pX1

and
pY1

, we make note of the following elementary relations:

KL(pX1,...,XT ‖ pY1,...,YT ) = KL(pX1
‖ pY1

) +

T∑
t=2

E
x∼qt−1

[
KL
(
pXt |Xt−1

(· | x)
∥∥ pYt |Yt−1

(· | x)
)]

= KL(pXT ‖ pYT ) +

T∑
t=2

E
x∼qt

[
KL
(
pXt−1 |Xt(· | x)

∥∥ pYt−1 |Yt(· | x)
)]
,
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where we recall that qt (resp. pt) denotes the distribution of Xt (resp. Yt). This combined with the non-
negativity of the KL divergence indicates that

KL(pX1 ‖ pY1) ≤ KL(pXT ‖ pYT ) +

T∑
t=2

E
x∼qt

[
KL
(
pXt−1 |Xt(· | x)

∥∥ pYt−1 |Yt(· | x)
)]
. (79)

This allows us to focus attention on the transition probabilities at each time instance t. On the right-hand
side of (79), the term that is the easiest to bound is KL(pXT ‖ pYT ). It has been shown in Lemma 3 that

KL(pXT ‖ pYT ) .
1

T 200
.

Thus, it suffices to focus attention on bounding KL
(
pXt−1 |Xt(· | x) ‖ pYt−1 |Yt(· | x)

)
for each 1 < t ≤ T ,

which forms the main content of the subsequent proof.

Step 2: controlling the conditional distributions pXt−1 |Xt and pY ?t−1 |Yt . In order to compute the
KL divergence of interest in (79), one needs to calculate the two conditional distributions pXt−1 |Xt and
pYt−1 |Yt , which we study in this step. To do so, we find it helpful to first introduce the following set

E :=

{
(xt, xt−1) | − log pXt(xt) ≤

1

2
c6d log T, ‖xt−1 − x̂t‖2 ≤ c3

√
d(1− αt) log T

}
, (80)

where the two numerical constants c3, c6 > 0 are introduced in Lemma 2. Informally, E encompasses a typical
range of the values of (Xt, Xt−1), and our analysis shall often proceed by studying the points in E and those
outside E separately.

The first result below quantifies the conditional density pXt−1 |Xt(xt−1 |xt) for those points residing within
E , which plays a central role in comparing pXt−1 |Xt against pYt−1 |Yt (see (76a)). The proof can be found in
Appendix C.1.

Lemma 8. There exists some large enough numerical constant cζ > 0 such that: for every (xt, xt−1) ∈ E,

pXt−1 |Xt(xt−1 |xt) =
1(

2π 1−αt
αt

)d/2 exp

(
−
αt
∥∥xt−1 − µ?t (xt)

∥∥2

2

2(1− αt)
+ ζt(xt−1, xt)

)
(81)

holds for some residual term ζt(xt−1, xt) obeying

∣∣ζt(xt−1, xt)
∣∣ ≤ cζd2

(
1− αt
αt − αt

)
log2 T. (82)

Here, we recall the definition of µ?t (xt) in (74b).

By comparing Lemma 8 with expression (76a), we see that when restricted to the set E , the two conditional
distributions pXt−1 |Xt(xt−1 |xt) and pYt−1 |Yt(xt−1 |xt) (i.e., informally, the time-reversed transition kernels)
are fairly close to each other, a crucial observation that suggests the validity of the diffusion generative model.

Furthermore, we are also in need of bounding the ratio of the two conditional distributions when going
beyond the set E . As it turns out, it suffices to develop a crude bound on the logarithm of such ratios (which
are used in defining the KL divergence), as stated in the following lemma.

Lemma 9. For all (xt, xt−1) ∈ Rd × Rd, it holds that

log
pXt−1 |Xt(xt−1 |xt)
pY ?t−1 |Yt(xt−1 |xt)

≤ 2T
(
‖xt−1 − x̂t‖22 + ‖xt‖22 + T 2cR

)
. (83)

The proof of Lemma 9 is provided in Appendix C.2.
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Step 3: bounding the KL divergence between pXt−1 |Xt and pY ?t−1 |Yt . Equipped with the above two
lemmas, we are positioned to first control the KL divergence between pXt−1 |Xt and pY ?t−1 |Yt ; by doing so we
are neglecting the impact of the score estimation error for the moment (see the definition (75) of Y ?t−1). It is
first seen from Lemma 8 and (76a) that: for any (xt, xt−1) ∈ E ,

pXt−1 |Xt(xt−1 |xt)
pY ?t−1 |Yt(xt−1 |xt)

= exp
(
O
(
d2
( 1− αt
αt − αt

)
log2 T

))
= 1 +O

(
d2
( 1− αt
αt − αt

)
log2 T

)
= 1 +O

(
d2 log3 T

T

)
∈
[1

2
, 2
]
, (84)

where the last line results from (39b) and the assumption that T ≥ c10d
2 log3 T for some large enough

constant c10 > 0. We can then calculate

Ext∼qt
[
KL
(
pXt−1 |Xt(· |xt) ‖ pY ?t−1 |Yt(· |xt)

)]
=
(∫
E

+

∫
Ec

)
pXt(xt)pXt−1 |Xt(xt−1 |xt) log

pXt−1 |Xt(xt−1 |xt)
pY ?t−1 |Yt(xt−1 |xt)

dxt−1dxt,

(i)
=

∫
E
pXt(xt)

{
pXt−1 |Xt(xt−1 |xt)− pY ?t−1 |Yt(xt−1 |xt)

+ pXt−1 |Xt(xt−1 |xt) ·O

((
pY ?t−1 |Yt(xt−1 |xt)
pXt−1 |Xt(xt−1 |xt)

− 1

)2
)}

dxt−1dxt

+

∫
Ec
pXt(xt)pXt−1 |Xt(xt−1 |xt) log

pXt−1 |Xt(xt−1 |xt)
pY ?t−1 |Yt(xt−1 |xt)

dxt−1dxt

(ii)
=

∫
E
pXt(xt)

{
pXt−1 |Xt(xt−1 |xt)− pY ?t−1 |Yt(xt−1 |xt) + pXt−1 |Xt(xt−1 |xt)O

(
d4
( 1− αt
αt − αt

)2

log4 T

)}
dxt−1dxt

+

∫
Ec
pXt(xt)pXt−1 |Xt(xt−1 |xt)

{
2T
(
‖xt‖22 + ‖xt−1 − x̂t‖22 + T 2cR

)}
dxt−1dxt. (85)

Here, (i) results from the elementary fact that: if
∣∣ pY (x)
pX(x) − 1

∣∣ < 1
2 , then the Taylor expansion gives

pX(x) log
pX(x)

pY (x)
= −pX(x) log

(
1 +

pY (x)− pX(x)

pX(x)

)
= pX(x)− pY (x) + pX(x)O

(( pY (x)

pX(x)
− 1
)2
)

;

regarding (ii), we invoke (84) and Lemma 9.
To continue, let us bound each term on the right-hand side of (85) separately. From the definition of the

set E (cf. (80)), direct calculations yield

P
(
(Xt, Xt−1) /∈ E

)
=

∫
(xt,xt−1)/∈E

pXt−1
(xt−1)pXt |Xt−1

(xt |xt−1)dxt−1dxt

=

∫
(xt,xt−1)/∈E

pXt−1
(xt−1)

1(
2π(1− αt)

)d/2 exp

(
−
‖xt −

√
αtxt−1‖22

2(1− αt)

)
dxt−1dxt

≤ exp
(
− c3d log T

)
, (86)

and similarly,∫
(xt−1,xt)/∈E

pXt(xt)pXt−1 |Xt(xt−1 |xt)
(

2T
(
‖xt‖22 + ‖xt−1 − x̂t‖22 + T 2cR

))
dxt−1dxt ≤ exp

(
− c3d log T

)
.

(87)
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In addition, for every (xt, xt−1) obeying ‖xt−1 − xt/
√
αt‖2 > c3

√
d(1− αt) log T and − log pXt(xt) ≤

1
2c6d log T , one can use the definition (74b) of µ?t (·) to obtain

‖xt−1 − µ?t (xt)‖2 =

∥∥∥∥xt−1 −
1
√
αt
xt −

1− αt√
αt(1− αt)

E
[
xt −

√
αtX0 | Xt = xt

]∥∥∥∥
2

(88)

≥
∥∥∥∥xt−1 −

1
√
αt
xt

∥∥∥∥
2

− 1− αt√
αt(1− αt)

E
[∥∥xt −√αtX0

∥∥
2
| Xt = xt

]
≥ c3

√
d(1− αt) log T − 6c5

1− αt√
αt(1− αt)

√
d log T

=

(
c3 − 6c5

√
1− αt√

αt(1− αt)

)√
d(1− αt) log T ≥ c3

2

√
d(1− αt) log T , (89)

where the third line results from (43a) in Lemma 1, and the last line applies (39) and holds true as long as c3 is
large enough. In turn, this combined with (76a) indicates that: for any xt obeying − log pXt(xt) ≤ 1

2c6d log T ,∫
xt−1:‖xt−1−xt/

√
αt‖2>c3

√
d(1−αt) log T

pY ?t−1 |Yt(xt−1 |xt)dxt−1 ≤ exp
(
− c3

2
d log T

)
. (90)

As a result, (86) and (90) taken collectively demonstrate that∣∣∣∣∫
E
pXt(xt)

{
pXt−1 |Xt(xt−1 |xt)− pY ?t−1 |Yt(xt−1 |xt)

}
dxt−1dxt

∣∣∣∣
=

∣∣∣∣∣1− P
(
(Xt, Xt−1) /∈ E

)
−
∫

(xt,xt−1)/∈E
pXt(xt)

{
1− pY ?t−1 |Yt(xt−1 |xt)

}
dxt−1dxt

∣∣∣∣∣
≤ 2 exp

(
− c3

2
d log T

)
. (91)

Substituting (87) and (91) into (85) yields: for each t ≥ 2,

E
xt∼qt

[
KL
(
pXt−1 |Xt(· |xt) ‖ pY ?t−1 |Yt(· |xt)

)]
. d4

( 1− αt
αt − αt

)2

log4 T + 3 exp
(
− c3

2
d log T

)
.
d4 log6 T

T 2
,

(92)

where the last inequality utilizes the properties (39) of the learning rates.

Step 4: quantifying the effect of score estimation errors. Thus far, we have quantified the KL
divergence between pXt−1 |Xt and pY ?t−1 |Yt . Given that Y ?t−1 is obtained from Yt using the true score function,
we still need to control the effect of the score estimation error, which is accomplished by means of the following
lemma. The proof of this lemma can be found in Appendix C.3.

Lemma 10. For any 1 < t ≤ T , one has

E
xt∼qt

[
KL
(
pXt−1 |Xt(· |xt) ‖ pYt−1 |Yt(· |xt)

)]
− E
xt∼qt

[
KL
(
pXt−1 |Xt(· |xt) ‖ pY ?t−1 |Yt(· |xt)

)]
. exp

(
− c20d log T

)
+
d log3 T

T
E

Xt∼qt

[
εscore,t(Xt)

2
]

(93)

for some universal constant c20 > 0.

Step 5: putting all this together. To finish up, substitute (92), (179) and (179) into the decomposi-
tion (79) to obtain

KL(pX1
‖ pY1

) . KL(pXT ‖ pYT ) +

T−1∑
t=1

E
xt∼qt

[
KL
(
pXt−1 |Xt(· |xt) ‖ pY ?t−1 |Yt(· |xt)

)]
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+

T−1∑
t=1

{
E

xt∼qt

[
KL
(
pXt−1 |Xt(· |xt) ‖ pYt−1 |Yt(· |xt)

)]
− E
xt∼qt

[
KL
(
pXt−1 |Xt(· |xt) ‖ pY ?t−1 |Yt(· |xt)

)]}

. KL(pXT ‖ pYT ) +
∑

2≤t≤T

d4 log6 T

T 2
+
(
d log3 T

) T∑
t=2

E
Xt∼qt

[
εscore,t(Xt)

2
]

� d4 log6 T

T
+ dε2

score log3 T,

where the last relation applies the bound on KL(pXT ‖ pYT ) as in (122). This establishes Theorem 3.

6 Discussion
In this paper, we have developed a new suite of non-asymptotic theory for establishing the convergence
and faithfulness of diffusion generative modeling, assuming access to reliable estimates of the (Stein) score
functions. Our analysis framework seeks to track the dynamics of the reverse process directly using elementary
tools, which eliminates the need to look at the continuous-time limit and invoke the SDE and ODE toolboxes.
Only very minimal assumptions on the target data distribution are imposed. In addition to demonstrating the
non-asymptotic iteration complexities of two mainstream discrete-time samplers — a deterministic sampler
based on the probability flow ODE, and a DDPM-type stochastic sampler — we have discovered potential
strategies to further accelerate the sampling processes, taking advantage of estimates of a small number of
additional objects. The analysis framework laid out in the current paper might shed light on how to analyze
other variants of score-based generative models as well.

Moving forward, there are plenty of questions that require in-depth theoretical understanding. For
instance, the dimension dependency in our convergence results remains sub-optimal; can we further refine our
theory in order to reveal tight dependency in this regard? Can we establish sharp convergence results in
terms of the Wasserstein distance, which could sometimes be “closer” to how humans differentiate pictures
and might potentially help relax Assumption 2 in the case of deterministic samplers? To what extent can we
further accelerate the sampling process, without requiring much more information than the score functions?
Ideally, one would hope to achieve accleration with the aid of the score functions only. It would also be of
paramount interest to establish end-to-end performance guarantees that take into account both the score
learning phase and the sampling phase.
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A Proof for several preliminary facts

A.1 Proof of properties (38)
Elementary calculations reveal that: the (i, j)-th entry of Jt(x) is given by

[
Jt(x)

]
i,j

= 1{i = j}+
1

1− αt

{(∫
x0

pX0 |Xt(x0 |x)
(
xi −

√
αtx0,i

)
dx0

)(∫
x0

pX0 |Xt(x0 |x)
(
xj −

√
αtx0,j

)
dx0

)
−
∫
x0

pX0 |Xt(x0 |x)
(
xi −

√
αtx0,i

)(
xj −

√
αtx0,j

)
dx0

}
. (94)

This immediately establishes the matrix expression (38).

24



A.2 Proof of properties (39) regarding the learning rates
Proof of property (39a). From the choice of βt in (22), we have

αt = 1− βt ≥ 1− c1 log T

T
≥ 1

2
, t ≥ 2.

The case with t = 1 holds trivially since β1 = 1/T c0 for some large enough constant c0 > 0.

Proof of properties (39b) and (39c). We start by proving (39b). Let τ be an integer obeying

β1

(
1 +

c1 log T

T

)τ
≤ 1 < β1

(
1 +

c1 log T

T

)τ+1

, (95)

and we divide into two cases based on τ .

• Consider any t satisfying t ≤ τ . In this case, it suffices to prove that

1− αt−1 ≥
1

3
β1

(
1 +

c1 log T

T

)t
. (96)

Clearly, if (96) is valid, then any t ≤ τ obeys

1− αt
1− αt−1

=
βt

1− αt−1
≤

c1 log T
T β1

(
1 + c1 log T

T

)t
1
3β1

(
1 + c1 log T

T

)t =
3c1 log T

T

as claimed. Towards proving (96), first note that the base case with t = 2 holds true trivially since
1− α1 = 1− α1 = β1 ≥ β1

(
1 + c1 log T

T

)2
/3. Next, let t0 > 2 be the first time that Condition (96) fails

to hold and suppose that t0 ≤ τ . It then follows that

1− αt0−2 = 1− αt0−1

αt0−1
≤ 1− αt0−1 <

1

3
β1

(
1 +

c1 log T

T

)t0
≤ 1

2
β1

(
1 +

c1 log T

T

)t0−1

<
1

2
, (97)

where the last inequality result from (95) and the assumption t0 ≤ τ . This taken together with the
assumptions (96) and t0 ≤ τ implies that

(1− αt0−1)αt0−1

1− αt0−2
≥

c1 log T
T β1 min

{(
1 + c1 log T

T

)t0−1
, 1
}
·
(
1− 1

2

)
1
2β1

(
1 + c1 log T

T

)t0−1 =
c1 log T
T β1

(
1 + c1 log T

T

)t0−1

β1

(
1 + c1 log T

T

)t0−1 =
c1 log T

T
.

As a result, we can further derive

1− αt0−1 = 1− αt0−1αt0−2 = 1− αt0−2 + (1− αt0−1)αt0−2

=

(
1 +

(1− αt0−1)αt0−2

1− αt0−2

)
(1− αt0−2)

≥
(

1 +
c1 log T

T

)
(1− αt0−2) ≥

(
1 +

c1 log T

T

)
·
{

1

3
β1

(
1 +

c1 log T

T

)t0−1}
=

1

3
β1

(
1 +

c1 log T

T

)t0
,

where the penultimate line holds since (96) is first violated at t = t0; this, however, contradicts with
the definition of t0. Consequently, one must have t0 > τ , meaning that (96) holds for all t ≤ τ .

• We then turn attention to those t obeying t > τ . In this case, it suffices to make the observation that

1− αt−1 ≥ 1− ατ−1 ≥
1

3
β1

(
1 +

c1 log T

T

)τ
=

1
3β1

(
1 + c1 log T

T

)τ+1

1 + c1 log T
T

≥ 1

4
, (98)
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where the second and the third inequalities come from (96). Therefore, one obtains

1− αt
1− αt−1

≤
c1 log T
T

1/4
≤ 4c1 log T

T
.

The above arguments taken together establish property (39b).
In addition, it comes immediately from (39b) that

1 ≤ 1− αt
1− αt−1

= 1 +
αt−1 − αt
1− αt−1

= 1 +
αt−1(1− αt)

1− αt−1
≤ 1 +

4c1 log T

T
,

thereby justifying property (39c).

Proof of property (39d). Turning attention to the second claim (39d), we note that for any t obeying
t ≥ T

2 & T
log T , one has

1− αt =
c1 log T

T
min

{
β1

(
1 +

c1 log T

T

)t
, 1

}
=
c1 log T

T
.

This in turn allows one to deduce that

αT ≤
∏

t:t≥T/2

αt ≤
(

1− c1 log T

T

)T/2
≤ 1

T c2

for an arbitrarily large constant c2 > 0.

Proof of property (39e). Finally, it is easily seen from the Taylor expansion that the learning rates {αt}
satisfy ( 1− αt

αt − αt

)d/2
=

(
1 +

1− αt
αt − αt

)d/2
= 1 +

d(1− αt)
2(αt − αt)

+
d(d− 2)(1− αt)2

8(αt − αt)2
+O

(
d3
( 1− αt
αt − αt

)3
)
,

provided that d(1−αt)
αt−αt . 1.

A.3 Proof of Lemma 1
To establish this lemma, we first make the following claim, whose proof is deferred to the end of this subsection.

Claim 1. Consider any c5 ≥ 2 and suppose that c6 ≥ 2cR. There exists some x0 ∈ Rd such that

‖
√
αtx0 − y‖2 ≤ c5

√
θ(y)d(1− αt) log T and (99a)

P
(
‖X0 − x0‖2 ≤ ε

)
≥
( ε

T 2θ(y)

)d
with ε =

1

T c0/2
(99b)

hold simultaneously, where c0 is defined in (22).

With the above claim in place, we are ready to prove Lemma 1. For notational simplicity, we let X
represent a random vector whose distribution pX(·) obeys

pX(x) = pX0|Xt(x | y). (100)

Consider the point x0 in Claim 1, and let us look at a set:

E :=
{
x :
√
αt‖x− x0‖2 > 4c5

√
θ(y)d(1− αt) log T

}
,
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where c5 ≥ 2 (see Claim 1). Combining this with property (99a) about x0 results in

P
(
‖
√
αtX − y‖2 > 5c5

√
θ(y)d(1− αt) log T

)
≤ P(X ∈ E). (101)

Consequently, everything boils down to bounding P(X ∈ E). Towards this, we first invoke the Bayes rule
pX0 |Xt(x | y) ∝ pX0

(x)pXt |X0
(y |x) to derive

P(X0 ∈ E |Xt = y) =

∫
x∈E pX0(x)pXt |X0

(y |x)dx∫
x
pX0(x)pXt |X0

(y |x)dx

≤
∫
x∈E pX0(x)pXt |X0

(y |x)dx∫
x:‖x−x0‖2≤ε pX0(x)pXt |X0

(y |x)dx

≤
supx∈E pXt |X0

(y |x)

infx:‖x−x0‖2≤ε pXt |X0
(y |x)

· P(X0 ∈ E)

P(‖X0 − x0‖2 ≤ ε)
. (102)

To further bound this quantity, note that: in view of the definition of E and expression (99a), one has

sup
x∈E

pXt |X0
(y |x) = sup

x:‖
√
αtx−

√
αtx0‖2>4c5

√
θ(y)d(1−αt) log T

pXt |X0
(y |x)

≤ sup
x:‖
√
αtx−y‖2>3c5

√
θ(y)d(1−αt) log T

pXt |X0
(y |x)

≤ 1(
2π(1− αt)

)d/2 exp

(
− 9c25θ(y)d log T

2

)
and

inf
x:‖x−x0‖2≤ε

pXt |X0
(y |x) ≥ 1(

2π(1− αt)
)d/2 inf

x:‖x−x0‖2≤ε
exp

(
− ‖y −

√
αtx‖22

2(1− αt)

)

≥ 1(
2π(1− αt)

)d/2 inf
x:‖x−x0‖2≤ε

exp

(
− ‖y −

√
αtx0‖22

1− αt
− ‖
√
αtx−

√
αtx0‖22

1− αt

)

≥ 1(
2π(1− αt)

)d/2 exp

(
− ‖y −

√
αtx0‖22

1− αt
− ε2

1− αt

)
≥ 1(

2π(1− αt)
)d/2 exp

(
− c25θ(y)d log T − 1

T c0
1

1− αt

)
≥ 1(

2π(1− αt)
)d/2 exp

(
− 2c25θ(y)d log T

)
,

where the second line is due to the elementary inequality ‖a + b‖22 ≤ 2‖a‖22 + 2‖b‖22, the penultimate line
relies on (99), and the last line holds true since 1−αt ≥ 1−α1 = 1/T c0 (see (22)). Substitution of the above
two displays into (102), we arrive at

P(X0 ∈ E |Xt = y) ≤ exp
(
− 2.5c25θ(y)d log T

)
· 1

P(‖X0 − x0‖2 ≤ ε)

≤ exp
(
− 2.5c25θd log T

)
·
(
T 2θ(y)+c0/2

)d
≤ exp

(
− (2.5c25θ(y)− 2θ(y)− c0/2)d log T

)
, (103)

where the second inequality invokes (99b). Substituting this into (101) and recalling the distribution (100) of
X, we arrive at

P
(
‖
√
αtX − y‖2 > 5c5

√
θ(y)d(1− αt) log T

)
≤ exp

(
− (2.5c25θ(y)− 2θ(y)− c0/2)d log T

)
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≤ exp
(
− c25θ(y)d log T

)
,

with the proviso that c5 ≥ 2 and c6 ≥ c0 (so that θ(y) ≥ c6 ≥ c0). This concludes the proof of the advertised
result (42) when c5 ≥ 2 and c6 ≥ 2cR + c0, as long as Claim 1 can be justified.

With the above result in place, it then follows that

E
[∥∥xt −√αtX0

∥∥
2

∣∣Xt = xt
]

≤ 5c5
√
θ(y)d(1− αt) log T + E

[∥∥xt −√αtX0

∥∥
2
1
{
‖xt −

√
αtX0‖2 ≥ 5c5

√
θ(y)d(1− αt) log T

} ∣∣∣Xt = xt

]
≤ 5c5

√
θ(y)d(1− αt) log T +

∫ ∞
5c5
√
θ(y)d(1−αt) log T

P
(
‖xt −

√
αtx0‖2 ≥ τ |Xt = xt

)
dτ

≤ 5c5
√
θ(y)d(1− αt) log T +

∫ ∞
5c5
√
θ(y)d(1−αt) log T

exp

(
− τ2

25(1− αt)

)
dτ

≤ 5c5
√
θ(y)d(1− αt) log T + exp

(
− c25θ(y)d log T

)
≤ 6c5

√
θ(y)d(1− αt) log T ,

as claimed in (43a) by taking c5 = 2. The proofs for (43b), (43c) and (43d) follow from similar aguments and
are hence omitted for the sake of brevity.

Proof of Claim 1. We prove this claim by contradiction. Specifically, suppose instead that: for every x
obeying ‖

√
αtx− y‖2 ≤ c5

√
θ(y)d(1− αt) log T , we have

P(‖X0 − x‖2 ≤ ε) ≤
(

ε

2T θ(y)R

)d
with ε =

1

T c0/2
. (104)

Clearly, the choice of ε ensures that ε < 1
2

√
d(1− αt) log T . In the following, we would like to show that this

assumption leads to contradiction.
First of all, let us look at pXt , which obeys

pXt(y) =

∫
x

pX0(x)pXt |X0
(y |x)dx

=

∫
x: ‖
√
αtx−y‖2≥c5

√
θ(y)d(1−αt) log T

pX0
(x)pXt |X0

(y |x)dx

+

∫
x: ‖
√
αtx−y‖2<c5

√
θ(y)d(1−αt) log T

pX0(x)pXt |X0
(y |x)dx. (105)

To further control (105), we make two observations:

1) The first term on the right-hand side of (105) can be bounded by∫
x: ‖
√
αtx−y‖2≥c5

√
θ(y)d(1−αt) log T

pX0
(x)pXt |X0

(y |x)dx

≤ sup
z: ‖z‖2≥c5

√
θ(y)d(1−αt) log T

1(
2π(1− αt)

)d/2 exp

(
− ‖z‖22

2(1− αt)

)
<

1

2
exp

(
− θ(y)d log T

)
, (106)

provided that c5 ≥ 2 and c6 > 0 is large enough (note that θ(y) ≥ c6). Here, we have used Xt
(i)
=√

αtX0 +
√

1− αtW with W ∼ N (0, Id) as well as standard properties about Gaussian distributions.

2) Regarding the second term on the right-hand side of (105), let us construct an epsilon-net Nε = {zi}
for the following set {

x : ‖
√
αtx− y‖2 ≤ c5

√
θ(y)d(1− αt) log T and ‖x‖2 ≤ R

}
,
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so that for each x in this set, one can find a vector zi ∈ Nε such that ‖x− zi‖2 ≤ ε. Clearly, we can
choose Nε so that its cardinality obeys |Nε| ≤ (2R/ε)d. Define Bi := {x | ‖x − zi‖2 ≤ ε} for each
zi ∈ Nε. Armed with these sets, we can derive∫

x:‖
√
αtx−y‖2<c5

√
θ(y)d(1−αt) log T

pX0(x)pXt |X0
(y |x)dx ≤

(
2π(1− αt)

)−d/2 |Nε|∑
i=1

P(X0 ∈ Bi)

≤
(
2π(1− αt)

)−d/2( ε

2T 2θ(y)R

)d(
2R

ε

)d
<

1

2
exp

(
− θ(y)d log T

)
,

where the penultimate step comes from the assumption (104).

The above results taken collectively lead to

pXt(y) < exp
(
− θ(y)d log T

)
, (107)

thus contradicting the definition (41) of θ(y).
Consequently, we have proven the existence of x obeying ‖

√
αtx− y‖2 ≤ c5

√
θ(y)d(1− αt) log T and

P(‖X0 − x‖2 ≤ ε) >
(

ε

2T θ(y)R

)d
≥
(

ε

T 2θ(y)

)d
,

provided that θ(y) ≥ c6 ≥ 2cR. This completes the proof of Claim 1.

A.4 Proof of Lemma 2
For notational convenience, let us denote x̂t = xt/

√
αt throughout the proof. As a key step of the proof, we

note that for any x ∈ Rd,

pXt−1(x) =

∫
x0

pX0(x0)pXt−1 |X0
(x |x0)dx0

=

∫
x0

pX0
(x0)pXt |X0

(xt |x0) ·
pXt−1 |X0

(x |x0)

pXt |X0
(xt |x0)

dx0

= pXt(xt)

∫
x0

pX0 |Xt(x0 |xt) ·
pXt−1 |X0

(x |x0)

pXt |X0
(xt |x0)

dx0, (108)

thus establishing a link between pXt−1
(x) and pXt(xt). Consequently, in order to control pXt−1

(x), it is

helpful to first look at the density ratio
pXt−1 |X0

(x | x0)

pXt |X0
(xt | x0) , which we accomplish in the sequel.

Recall that Xt
d
=
√
αX0 +

√
1− αW with W ∼ N (0, Id). In what follows, let us consider any xt, x0 ∈ Rd

and any x obeying
‖x̂t − x‖2 ≤ c3

√
d(1− αt) log T (109)

for some constant c3 > 0. The density ratio of interest satisfies

pXt−1 |X0
(x |x0)

pXt |X0
(xt |x0)

=

(
1− αt

1− αt−1

)d/2
exp

(∥∥xt −√αtx0

∥∥2

2

2(1− αt)
−
∥∥x−√αt−1x0

∥∥2

2

2(1− αt−1)

)

≤ exp

(
d(1− αt) +

∥∥x̂t − x∥∥2

2
+ 2
∥∥x̂t − x∥∥2

∥∥xt −√αtx0

∥∥
2

2(1− αt−1)
+

(1− αt)
∥∥xt −√αtx0

∥∥2

2

(1− αt−1)2

)
, (110)

where the last inequality follows from the two relations below:

log
1− αt

1− αt−1
= log

(
1 +

αt−1(1− αt)
1− αt−1

)
≤ 1− αt

1− αt−1
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and

∣∣∣∣∣
∥∥xt −√αtx0

∥∥2

2

2(1− αt)
−
∥∥x−√αt−1x0

∥∥2

2

2(1− αt−1)

∣∣∣∣∣
=

∣∣∣∣∣
∥∥xt −√αtx0

∥∥2

2

2(1− αt)
−
∥∥x̂t − x∥∥2

2
+
∥∥x̂t −√αt−1x0

∥∥2

2
− 2
〈
x̂t − x, x̂t −

√
αt−1x0

〉
2(1− αt−1)

∣∣∣∣∣
≤
∥∥x̂t − x∥∥2

2

2(1− αt−1)
+

∥∥x̂t − x∥∥2

∥∥x̂t −√αt−1x0

∥∥
2

1− αt−1
+

(1− αt)
∥∥xt −√αtx0

∥∥2

2

2αt(1− αt)(1− αt−1)

≤
∥∥x̂t − x∥∥2

2
+ 2
∥∥x̂t − x∥∥2

∥∥x̂t −√αt−1x0

∥∥
2

2(1− αt−1)
+

(1− αt)
∥∥xt −√αtx0

∥∥2

2

(1− αt−1)2
.

Next, let us define the following set given xt:

Ẽ :=
{
x0 :

∥∥xt −√αtx0

∥∥
2
≤ c4

√
d(1− αt) log T

}
(111)

for some large enough numerical constant c4 > 0, and we shall look at Ẽ and Ẽc separately. Towards this, we
make the following observations:

• For any x0 ∈ Ẽ , one can utilize (111) and (109) to deduce that

d(1− αt) +
∥∥x̂t − x∥∥2

2
+ 2
∥∥x̂t − x∥∥2

∥∥xt −√αtx0

∥∥
2

2(1− αt−1)
+

(1− αt)
∥∥xt −√αtx0

∥∥2

2

(1− αt−1)2

.
d(1− αt)
1− αt−1

+
d(1− αt) log T + d

√
(1− αt)(1− αt) log T

1− αt−1
+

(1− αt)2d(1− αt) log T

(1− αt−1)2

. (d log T )

{
1− αt

1− αt−1
+

√
1− αt

1− αt−1

√
1− αt

1− αt−1
+

(
1− αt

1− αt−1

)2
}

. d

√
1− αt

1− αt−1
log T, (112)

where the last inequality makes use of the facts 1−αt
1−αt−1

≤ 1 (cf. (39b)) and

1− αt
1− αt−1

=
1− αt

1− αt−1
+

αt − αt
1− αt−1

=
1− αt

1− αt−1
+ αt ≤ 2. (113)

Moreover, the properties (39) of the stepsizes tell us that

d

√
1− αt

1− αt−1
log T . d

√
log3 T

T
≤ c10

for some small enough constant c10 > 0, as long as T ≥ c11d
2 log3 T for some sufficiently large constant

c11 > 0. Taking this together with (110) and (112) reveals that

pXt−1 |X0
(x |x0)

pXt |X0
(xt |x0)

= 1 +O

(
d

√
1− αt

1− αt−1
log T

)
, (114)

with the proviso that (109) holds and x0 ∈ Ẽ .

• Instead, if x0 /∈ Ẽ , then one can obtain

d(1− αt) +
∥∥x̂t − x∥∥2

2
+ 2
∥∥x̂t − x∥∥2

∥∥xt −√αtx0

∥∥
2

2(1− αt−1)
+

(1− αt)
∥∥xt −√αtx0

∥∥2

2

(1− αt−1)2
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(i)

≤
d(1− αt) +

(
1 + 1−αt−1

1−αt

)∥∥x̂t − x∥∥2

2
+ 1−αt

1−αt−1

∥∥xt −√αtx0

∥∥2

2

2(1− αt−1)
+

(1− αt)
∥∥xt −√αtx0

∥∥2

2

(1− αt−1)2

(ii)

≤
d(1− αt) + c3

(
1 + 1−αt−1

1−αt

)
d(1− αt) log T

2(1− αt−1)
+

2(1− αt)
∥∥xt −√αtx0

∥∥2

2

(1− αt−1)2

(iii)

≤
c3d
(
1− αt + 1− αt−1

)
log T

1− αt−1
·
∥∥xt −√αtx0

∥∥2

2

c4d(1− αt−1) log T
+

2(1− αt)
∥∥xt −√αtx0

∥∥2

2

(1− αt−1)2

≤ 2c3
c4
·
∥∥xt −√αtx0

∥∥2

2

1− αt−1
+

8c1
∥∥xt −√αtx0

∥∥2

2
log T

T (1− αt−1)

(iv)

≤
(

2c3
c4

+
8c1 log T

T

)
2
∥∥xt −√αtx0

∥∥2

2

1− αt
≤ 8c3

c4

∥∥xt −√αtx0

∥∥2

2

1− αt
,

where (i) comes from the Cauchy-Schwarz inequality, (ii) is valid due to the assumption on ‖x̂t − x‖2,
(iii) follows from the definition of Ẽ , and (iv) is a consequence of (113). Substitution into (110) leads to

pXt−1 |X0
(x |x0)

pXt |X0
(xt |x0)

≤ exp

(
8c3
c4

∥∥xt −√αtx0

∥∥2

2

1− αt

)
, (115)

provided that (109) holds and x0 /∈ Ẽ .

In light of the above calculations, we can invoke (116) to demonstrate that: for any x obeying (109),

pXt−1
(x) = pXt(xt)

(∫
x0∈Ẽ

+

∫
x0 /∈Ẽ

)
pX0 |Xt(x0 |xt) ·

pXt−1 |X0
(x |x0)

pXt |X0
(xt |x0)

dx0

= pXt(xt)

∫
x0∈Ẽ

(
1 +O

(
d

√
1− αt

1− αt−1
log T

))
pX0 |Xt(x0 |xt)dx0

+ pXt(xt)

∫
x0 /∈Ẽ

O

(
exp

(
8c3
c4

∥∥xt −√αtx0

∥∥2

2

1− αt

))
pX0 |Xt(x0 |xt)dx0. (116)

By virtue of Lemma 1, if − log pXt(xt) ≤ 1
2c6d log T for some large constant c6 > 0, then it holds that

P
{∥∥√αtX0 − xt

∥∥
2
≥ 5c5

√
d(1− αt) log T | Xt = xt

}
≤ exp(−c25c6d log T ) (117)

for any c5 ≥ 2. Some elementary calculation then reveals that∫
x0 /∈Ẽ

exp

(
8c3
c4

∥∥xt −√αtx0

∥∥2

2

1− αt

)
pX0 |Xt(x0 |xt)dx0 .

1

T c0
(118)

with c0 defined in (22), provided that c4/c3 is sufficiently large. Hence, substituting it into (116) demonstrates
that, for any x satisfying (109),

pXt−1
(x) =

(
1 +O

(
d

√
1− αt

1− αt−1
log T

))(
1− o(1)

)
pXt(xt) +O

(
1

T c0

)
pXt(xt) (119)

=

(
1 +O

(
d

√
1− αt

1− αt−1
log T +

1

T c0

))
pXt(xt)

=

(
1 +O

(
d

√
1− αt

1− αt−1
log T

))
pXt(xt) (120)

∈
[

1

2
pXt(xt),

3

2
pXt(xt)

]
, (121)
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where the penultimate inequality holds since (according to (22))√
1− αt

1− αt−1
≥
√

1− αt =
√
βt ≥

√
c1 log T

T c0+1
,

and the last inequality holds due to (39b) and the condition that T/(d2 log3 T ) is sufficiently large. In other
words, (121) reveals that pXt−1

(x) is sufficiently close to pXt(xt).
We are now ready to establish our claim. In view of the assumption (44), we have∥∥xt(γ)− x̂t

∥∥
2

=
∥∥γxt−1 + (1− γ)x̂t − x̂t

∥∥
2

= γ
∥∥xt−1 − x̂t

∥∥
2
≤ c3

√
d(1− αt) log T .

Therefore, taking x to be xt(γ) in (121) tells us that: if − log pXt(xt) ≤ 1
2c6d log T , then

− log pXt−1

(
xt(γ)

)
≤ − log pXt(xt) + log 2 ≤ c6d log T

as claimed.

A.5 Proof of Lemma 3
Recognizing that YT ∼ N (0, Id) and that XT

d
=
√
αTX0 +

√
1− αT W t with W t ∼ N (0, Id) (independent

from X0), one has

KL(pXT ‖ pYT ) =

∫
pXT (x) log

pXT (x)

pYT (x)
dx

(i)
=

∫
pXT (x) log

∫
y:‖y‖2≤

√
αTT cR

p√αTX0
(y)p√1−αT W t

(x− y)dy

pYT (x)
dx

≤
∫
pXT (x) log

supy:‖y‖2≤
√
αTT cR

p√1−αT W t
(x− y)

pYT (x)
dx

=

∫
pXT (x)

(
− d/2 log(1− αT ) + sup

y:‖y‖2≤
√
αTT cR

(
− ‖x− y‖

2
2

2(1− αT )
+
‖x‖22

2

)
dx

(ii)
≤
∫
pXT (x)

(
− d/2 log(1− αT ) + ‖x‖2 sup

y:‖y‖2≤
√
αTT cR

‖y‖2
1− αT

)
dx

≤ −d/2 log(1− αT ) +

√
αTT

cR

2(1− αT )
E [‖XT ‖2]

(iii)
. αT d+

√
αTT

cR

2(1− αT )

(√
αTT

cR +
√
d
) (iv)

.
1

T 200
, (122)

where (i) arises from the assumption that ‖X0‖2 ≤ T cR , (ii) applies the Cauchy-Schwarz inequality, (iii) holds
true since

E [‖XT ‖2] ≤
√
αT ‖X0‖2 + E

[
‖W t‖2

]
≤
√
αTT

cR +
√
E
[
‖W t‖22

]
≤
√
αTT

cR +
√
d,

and (iv) makes use of (39d) given that c2 ≥ 1000. The proof is thus completed by invoking the Pinsker
inequality (Tsybakov, 2009, Lemma 2.5).

B Proof of auxiliary lemmas for the ODE-based sampler

B.1 Proof of Lemma 4
B.1.1 Proof of relations (57) and (58a)

Recall the definition of φt and φ?t in (51), and introduce the following vector:

u := x− φt(x) = x− φ?t (x) + φ?t (x)− φt(x)
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=
1− αt

2(1− αt)

∫
x0

(
x−
√
αtx0

)
pX0 |Xt(x0 |x)dx0 −

1− αt
2

(
st(x)− s?t (x)

)
. (123)

The proof is composed of the following steps.

Step 1: decomposing p√αtXt−1

(
φt(x)

)
/pXt(x). Recognizing that

Xt
d
=
√
αtX0 +

√
1− αtW with W ∼ N (0, Id) (124)

and making use of the Bayes rule, we can express the conditional distribution pX0 |Xt
(
φt(x)

)
as

pX0 |Xt(x0 |x) =
pX0

(x0)

pXt(x)
pXt |X0

(x |x0) =
pX0(x0)

pXt(x)
· 1(

2π(1− αt)
)d/2 exp

(
−
∥∥x−√αtx0

∥∥2

2

2(1− αt)

)
. (125)

Moreover, it follows from (124) that

√
αtXt−1

d
=
√
αt
(√

αt−1X0 +
√

1− αt−1W
)

=
√
αtX0 +

√
αt − αtW. (126)

These taken together allow one to rewrite p√αtXt−1
such that:

p√αtXt−1

(
φt(x)

)
pXt(x)

(i)
=

1

pXt(x)

∫
x0

pX0
(x0)

1(
2π(αt − αt)

)d/2 exp

(
−
∥∥φt(x)−

√
αtx0

∥∥2

2

2(αt − αt)

)
dx0

(ii)
=

1

pXt(x)

∫
x0

pX0(x0)
1(

2π(αt − αt)
)d/2 exp

(
−
∥∥x−√αtx0

∥∥2

2

2(1− αt)

)

· exp

(
−

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
−
‖u‖22 − 2u>

(
x−
√
αtx0

)
2(αt − αt)

)
dx0

(iii)
=
( 1− αt
αt − αt

)d/2
·
∫
x0

pX0 |Xt(x0 |x)·

exp

(
−

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
−
‖u‖22 − 2u>

(
x−
√
αtx0

)
2(αt − αt)

)
dx0

(iv)
=

{
1 +

d(1− αt)
2(αt − αt)

+O

(
d2
( 1− αt
αt − αt

)2
)}
·∫

x0

pX0 |Xt(x0 |x) exp

(
−

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
−
‖u‖22 − 2u>

(
x−
√
αtx0

)
2(αt − αt)

)
dx0.

(127)

Here, identity (i) holds due to (126) and hence

p√αtXt−1
(x) =

∫
x0

pX0(x0)p√αt−αtW
(
x−
√
αtx0

)
dx0;

identity (ii) follows from (123) and elementary algebra; relation (iii) is a consequence of the Bayes rule (125);
and relation (iv) results from (39e).

Step 2: controlling the integral in the decomposition (127). In order to further control the right-hand
side of expression (127), we need to evaluate the integral in (127). To this end, we make a few observations.

• To begin with, Lemma 1 tells us that

P
(∥∥√αtX0 − x

∥∥
2
> 5c5

√
θt(x)d(1− αt) log T |Xt = x

)
≤ exp

(
− c25θt(x)d log T

)
(128a)

for any quantity c5 ≥ 2, provided that c6 ≥ 2cR + c0.
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• A little algebra based on this relation allows one to bound u (cf. (123)) as follows:

‖u‖2 ≤
1− αt

2
εscore,t(x) +

1− αt
2(1− αt)

E
[∥∥√αtX0 − x

∥∥
2

∣∣Xt = x
]

≤ 1− αt
2

εscore,t(x) +
6(1− αt)

1− αt

√
θt(x)d(1− αt) log T , (128b)

where the last inequality arises from Lemma 1.

Next, let us define
E typicalc :=

{
x0 :

∥∥x−√αtx0

∥∥
2
≤ 5c

√
θt(x)d(1− αt) log T

}
(129)

for any quantity c > 0. Then for any x0 ∈ E typicalc , it is clearly seen from (128) and (39) that

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
≤ 25c2

2

(1− αt)θt(x)d log T

αt − αt
≤ 100c1c

2θt(x)d log2 T

T
; (130a)

‖u‖22
2(αt − αt)

≤ (1− αt)2

4(αt − αt)
εscore,t(x)2 +

36(1− αt)2

(1− αt)(αt − αt)
θt(x)d log T (130b)

≤ 2c21 log2 T

T 2
εscore,t(x)2 +

2304c21
T 2

θt(x)d log3 T,∣∣∣∣∣u>
(
x−
√
αtx0

)
αt − αt

∣∣∣∣∣ ≤ ‖u‖2
∥∥x−√αtx0

∥∥
2

αt − αt

≤ 5c(1− αt)
2(αt − αt)

εscore,t(x)
√
θt(x)d(1− αt) log T +

30c(1− αt)θt(x)d log T

αt − αt
(130c)

≤ 20cc1
T

εscore,t(x)

√
θt(x)d(1− αt) log3 T +

240cc1θt(x)d log2 T

T
. (130d)

As a consequence, for any x0 ∈ E typicalc for c ≥ 2, we have seen from (130d) and (39) that

−
(1− αt)

∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
− ‖u‖22

2(αt − αt)
+
u>
(
x−
√
αtx0

)
αt − αt

≤
u>
(
x−
√
αtx0

)
αt − αt

≤ 5c(1− αt)
2(αt − αt)

εscore,t(x)
√
θt(x)d(1− αt) log T +

30c(1− αt)θt(x)d log T

αt − αt
(131)

≤ 20cc1
T

εscore,t(x)

√
θt(x)d log3 T +

240cc1
T

θt(x)d log2 T ≤ cθt(x)d, (132)

provided that
40c1εscore,t(x) log

3
2 T

T
≤
√
θt(x)d and T ≥ 480c1 log2 T.

Step 2(a): proof of relation (57). Substituting (131) into (127) and making use of (39) under our
assumption on T yield

p√αtXt−1

(
φt(x)

)
pXt(x)

≤ 2 exp

(
5c(1− αt)
2(αt − αt)

εscore,t(x)
√
θt(x)d log T +

30c(1− αt)
αt − αt

θt(x)d log T

)∫
x0

pX0 |Xt(x0 |x)dx0

≤ 2 exp

(
5c(1− αt)
2(αt − αt)

εscore,t(x)
√
θt(x)d log T +

30c(1− αt)
αt − αt

θt(x)d log T

)
,

thus establishing (57) by taking c = 2.
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Step 2(b): proof of relation (58a). Suppose now that

C10

θt(x)d log2 T + εscore,t(x)
√
θt(x)d log3 T

T
≤ 1 (133)

holds for some large enough constant C10 > 0. Under this additional condition, it can be easily verified that∣∣∣∣∣− (1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
− ‖u‖22

2(αt − αt)
+
u>
(
x−
√
αtx0

)
αt − αt

∣∣∣∣∣
≤ c10

(
θt(x)d log T + εscore,t(x)

√
θt(x)d log T

) 1− αt
αt − αt

(134)

for any x0 ∈ E typical2 (with c = 2), where c10 > 0 is some sufficiently small constant. Therefore, the Taylor
expansion e−z = 1− z +O(z2) (for all |z| < 1) gives

exp

(
−

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
−
‖u‖22 − 2u>

(
x−
√
αtx0

)
2(αt − αt)

)
= 1−

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
+
u>
(
x−
√
αtx0

)
αt − αt

+O

((
θt(x)2d2 log2 T + εscore,t(x)2θt(x)d log T

)( 1− αt
αt − αt

)2
)

(135)

for any x0 ∈ E typical2 , which invokes (134) and (130b) (under the assumption (133)). Combine (135) and (132)
to show that∫
x0

pX0 |Xt(x0 |x) exp

(
−

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
−
‖u‖22 − 2u>

(
x−
√
αtx0

)
2(αt − αt)

)
dx0

=

(∫
x0∈E2

+

∫
x0 /∈E2

)
pX0 |Xt(x0 |x) exp

(
−

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
−
‖u‖22 − 2u>

(
x−
√
αtx0

)
2(αt − αt)

)
dx0

=

∫
x0∈E2

pX0 |Xt(x0 |x)

(
1−

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
+
u>
(
x−
√
αtx0

)
αt − αt

)
dx0

+O

((
θt(x)2d2 log2 T + εscore,t(x)2θt(x)d log T

)( 1− αt
αt − αt

)2
)

+O

( ∞∑
c=3

∫
x0∈Ec\Ec−1

pX0 |Xt(x0 |x) exp (cθt(x)d) dx0

)

= 1−
(1− αt)

( ∫
x0
pX0 |Xt(x0 |x)

∥∥x−√αtx0

∥∥2

2
dx0 −

∥∥ ∫
x0
pX0 |Xt(x0 |x)

(
x−
√
αtx0

)
dx0

∥∥2

2

)
2(αt − αt)(1− αt)

+O

(
θt(x)2d2

( 1− αt
αt − αt

)2

log2 T + εscore,t(x)
√
θt(x)d log T

( 1− αt
αt − αt

))
+O

(
exp

(
− θt(x)d log T

))
= 1−

(1− αt)
( ∫

x0
pX0 |Xt(x0 |x)

∥∥x−√αtx0

∥∥2

2
dx0 −

∥∥ ∫
x0
pX0 |Xt(x0 |x)

(
x−
√
αtx0

)
dx0

∥∥2

2

)
2(αt − αt)(1− αt)

+O

(
θt(x)2d2

( 1− αt
αt − αt

)2

log2 T + εscore,t(x)
√
θt(x)d log T

( 1− αt
αt − αt

))
, (136)

where the penultimate relation holds since, according to (128a),

∞∑
c=3

∫
x0∈Ec\Ec−1

pX0 |Xt(x0 |x) exp (cθt(x)d) dx0 ≤
∞∑
c=3

exp
(
−c2θt(x)d log T

)
exp (cθt(x)d)

≤
∞∑
c=3

exp

(
−1

2
c2θt(x)d log T

)
≤ exp

(
− θt(x)d log T

)
,
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and the last line in (136) again utilizes (39) and the fact that θt(x) ≥ c6 for some large enough constant
c6 > 0.

Putting (136) and (127) together yields

p√αtXt−1

(
φt(x)

)
pXt(x)

= 1 +
d(1− αt)
2(αt − αt)

+O

(
θt(x)2d2

( 1− αt
αt − αt

)2

log2 T + εscore,t(x)
√
θt(x)d log T

( 1− αt
αt − αt

))
−

(1− αt)
( ∫

x0
pX0 |Xt(x0 |x)

∥∥x−√αtx0

∥∥2

2
dx0 −

∥∥ ∫
x0
pX0 |Xt(x0 |x)

(
x−
√
αtx0

)
dx0

∥∥2

2

)
2(αt − αt)(1− αt)

as claimed.

B.1.2 Proof of relation (58b)

Consider any random vector Y . To understand the density ratio pφt(Y )(φt(x))/pY (x), we make note of the
transformation

pφt(Y )

(
φt(x)

)
= det

(∂φt(x)

∂x

)−1

pY (x), (137a)

pφ?t (Y )

(
φ?t (x)

)
= det

(∂φ?t (x)

∂x

)−1

pY (x), (137b)

where ∂φt(x)
∂x and ∂φ?t (x)

∂x denote the Jacobian matrices. It thus suffices to control the quantity det
(
∂φt(x)
∂x

)−1

.
To begin with, recall from (51) and (36) that

φ?t (x) = x− 1− αt
2(1− αt)

gt(x).

As a result, one can use (37) and (38) to derive

I − ∂φ?t (x)

∂x
=

1− αt
2(1− αt)

Jt(x) =
1− αt

2(1− αt)

{
I +

1

1− αt

{
E
[
Xt −

√
αtX0 | Xt = x

](
E
[
Xt −

√
αtX0 | Xt = x

])>
− E

[(
Xt −

√
αtX0

)(
Xt −

√
αtX0

)> | Xt = x
]}}

=:
1− αt

2(1− αt)

{
I +

1

1− αt
B

}
. (138)

This allows one to show that

Tr
(
I − ∂φ?t (x)

∂x

)
=
d(1− αt)
2(1− αt)

+

(1− αt)
(∥∥ ∫

x0
pX0 |Xt(x0 |x)

(
x−
√
αtx0

)
dx0

∥∥2

2
−
∫
x0
pX0 |Xt(x0 |x)

∥∥x−√αtx0

∥∥2

2
dx0

)
2(1− αt)2

. (139a)

Moreover, the matrix B defined in (138) satisfies

‖B‖F ≤
∥∥∥E[(Xt −

√
αtX0

)(
Xt −

√
αtX0

)> | Xt = x
]∥∥∥

F
≤
∫
x0

pX0 |Xt(x0 |x)
∥∥x−√αtx0

∥∥2

2
dx0

due to Jensen’s inequality. Taking this together with (138) and Lemma 1 reveals that

∥∥∥∂φ?t (x)

∂x
− I
∥∥∥ ≤ ∥∥∥∂φ?t (x)

∂x
− I
∥∥∥

F
.

1− αt
1− αt

(√
d+

∫
x0
pX0 |Xt(x0 |x)

∥∥x−√αtx0

∥∥2

2
dx0

1− αt

)
.
θt(x)d(1− αt) log T

1− αt
. (139b)
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Additionally, the Taylor expansion guarantees that for any A and ∆,

det
(
I +A+ ∆

)
= 1 + Tr(A) +O

(
(Tr(A))2 + ‖A‖2F + d3‖A‖3 + d‖∆‖

)
(140a)

det
(
I +A+ ∆

)−1
= 1− Tr(A) +O

(
(Tr(A))2 + ‖A‖2F + d3‖A‖3 + d‖∆‖

)
(140b)

hold as long as d‖A‖ + d‖∆‖ ≤ c11 for some small enough constant c11 > 0. The above properties taken
collectively with (51) and (48) allow us to demonstrate that

pφt(Y )(φt(x))

pY (x)
= det

(∂φt(x)

∂x

)−1

=

(
det

(
∂φ?t (x)

∂x
+

1− αt
2

[
Jst(x)− Js?t (x)

]))−1

=

(
det

(
I +

∂φ?t (x)

∂x
− I +

1− αt
2

[
Jst(x)− Js?t (x)

]))−1

= 1− Tr
(∂φ?t (x)

∂x
− I
)

+O

(
θt(x)2d2

( 1− αt
αt − αt

)2

log2 T + θ3d6 log3 T
( 1− αt
αt − αt

)3

+ (1− αt)dεJacobi,t(x)

)

= 1 +
d(1− αt)
2(αt − αt)

+
(1− αt)

(∥∥ ∫
x0
pX0 |Xt(x0 |x)

(
x−
√
αtx0

)
dx0

∥∥2

2
−
∫
x0
pX0 |Xt(x0 |x)

∥∥x−√αtx0

∥∥2

2
dx0

)
2(αt − αt)(1− αt)

+O

(
θt(x)2d2

( 1− αt
αt − αt

)2

log2 T + θ3d6 log3 T
( 1− αt
αt − αt

)3

+ (1− αt)dεJacobi,t(x)

)
, (141)

with the proviso that

d2(1− αt) log T

αt − αt
≤ 8c1d

2 log2 T

T
≤ c12 and (1− αt)dεJacobi,t(x) ≤ c1dεJacobi,t(x) log T

T
≤ c12

for some sufficiently small constant c12 > 0 (see (39)).

B.2 Proof of Lemma 5
In view of the definition (67), one has

Sk(yT ) ≤ c14, for any k < τ(yT ). (142)

Suppose instead that (69) does not hold true, namely, − log qk(yk) > 2c6d log T for some k < τ(yT ), and we
would like to show that this leads to contradiction.

Towards this, let 1 < t ≤ k be the smallest time step obeying

θt(yt) = max

{
− log qt(yt)

d log T
, c6

}
> 2c6 = 2θ1(y1), (143)

where the last identity holds since − log q1(y1) ≤ c6d log T and hence θ1(y1) = max
{
− log q1(y1)

d log T , c6
}

= c6.
We claim that t necessarily obeys

2c6 < θt(yt) ≤ 4c6. (144)

Assuming the validity of Claim (144) for the moment, it necessarily satisfies

θ1(y1), θ2(y2), · · · , θt(yt) ∈ [c6, 4c6].

According to the relations (59) and (142), we derive

c6 = θ1(y1) ≤ θt(yt)− θ1(y1) = − log qt(yt)

d log T
− θ1(y1) ≤ − log qt(yt) + log q1(y1)

d log T

=
1

d log T

t−1∑
j=1

(
log qj(yj)− log qj+1(yj+1)

)
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≤ 2c1 + C10

{
d log3 T

T
+
Sτ(yT )−1(yT )

d log T

}
< 3c1

under our sample size condition. This, however, cannot possibly hold if c6 ≥ 3c1 as assumed for Lemma 5.
To finish up, it suffices to justify Claim (144). In order to see this, suppose instead that θt(yt) > 4c6.

Given relation (142) that Sk(yT ) ≤ c14, it can be readily seen from (57), (142) as well as the learning rate
properties (39) that

θt−1(yt−1) = θt(yt) + θt−1(yt−1)− θt(yt)

= θt(yt) + θt−1(yt−1) +
log pt(yt)

d log T
≥ θt(yt)−

log pt−1(yt−1)− log pt(yt)

d log T

≥ θt(yt)−
4c1

(
5εscore,t(yt)

√
θt(yt)d log T + 60θt(yt)d log T

)
dT

− log 2

d log T

≥ θt(yt)−
4c1

(
5εscore,t(yt)

√
d log T + 60d log T

)
dT

θt(yt)−
log 2

d log T

>
1

2
θt(yt) > 2c6,

which is contradictory with the assumption that t is the smallest step obeying θt(yt) > 2c6. Thus, we complete
the proof of relation (69) as required.

B.3 Proof of Lemma 6
Next, consider any yT , with {yT−1, · · · , y1} being the associated deterministic sequence (cf. (53))). As an
immediate consequence of Lemma 5 and the definition (56) of θt(·), one has

θt(yt) ≤ 2c6, ∀t < τ(yT ) (145)

We then intend to invoke Lemma 4 to control the term of interest. To do so, note that Lemma 1, (39) and
the definition (67) of τ(yT ) taken together reveal that: for all t < τ(yT ) one has

d(1− αt)
2(αt − αt)

.
d log T

T
= o(1),

θt(yt)
2d2
( 1− αt
αt − αt

)2

log2 T + εscore,t(yt)
√
θt(yt)d log T

( 1− αt
αt − αt

)
+ θt(yt)

3d6
( 1− αt
αt − αt

)3

log3 T + (1− αt)dεJacobi,t(yt)

.
d2 log4 T

T 2
+
d6 log6 T

T 3
+
εscore,t(yt)

√
d log3 T

T
+
dεJacobi,t(yt) log T

T
= o(1),

and ∣∣∣∣∣∣
(1− αt)

(∥∥ ∫ E
[
Xt −

√
αtX0 |Xt = yt

]∥∥2

2
−
∫
E
[∥∥Xt −

√
αtX0

∥∥2

2
|Xt = yt

])
(αt − αt)(1− αt)

∣∣∣∣∣∣
≤

∣∣∣∣∣ (1− αt)
∫
E
[∥∥Xt −

√
αtX0

∥∥2

2
|Xt = yt

]
(αt − αt)(1− αt)

∣∣∣∣∣ . (1− αt)d log T

αt − αt
.
d log2 T

T
= o(1).

With these bounds in mind, applying relations (58a) and (58b) in Lemma 4 leads to

p√αtYt−1

(
φt(yt)

)
pYt(yt)

(
p√αtXt−1

(
φt(yt)

)
pXt(yt)

)−1

=
pφt(Yt)

(
φt(yt)

)
pYt(yt)

(
p√αtXt−1

(
φt(yt)

)
pXt(yt)

)−1

= 1 +O

(
d2 log4 T

T 2
+
d6 log6 T

T 3
+
εscore,t(yt)

√
d log3 T

T
+
dεJacobi,t(yt) log T

T

)
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for all t < τ(yT ). Using the fact that yt−1 = 1√
αt
φt(yt) and invoking the relation (55), we arrive at

pt−1(yt−1)

qt−1(yt−1)
=

{
1 +O

(
d2 log4 T

T 2
+
d6 log6 T

T 3
+
εscore,t(yt)

√
d log3 T

T
+
dεJacobi,t(yt) log T

T

)}
pt(yt)

qt(yt)

for any t < τ(yT ). By abbreviating τ = τ(yT ) for notational simplicity, we reach

q1(y1)

p1(y1)
=

{
1 +O

(
d2 log4 T

T
+
d6 log6 T

T 2
+ Sτ−1(yτ−1)

)}
qτ−1(yτ−1)

pτ−1(yτ−1)

∈
[
pτ−1(yτ−1)

2qτ−1(yτ−1)
,

2pτ−1(yτ−1)

qτ−1(yτ−1)

]
, (146a)

and similarly,

qk(yk)

2pk(yk)
≤ q1(y1)

p1(y1)
≤ 2

qk(yk)

pk(yk)
, ∀k < τ. (146b)

B.4 Proof of Lemma 7
In the following, we shall tackle I2, I3 and I4 separately. Throughout this proof, we shall abbreviate τ = τ(YT )
(cf. (67)) whenever it is clear from the context.

The sub-collection in I2. By virtue of the definition (72a) of I2, we make the observation that

E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I2}

]
(i)

≤ E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I2}

Sτ (YT )

c14

]
(ii)
=

log T

c14T

τ∑
t=2

E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I2}

(
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

)]
(iii)

≤ 2 log T

c14T

τ∑
t=2

E
YT∼pT

[
qt(Yt)

pt(Yt)
1 {Y1 ∈ E , YT ∈ I2}

(
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

)]

=
2 log T

c14T

T∑
t=2

∑
i∈I2,τ≥t

E
YT∼pT

[
qt(Yt)

pt(Yt)
1 {Y1 ∈ E , YT ∈ I2}

(
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

)]

≤ 2 log T

c14T

T∑
t=2

E
YT∼pT

[
qt(Yt)

pt(Yt)

(
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

)]

=
2 log T

c14T

T∑
t=2

E
Yt∼pt

[
qt(Yt)

pt(Yt)

(
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

)]

=
2 log T

c14T

T∑
t=2

E
Yt∼qt

[
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

]
(iv)

.
(
dεJacobi +

√
d log Tεscore

)
log T. (147)

Here, (i) follows since Sτ
(
yT
)
≥ c14 in I2 (see (72a)); (ii) comes from the definition of St(·) (see (54)); (iii)

holds since (by repeating the same proof arguments as for (70) as long as 2c14 is small enough)

p1(y1)

q1(y1)
≤ 2pt(yt)

qt(yt)
, ∀t ≤ τ ;

and (iv) arises from (49).
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The sub-collection in I3. With regards to I3 (cf. (72b)), we can derive the following bound in a way
similar to (147):

E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I3}

]
(i)

≤ E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I3}

ξτ (YT )

c14

]
=

log T

c14T
E

YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I3}

(
dεJacobi,τ (Yτ ) +

√
d log Tεscore,τ (Yτ )

)]
(ii)

≤ 2 log T

c14T
E

YT∼pT

[
qτ−1(Yτ−1)

pτ−1(Yτ−1)
1 {Y1 ∈ E , YT ∈ I3}

(
dεJacobi,τ (Yτ ) +

√
d log Tεscore,τ (Yτ )

)]
=

2 log T

c14T

T∑
t=2

E
YT∼pT

[
qt−1(Yt−1)

pt−1(Yt−1)
1 {Y1 ∈ E , YT ∈ I3}

(
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

)
1{τ = t}

]
(148)

(iii)

≤ 16 log T

c14T
E

YT∼pT

[
qτ (Yτ )

pτ (Yτ )
1 {Y1 ∈ E , YT ∈ I3}

(
dεJacobi,τ (Yτ ) +

√
d log Tεscore,τ (Yτ )

)]
≤ 16 log T

c14T

T∑
t=2

E
YT∼pT

[
qt(Yt)

pt(Yt)

(
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

)]

=
16 log T

c14T

T∑
t=2

E
Yt∼pt

[
qt(Yt)

pt(Yt)

(
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

)]

=
16 log T

c14T

T∑
t=2

E
Yt∼qt

[
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

]
.
(
dεJacobi +

√
d log Tεscore

)
log T. (149)

Here, (i) comes from (72b), (ii) arises from (70b), whereas (iii) is a consequence of (72b).

The sub-collection in I4. We now turn attention to I4 (cf. (72c)), towards which we find it helpful to
define

J1,t :=
{
yT : ξt

(
yT
)
< c14

}
(150a)

J2,t :=

{
yT : ξt

(
yT
)
≥ c14,

qt−1(yt−1)

pt−1(yt−1)
≤ 8qt(yt)

pt(yt)

}
(150b)

J3,t :=

{
yT : ξt

(
yT
)
≥ c14,

qt−1(yt−1)

pt−1(yt−1)
>

8qt(yt)

pt(yt)

}
(150c)

for each 2 ≤ t ≤ T . Equipped with the above definitions, we first make the observation that

E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I4}

]
≤ 2 E

YT∼pT

[
qτ−1(Y1)

pτ−1(Y1)
1 {Y1 ∈ E , YT ∈ I4}

]
= 2

T∑
t=2

E
YT∼pT

[
qt−1(Yt−1)

pt−1(Yt−1)
1 {Y1 ∈ E , YT ∈ I4}1{τ = t}

]

≤ 2

T∑
t=2

E
YT∼pT

[
qt−1(Yt−1)

pt−1(Yt−1)
1 {Y1 ∈ E , YT ∈ J3,t}

]
, (151)

where the first inequality follows from (70b), and the last line comes from the definition of I4 (cf. (72c)) and
J3,t (cf. (150c)). For notational simplicity, let us define, for 2 ≤ t ≤ T ,

ht :=
qt(Yt)

pt(Yt)
.
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In view of the second inequality in (150c), one has ht−1 > 8ht as long as yT ∈ J3,t. Consequently,

T∑
t=2

ht−1 1 {YT ∈ J3,t}

<

T∑
t=2

ht−1 1 {YT ∈ J3,t}+
1

7

T∑
t=2

ht−1 1 {YT ∈ J3,t} −
8

7

T∑
t=2

ht 1 {YT ∈ J3,t}

=
8

7

T∑
t=2

((
ht−1 − ht−1 1 {YT ∈ J1,t} − ht−1 1 {YT ∈ J2,t}

)
−
(
ht − ht 1 {YT ∈ J1,t} − ht 1 {YT ∈ J2,t}

))

=
8

7

T∑
t=2

(
ht − ht−1

)
1 {YT ∈ J1,t ∪ J2,t}+

8

7

T∑
t=2

(
ht−1 − ht

)
.

Here, the second line holds true since, for all t, one has (i) J1,t ∪ J2,t ∪ J3,t = Rd, and (ii) J1,t, J2,t and J3,t

are disjoint. Substituting this into (151), we arrive at

E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ J3,t}

]
≤ 2

T∑
t=2

E
YT∼pT

[
ht−1 1 {YT ∈ J3,t}

]
≤ 8

7

T∑
t=2

(
E

YT∼pT

[
ht 1 {YT ∈ J1,t ∪ J2,t}

]
− E
YT∼pT

[
ht−1 1 {YT ∈ J1,t ∪ J2,t}

])
+

8

7

T∑
t=2

(
E

YT∼pT

[
ht−1

]
− E
YT∼pT

[
ht
])
. (152)

In order to further bound (152), we make note of a few basic facts. Firstly, the identity below holds:

E
YT∼pT

[
ht
]

= E
YT∼pT

[
qt(Yt)

pt(Yt)

]
= E
Yt∼pt

[
qt(Yt)

pt(Yt)

]
= 1, 2 ≤ t ≤ T.

Secondly, by defining the set

Et :=
{
y : qt(y) > exp

(
− c6d log T

)}
, 2 ≤ t ≤ T, (153)

we can show that
T∑
t=2

E
YT∼pT

[
ht 1 {Yt /∈ Et, YT ∈ J1,t}

]
≤

T∑
t=2

E
YT∼pT

[
qt(Yt)

pt(Yt)
1 {Yt /∈ Et}

]
=

T∑
t=2

E
Yt∼pt

[
qt(Yt)

pt(Yt)
1 {Yt /∈ Et}

]

=

T∑
t=2

PYt∼qt {Yt /∈ Et} =

T∑
t=2

PXt∼qt {Xt /∈ Et}

≤
T∑
t=2

PXt∼qt
{
Xt /∈ Et and ‖Xt‖2 ≤ T 2cR+2

}
+

T∑
t=2

PXt∼qt
{
‖Xt‖2 > T 2cR+2

}
≤

T∑
t=2

∫
xt:qt(xt)≤exp(−c6d log T ),‖xt‖2≤T 2cR+2

qt(xt)dxt + T exp
(
− c6d log T

)
≤ T

(
2T 2cR+2

)d
exp(−c6d log T ) + T exp

(
− c6d log T

)
≤ exp

(
− c6

2
d log T

)
,

where the penultimate line comes from (62), and the last inequality holds true as long as c6 is large enough.
Plugging the preceding two results into (152), we reach

E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I4}

]
≤ 8

7

T∑
t=2

E
YT∼pT

[
(ht − ht−1)1 {yt ∈ Et, YT ∈ J1,t}

]
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+
8

7

T∑
t=2

E
YT∼pT

[
ht 1 {YT ∈ J2,t}

]
+ exp

(
− c6

2
d log T

)
. (154)

As it turns out, the sum w.r.t. the set J1,t and the sum w.r.t. the set J2,t in (154) can be controlled
respectively using the same arguments as for I1 and I3 to derive

T∑
t=2

E
YT∼pT

[
(ht − ht−1)1 {yt ∈ Et, YT ∈ J1,t}

]
.
d2 log4 T

T
+
d6 log6 T

T 2
+

√
d log3 Tεscore + (d log T )εJacobi,

T∑
t=2

E
YT∼pT

[
ht 1 {YT ∈ J2,t}

]
.
√
d log3 Tεscore + (d log T )εJacobi;

we omit the arguments here for the sake of brevity. Therefore, we have proven that

E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I4}

]
.
d2 log4 T

T
+
d6 log6 T

T 2
+

√
d log3 Tεscore + (d log T )εJacobi. (155)

Putting all this together. Taking (147), (149) and (155) together, we establish the advertised result.

C Proofs of auxiliary lemmas for the DDPM-type sampler

C.1 Proof of Lemma 8
For notational simplicity, we find it helpful to define, for any constant γ ∈ [0, 1],

xt(γ) := γxt−1 + (1− γ)x̂t and x̂t :=
1
√
αt
xt. (156)

Step 1: decomposing the target distribution pXt−1 |Xt(xt−1 |xt). With this piece of notation in mind,
we can recall the forward process (4) and calculate: for any xt−1, xt ∈ Rd,

pXt−1 |Xt(xt−1 |xt)

=
1

pXt(xt)
pXt−1,Xt(xt−1, xt) =

1

pXt(xt)
exp

(
log pXt−1

(xt−1) + log pXt |Xt−1
(xt |xt−1)

)
=

1

pXt(xt)
exp

(
log pXt−1

(x̂t) +

∫ 1

0

[
∇ log pXt−1

(
xt(γ)

)]>
(xt−1 − x̂t)dγ + log pXt |Xt−1

(xt |xt−1)

)
=
pXt−1(x̂t)

pXt(xt)
exp

(
(xt−1 − x̂t)>

∫ 1

0

dγ

∫
x0

∇pXt−1 |X0

(
xt(γ) |x0

)
pX0

(x0)

pXt−1

(
xt(γ)

) dx0 + log pXt |Xt−1
(xt |xt−1)

)
,

(157)

where the penultimate line comes from the fundamental theorem of calculus. In particular, the exponent in
(157) consists of a term that satisfies

(xt−1 − x̂t)>
∫ 1

0

dγ

∫
x0

∇pXt−1 |X0

(
xt(γ) |x0

)
pX0

(x0)

pXt−1

(
xt(γ)

) dx0

= (xt−1 − x̂t)>
∫ 1

0

dγ

∫
x0

∇pXt−1 |X0

(
xt(γ) |x0

)
pXt−1 |X0

(
xt(γ) |x0

) pX0 |Xt−1

(
x0 |xt(γ)

)
dx0

= −(xt−1 − x̂t)>
∫ 1

0

dγ

∫
x0

xt(γ)−
√
αt−1x0

1− αt−1
pX0 |Xt−1

(
x0 |xt(γ)

)
dx0

=: − 1

1− αt−1
(xt−1 − x̂t)>

∫ 1

0

gt−1

(
xt(γ)

)
dγ, (158)
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where the second line holds since pX0 |Xt−1

(
x0 |xt(γ)

)
pXt−1

(
xt(γ)

)
= pXt−1 |X0

(
xt(γ) |x0

)
pX0

(
x0

)
, and we

remind the reader of the definition of gt(·) in (36).
To continue, it is then seen from the fundamental theorem of calculus that

gt−1

(
xt(γ)

)
= gt−1

(
x̂t
)

+

∫ 1

0

Jt−1

(
(1− τ)x̂t + τxt(γ)

)(
xt(γ)− x̂t

)
dτ,

where Jt−1(x) := ∂gt−1(x)
∂x ∈ Rd×d is the associated Jacobian matrix. As a consequence, we can show that

(xt−1 − x̂t)>
∫ 1

0

dγ

∫
x0

∇pXt−1 |X0

(
xt(γ) |x0

)
pX0

(x0)

pXt−1

(
xt(γ)

) dx0

= − 1

1− αt−1

{
(xt−1 − x̂t)>gt−1

(
x̂t
)

+ (xt−1 − x̂t)>
∫ 1

0

∫ 1

0

Jt−1

(
(1− τ)x̂t + τxt(γ)

)(
xt(γ)− x̂t

)
dτdγ

}
= − 1

1− αt−1

{
(xt−1 − x̂t)>gt−1

(
x̂t
)

+ (xt−1 − x̂t)>
[∫ 1

0

∫ 1

0

γJt−1

(
(1− τ)x̂t + τxt(γ)

)
dτdγ

] (
xt−1 − x̂t

)}
.

(159)

Combining (157) and (159) allows us to rewrite the target quantity pXt−1 |Xt(xt−1 |xt) as:

pXt−1 |Xt(xt−1 |xt)

=
pXt−1

(x̂t)

pXt(xt)
exp

(
(xt−1 − x̂t)>

∫ 1

0

dγ

∫
x0

∇pXt−1 |X0
(x̃t |x0)pX0(x0)

pXt−1
(x̃t)

dx0 + log pXt |Xt−1
(xt |xt−1)

)

=
pXt−1(x̂t)

pXt(xt)
exp

(
−

(xt−1 − x̂t)>gt−1

(
x̂t
)

+ (xt−1 − x̂t)>
[∫ 1

0

∫ 1

0
γJt−1

(
(1− τ)x̂t + τxt(γ)

)
dτdγ

] (
xt−1 − x̂t

)
1− αt−1

− αt‖xt−1 − x̂t‖22
2(1− αt)

− d

2
log
(
2π(1− α)

))
, (160)

where we have also used the fact that conditional on Xt |Xt−1 = xt−1 ∼ N
(√
αtxt−1, (1− αt)Id

)
. Note that

the pre-factor
pXt−1

(x̂t)

pXt (xt)
in the above display is independent from the specific value of xt−1.

Step 2: controlling the exponent in (160). Consider now any (xt, xt−1) ∈ E (cf. (80)). In order to
further simplify the exponent in the display (160), we make the following claims:

(a) for any x that can be written as x = wxt−1 + (1− w)xt/
√
αt for some w ∈ [0, 1], the Jacobian matrix

Jt−1(x) = ∂gt−1(x)
∂x obeys ∥∥Jt−1(x)− I

∥∥ . d log T ; (161a)

(b) in addition, one has

1

1− αt

∥∥∥(xt−1 − x̂t
)
gt(xt)−

√
αt
(
xt−1 − x̂t

)
gt(xt)

∥∥∥
2
.
d log2 T

T 3/2
. (161b)∥∥∥∥ gt−1(x̂t)

1− αt−1
− gt(xt)

1− αt

∥∥∥∥
2

. (1− αt)
( d log T

αt − αt

)3/2

, (161c)

Assuming the validity of these claims (which will be established in Appendix C.1.1) and recalling the definition
of µt(·) in (74b), we can use (160) together with a little algebra to obtain

pXt−1 |Xt(xt−1 |xt) = f0(xt) exp

(
− αt‖xt−1 − µ?t (xt)‖22

2(1− αt)
+ ζt(xt−1, xt)

)
(162)
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for some function f0(·) and some residual term ζt(xt−1, xt) obeying

|ζt(xt−1, xt)| .
∥∥xt−1 − x̂t

∥∥2

2
sup

x: ∃w∈[0,1] s.t. x=(1−w)x̂t+wxt−1

∥∥Jt−1(x)
∥∥

+
∥∥xt−1 − x̂t

∥∥
2

∥∥∥∥∥
∫
x0
pX0 |Xt−1

(x0 | x̂t)(x̂t −
√
αt−1x0)dx0

1− αt−1
−
∫
x0
pX0 |Xt(x0 |xt)(xt −

√
αtx0)dx0

1− αt

∥∥∥∥∥
2

.

(
d(1− αt) log T

)
d log T

1− αt−1
+
√
d(1− αt) log T (1− αt)

(
d log T

αt − αt

)3/2

.
(1− αt)d2 log2 T

1− αt−1
+ d2

(
1− αt
αt − αt

)3/2

log2 T � (1− αt)d2 log2 T

αt − αt
,

where the penultimate line makes use of the assumption (xt, xt−1) ∈ E (cf. (80)), and the last inequality holds
since αt ≥ 1/2 (cf. (22)).

Step 3: approximating the function f0(xt). To finish up, it remains to quantify the function f0(·) in
(162). Note that for any xt obeying pXt(xt) ≥ exp

(
− 1

2c6d log T
)
, it is easily seen that∫

xt−1:(xt,xt−1)/∈E
pXt−1 |Xt(xt−1 |xt)dxt−1 =

∫
xt−1:(xt,xt−1)/∈E pXt |Xt−1

(xt |xt−1)pXt−1
(xt−1)dxt−1

pXt(xt)

≤
1

(2π(1−αt))d/2
∫
xt−1:(xt,xt−1)/∈E exp

(
− ‖xt−

√
αtxt−1‖22

2(1−αt)
)
dxt−1

exp
(
− 1

2c6d log T
)

≤
exp

(
− c3d log T

)
exp

(
− 1

2c6d log T
) ≤ exp

(
− 1

4
c6d log T

)
,

provided that c3 ≥ 3c6/4. This means that

1 ≥
∫
xt−1:(xt,xt−1)∈E

pXt−1 |Xt(xt−1 |xt)dxt−1 ≥ 1− exp

(
−1

4
c6d log T

)
. (163)

Moreover, for any (xt, xt−1) ∈ E , one has

√
αt
∥∥xt−1 − µ?t (xt)

∥∥
2

=
√
αt

∥∥∥∥xt−1 − x̂t −
1− αt√
αt(1− αt)

E
[
xt −

√
αtX0 | Xt = xt

]∥∥∥∥
2

≥
√
αt
∥∥xt−1 − x̂t

∥∥
2
− 1− αt

(1− αt)
E
[∥∥xt −√αtX0

∥∥
2
| Xt = xt

]
≥ c3
√
αt ·

√
d(1− αt) log T − 1− αt

1− αt
6c5
√
d(1− αt) log T

≥ 1

2
c3
√
d(1− αt) log T ,

where the first identity comes from the definition (74b) of µ?t (xt), the penultimate line makes use of the result
(43a) in Lemma 1, and the last inequality is valid as long as c3 is sufficiently large. This in turn allows one to
derive

1(
2π 1−αt

αt

)d/2 ∫
xt−1:(xt,xt−1)∈E

exp

(
− αt‖xt−1 − µ?t (xt)‖22

2(1− αt)

)
dxt−1 ≥ 1− exp

(
− c3d log T

)
. (164)

In addition, by virtue of (162), the integral in (163) can be respectively bounded from above and from
below as follows:∫

xt−1:(xt,xt−1)∈E
pXt−1 |Xt(xt−1 |xt)dxt−1
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=
f0(xt)

∫
xt−1:(xt,xt−1)∈E exp

(
− αt

2(1−αt)
∥∥xt−1 − µ?t (xt)

∥∥2

2
+ ζt(xt−1, xt)

)
dxt−1(

2π 1−αt
αt

)−d/2 ∫
xt−1

exp
(
− αt

2(1−αt)
∥∥xt−1 − µ?t (xt)

∥∥2

2

)
dxt−1

≤
f0(xt)

∫
xt−1:(xt,xt−1)∈E exp

(
− αt

2(1−αt)
∥∥xt−1 − µ?t (xt)

∥∥2

2
+ ζt(xt−1, xt)

)
dxt−1(

2π 1−αt
αt

)−d/2 ∫
xt−1:(xt,xt−1)∈E exp

(
− αt

2(1−αt)
∥∥xt−1 − µ?t (xt)

∥∥2

2

)
dxt−1

.
f0(xt)(

2π 1−αt
αt

)−d/2 exp

{
O

(
d2
( 1− αt
αt − αt

)
log2 T

)}
and∫

xt−1:(xt,xt−1)∈E
pXt−1 |Xt(xt−1 |xt)dxt−1

≥
(
1− exp (−c3d log T )

)f0(xt)
∫
xt−1:(xt,xt−1)∈E exp

(
− αt

2(1−αt)
∥∥xt−1 − µ?t (xt)

∥∥2

2
+ ζt(xt−1, xt)

)
dxt−1(

2π 1−αt
αt

)−d/2 ∫
xt−1:(xt,xt−1)∈E exp

(
− αt

2(1−αt)
∥∥xt−1 − µ?t (xt)

∥∥2

2

)
dxt−1

≥
(
1− exp (−c3d log T )

) f0(xt)(
2π 1−αt

αt

)−d/2 exp

{
−O

(
d2
( 1− αt
αt − αt

)
log2 T

)}
.

These taken collectively with (163) allow one to demonstrate that

max

{
f0(xt)(

2π 1−αt
αt

)−d/2 ,
(
2π 1−αt

αt

)−d/2
f0(xt)

}
= exp

{
O

(
d2
( 1− αt
αt − αt

)
log2 T

)}
= 1 +O

(
d2
( 1− αt
αt − αt

)
log2 T

)
,

with the proviso that d2
(

1−αt
αt−αt

)
log2 T . 1.

Combining this with (162) concludes the proof of Lemma 8, as long as the two claims in (161) are valid
(to be justified in Appendix C.1.1).

C.1.1 Proof of auxiliary claims (161) in Lemma 8

Proof of relation (161a). Recall from (38) that

Jt−1(x)− I =
1

1− αt−1
E
[
x−

√
αt−1X0 | Xt−1 = x

] (
E
[
x−

√
αt−1X0 | Xt−1 = x

] )>
− 1

1− αt−1
E
[(
x−

√
αt−1X0

)(
x−

√
αt−1X0

)> | Xt−1 = x
]
.

Recognizing that∥∥E[ZZ>]− E[Z]E[Z]>
∥∥ =

∥∥∥E[(Z − E[Z]
)(
Z − E[Z]

)>]∥∥∥ ≤ ∥∥E[ZZ>]∥∥ ≤ E
[ ∥∥ZZ>∥∥ ] = E

[
‖Z‖22

]
for any random vector Z, we can readily obtain∥∥Jt−1(x)− I

∥∥ ≤ 1

1− αt−1
E
[∥∥x−√αt−1X0

∥∥2

2
| Xt−1 = x

]
. (165)

When (xt, xt−1) ∈ E , it follows from Lemma 2 that

− log pXt−1(x) ≤ c6d log T (166)

for any x lying in the line segment connecting xt−1 and x̂t. With this result in place, taking (165) together
with the bound (43b) in Lemma 1 immediately leads to∥∥Jt−1(x)− I

∥∥ .
1

1− αt−1
·
{
d
(
1− αt−1

)
log T

}
� d log T

for any x lying within the line segment between xt−1 and xt/
√
αt, as claimed.
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Proof of relation (161b). To prove this result, we observe that∣∣∣∣(1−√αt) (xt−1 − x̂t)>gt(xt)
1− αt

∣∣∣∣ ≤ 1− αt
1 +
√
αt

‖xt−1 − x̂t‖2E
[
‖xt −

√
αtX0‖2 | Xt = xt

]
1− αt

.
log T

T
·
√
d(1− αt) log T ·

√
d(1− αt) log T .

d log2 T

T 3/2
,

where the last line comes from Lemma 1 as well as the basic property (39a) about the learning rates.

Proof of relation (161c). To begin with, the triangle inequality together with the fact αt =
∏t
k=1 αk gives∥∥∥∥

∫
x0
pX0 |Xt−1

(x0 | x̂t)(x̂t −
√
αt−1x0)dx0

1− αt−1
−
∫
x0
pX0 |Xt(x0 |xt)(xt −

√
αtx0)dx0

1− αt

∥∥∥∥
2

≤
∥∥∥∥
∫
x0
pX0 |Xt−1

(x0 | x̂t)(xt −
√
αtx0)dx0 −

∫
x0
pX0 |Xt(x0 |xt)(xt −

√
αtx0)dx0

√
αt(1− αt−1)

∥∥∥∥
2

+

∥∥∥∥( 1
√
αt(1− αt−1)

− 1

1− αt

)∫
x0

pX0 |Xt(x0 |xt)(xt −
√
αtx0)dx0

∥∥∥∥
2

. (167)

Let us first consider the last term in (167). According to Lemma 1, given that − log pXt(xt) ≤ 1
2c6d log T

for some constant c6 > 0, one has∫
x0

pX0 |Xt(x0 |xt)
∥∥xt −√αtx0

∥∥
2
dx0 .

√
d(1− αt) log T . (168)

This in turn reveals that∥∥∥∥( 1
√
αt(1− αt−1)

− 1

1− αt

)∫
x0

pX0 |Xt(x0 |xt)(xt −
√
αtx0)dx0

∥∥∥∥
2

.

∣∣∣∣ 1
√
αt(1− αt−1)

− 1

1− αt

∣∣∣∣ ·√d(1− αt) log T

�
(1−√αt)(1 + αt−1

√
αt)√

αt(1− αt−1)(1− αt)
√
d(1− αt) log T

� 1− αt
(αt − αt)3/2

√
d log T , (169)

where the last inequality makes use of the properties (39).
Next, we turn attention to the first term in (167), which relies on the following claim.

Claim 2. Consider any point xt obeying − log pXt(xt) ≤ c6d log T for some large constant c6 > 0. One has

pXt−1
(x̂t) =

(
1 +O

(d(1− αt) log T

1− αt−1

))
pXt(xt), (170a)

In addition, by defining the following set

E1 :=
{
x : ‖xt −

√
αtx‖2 ≤ c4

√
d(1− αt) log T

}
for some large enough constant c4 > 0, we have

pXt−1 |X0
(x̂t |x0)

pXt |X0
(xt |x0)

= 1 +O

(
d(1− αt) log T

1− αt−1

)
, if x0 ∈ E1, (170b)

pXt−1 |X0
(x̂t |x0)

pXt |X0
(xt |x0)

≤ exp

(
16c1

∥∥xt −√αtx0

∥∥2

2
log T

(1− αt)T

)
, if x0 /∈ E1. (170c)
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As an immediate consequence of this claim, one has

pX0 |Xt−1
(x0 | x̂t)

pX0 |Xt(x0 |xt)
=
pXt−1 |X0

(x̂t |x0)

pXt |X0
(xt |x0)

· pXt(xt)
pXt−1(x̂t)

=

(
1 +O

(
d(1− αt) log T

1− αt−1

))
pXt−1 |X0

(x̂t |x0)

pXt |X0
(xt |x0)= 1 +O

(
d(1−αt) log T

1−αt−1

)
, if x0 ∈ E1,

≤ exp
(

16c1‖xt−
√
αtx0‖22 log T

(1−αt)T

)
, if x0 /∈ E1.

(171)

In turn, this allows one to deduce that∥∥∥∥∫
x0

pX0 |Xt−1
(x0 | x̂t)(xt −

√
αtx0)dx0 −

∫
x0

pX0 |Xt(x0 |xt)(xt −
√
αtx0)dx0

∥∥∥∥
2

≤
∫
x0∈E1

∣∣pX0 |Xt−1
(x0 | x̂t)− pX0 |Xt(x0 |xt)

∣∣ · ∥∥xt −√αtx0

∥∥
2
dx0

+

∫
x0 /∈E1

∣∣pX0 |Xt−1
(x0 | x̂t)− pX0 |Xt(x0 |xt)

∣∣ · ∥∥xt −√αtx0

∥∥
2
dx0

≤
∫
x0

O

(
d(1− αt) log T

1− αt−1

)
pX0 |Xt(x0 |xt)

∥∥xt −√αtx0

∥∥
2
dx0

+

∫
x0 /∈E1

exp

(
16c1

∥∥xt −√αtx0

∥∥2

2
log T

(1− αt)T

)
pX0 |Xt(x0 |xt)

∥∥xt −√αtx0

∥∥
2
dx0

≤ O
(
d(1− αt) log T

1− αt−1

)
E
[∥∥xt −√αtX0

∥∥
2
| Xt = x0

]
+

∫
x0 /∈E1

exp

(
20c1

∥∥xt −√αtx0

∥∥2

2
log T

(1− αt)T

)
pX0 |Xt(x0 |xt)dx0.

Invoking (43a) in Lemma 1 as well as similar arugments for (118) (assuming that c4 is sufficiently large), we
arrive at

1
√
αt(1− αt−1)

∥∥∥∥∫
x0

pX0 |Xt−1
(x0 | x̂t)(xt −

√
αtx0)dx0 −

∫
x0

pX0 |Xt(x0 |xt)(xt −
√
αtx0)dx0

∥∥∥∥
2

.
d3/2(1− αt)

√
1− αt log3/2 T

√
αt(1− αt−1)2

+
1

√
αt(1− αt−1)

· 1

T c0

� d3/2(1− αt) log3/2 T

(1− αt−1)3/2
, (172)

where c0 is some large enough constant, and we have also made use of the properties in (39).
Substituting (169) and (172) into (167) readily concludes the proof.

Proof of Claim 2. Let us make the following observations: for any x0 ∈ E1, one has

pXt−1 |X0
(x̂t |x0)

pXt |X0
(xt |x0)

=

(
1− αt

1− αt−1

)d/2
exp

(∥∥xt −√αtx0

∥∥2

2

2(1− αt)
−
∥∥x̂t −√αt−1x0

∥∥2

2

2(1− αt−1)

)

= exp

{(
1 + o(1)

)αt−1(1− αt)
1− αt−1

· d
2

}
exp

(
−

(1− αt)
∥∥xt −√αtx0

∥∥2

2

2(1− αt)(αt − αt)

)

= exp

{
O

(
d(1− αt)
1− αt−1

+
(1− αt)

∥∥xt −√αtx0

∥∥2

2

(1− αt−1)(1− αt)

)}

= exp

{
O

(
d(1− αt)
1− αt−1

+
d(1− αt) log T

1− αt−1

)}

47



= 1 +O

(
d(1− αt) log T

1− αt−1

)
, (173)

where the second line holds since

log
1− αt

1− αt−1
= log

(
1 +

αt−1(1− αt)
1− αt−1

)
=
(
1 + o(1)

)αt−1(1− αt)
1− αt−1

,

and we have also made use of (39) (so that d(1−αt) log T
1−αt−1

= o(1) under our assumption on T ). Additionally, for
any x0 /∈ E1, it follows from the argument for (110) that

pXt−1 |X0
(x̂t |x0)

pXt |X0
(xt |x0)

≤ exp

(
d(1− αt)

2(1− αt−1)
+

(1− αt)
∥∥xt −√αtx0

∥∥2

2

(1− αt−1)2

)

≤ exp

(
(1− αt)

∥∥xt −√αtx0

∥∥2

2

2c24(1− αt−1)2 log T
+

(1− αt)
∥∥xt −√αtx0

∥∥2

2

(1− αt−1)2

)

≤ exp

(
8c1
∥∥xt −√αtx0

∥∥2

2
log T

(1− αt−1)T

)
≤ exp

(
16c1

∥∥xt −√αtx0

∥∥2

2
log T

(1− αt)T

)
,

where the last line comes from (39b) and (39c). Taking the above bounds together and invoking the same
calculation as in (116), (118) and (121), we reach

pXt−1(x̂t) =

(
1 +O

(d(1− αt) log T

1− αt−1

))
pXt(xt),

thus concluding the proof of Claim 2.

C.2 Proof of Lemma 9
First, recognizing that Xt follows a Gaussian distribution when conditioned on Xt−1 = xt−1, we can derive

log pXt−1 |Xt(xt−1 |xt) = log
pXt |Xt−1

(xt |xt−1)pXt−1
(xt−1)

pXt(xt)

= log
pXt−1(xt−1)

pXt(xt)
+
‖xt −

√
αtxt−1‖22

2(1− αt)
− d

2
log
(
2π(1− αt)

)
≤ log

pXt−1
(xt−1)

pXt(xt)
+ T

(
‖xt−1 − x̂t‖22 + 1

)
,

where the last inequality makes use of the properties (39) about αt (recall that x̂t has been defined in (77)).
Some direct calculations then yield

log
pXt−1

(xt−1)

pXt(xt)
= log

∫
x0
pX0

(x0) exp
(
− ‖xt−1−

√
αt−1x0‖22

2(1−αt−1)

)
dx0∫

x0
pX0(x0) exp

(
− ‖xt−

√
αtx0‖22

2(1−αt)

)
dx0

− d

2
log
(1− αt−1

1− αt

)

≤ sup
x0:‖x0‖2≤T cR

{
‖xt −

√
αtx0‖22

2(1− αt)
− ‖xt−1 −

√
αt−1x0‖22

2(1− αt−1)

}
+
d

2
log 2

≤ sup
x0:‖x0‖2≤T cR

‖xt −
√
αtx0‖22

2(1− αt)
+
d

2
log 2

≤ sup
x0:‖x0‖2≤T cR

‖xt‖22 + ‖x0‖22
1− αt

+
d

2
log 2

≤ 2T
(
‖xt‖22 + T 2cR

)
,
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where the second line makes use of the properties in (39). Combining the above two relations, we arrive at

log pXt−1 |Xt(xt−1 |xt) ≤ 2T
(
‖xt‖22 + ‖xt−1 − x̂t‖22 + T 2cR

)
. (174)

We then turn attention to the conditional distribution pY ?t−1 |Yt . First, it follows from (76b) that

log
1

pY ?t−1 |Yt(xt−1 |xt)
=
αt‖xt−1 − µ?t (xt)‖22

2(1− αt)
+
d

2
log

(
2π

1− αt
αt

)
(175)

≤ T
(
‖xt−1 − x̂t‖22 + ‖xt‖22 + T 2cR

)
+ d log T, (176)

with µt(xt) defined in (74b). To see why the last inequality follows, we recall from (74b) that

‖xt−1 − µ?t (xt)‖22 ≤ 2‖xt−1 − x̂t‖22 + 2‖x̂t − µ?t (xt)‖22

= 2‖xt−1 − x̂t‖22 + 2

(
1− αt√
αt(1− αt)

)2∥∥∥ ∫
x0

pX0 |Xt(x0 |xt)
(
xt −

√
αtx0

)
dx0

∥∥∥2

2

≤ 2‖xt−1 − x̂t‖22 +
2(1− αt)2

αt(1− αt−1)2
sup

x0:‖x0‖2≤T cR
‖xt −

√
αtx0‖22

≤ 2‖xt−1 − x̂t‖22 +
64c21 log2 T

T 2

(
2‖xt‖22 + 2αtT

2cR

)
≤ 2‖xt−1 − x̂t‖22 + ‖xt‖22 + T 2cR , (177)

where we have invoked the properties (39).
Putting everything together, we arrive at the advertised crude bound:

log
pXt−1 |Xt(xt−1 |xt)
pY ?t−1 |Yt(xt−1 |xt)

≤ 2T
(
‖xt−1 − x̂t‖22 + ‖xt‖22 + T 2cR

)
.

C.3 Proof of Lemma 10
To begin with, we make the observation that

Ext∼qt
[
KL
(
pXt−1 |Xt(· |xt) ‖ pYt−1 |Yt(· |xt)

)]
− Ext∼qt

[
KL
(
pXt−1 |Xt(· |xt) ‖ pY ?t−1 |Yt(· |xt)

)]
=

∫
pXt(xt)pXt−1 |Xt(xt−1 |xt) log

pY ?t−1 |Yt(xt−1 |xt)
pYt−1 |Yt(xt−1 |xt)

dxt−1dxt

=

∫
pXt(xt)pXt−1 |Xt(xt−1 |xt)

αt
2(1− αt)

(∥∥xt−1 − µt(xt)
∥∥2

2
−
∥∥xt−1 − µ?t (xt)

∥∥2

2

)
dxt−1dxt

=

∫
pXt(xt)pXt−1 |Xt(xt−1 |xt)

(
1− αt

2
εscore,t(xt)

2 −
√
αt
(
xt−1 − µ?t (xt)

)>(
st(x)− s?t (xt)

))
dxt−1dxt︸ ︷︷ ︸

=:Ht

,

(178)

where we have used (76a) and (76b) as well as the definition (48) of εscore,t(x). Everything comes down to
proving that

Ht . exp
(
− min{c3, c6}

8
d log T

)
+
d log3 T

T
EXt∼qt

[
εscore,t(Xt)

2
]
. (179)

Towards this end, one first notes that the first component of Ht obeys∫
pXt(xt)pXt−1 |Xt(xt−1 |xt)

1− αt
2

εscore,t(xt)
2dxt−1dxt =

1− αt
2

EXt∼qt
[
εscore,t(Xt)

2
]

.
log T

T
EXt∼qt

[
εscore,t(Xt)

2
]
, (180)
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where the last inequality comes from (39). We then switch attention to the second component of Ht. In view
of the distribution of Y ?t−1 |Yt in (76b), we obtain∫

pXt(xt)pXt−1 |Xt(xt−1 |xt)
(
xt−1 − µ?t (xt)

)>(
st(xt)− s?t (xt)

)
dxt−1dxt

=

∫
pXt(xt)

(
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)>(
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)
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+

∫
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pXt(xt)

{∫
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(
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)(
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}(
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)
dxt

(i)
=

∫
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)(
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)>(
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)
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≤
∫
E
pXt(xt)pXt−1 |Xt(xt−1 |xt)

(
1−
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dxt−1dxt︸ ︷︷ ︸
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+

∫
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pXt(xt)

{
pXt−1 |Xt(xt−1 |xt) + pY ?t−1 |Yt(xt−1 |xt)
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∥∥

2

∥∥st(xt)− s?t (xt)∥∥2
dxt−1dxt︸ ︷︷ ︸

=:K2

,

(181)

where (i) holds since E
[
Y ?t−1 − µ?t (Yt) | Yt

]
= 0. This leaves us with two terms to cope with.

• Regarding the term K1, we can bound

K1

(i)

.
d2 log3 T

T

∫
E
pXt(xt)pXt−1 |Xt(xt−1 |xt)
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2
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T

∫
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∥∥2

2
dxt−1dxt +

d log3 T
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[
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]
=
d3 log3 T

T
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d log3 T

T
EXt∼qt

[
ε2
score,t(Xt)

]
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d3 log3 T
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(d2 log3 T
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))d(1− αt)
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+
d log3 T
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]
+ exp
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4
d log T

)
(iv)

.
d4 log4 T

T 2
+
d log3 T

T
EXt∼qt

[
εscore,t(Xt)

2
]
. (182)

Here, (i) comes from (84), (ii) is due to the elementary inequality 2ab ≤ a2 + b2, (iii) invokes the
relation (84) as well as the Gaussian distribution of Y ?t−1 | Yt in (76b), whereas (iv) applies (39).

• With regards to the term K2, it follows from the Cauchy-Schwarz inequality that

K2 .
√
K3K4,

where

K3 :=

∫
Ec
pXt(xt)

{
pXt−1 |Xt(xt−1 |xt) + pY ?t−1 |Yt(xt−1 |xt)

}∥∥xt−1 − µ?t (xt)
∥∥2

2
dxt−1dxt; (183a)

K4 :=

∫
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{
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≤ 2
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[
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2
]
. (183b)
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Consequently, it suffices to look at the term K3. According to (88), we have

∥∥xt−1 − µ?t (xt)
∥∥2

2
.

∥∥∥∥xt−1 −
1
√
αt
xt

∥∥∥∥2

2

+

(
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αt(1− αt)

)2 (
E
[∥∥xt −√αtX0

∥∥
2
| Xt = xt

])2

.

∥∥∥∥xt−1 −
1
√
αt
xt

∥∥∥∥2

2

+
log2 T

T 2

(
‖xt‖22 + T 2cR

)
,

where the last inequality makes use of (39) and the assumption (21). Combining this with (87) gives∫
Ec
pXt(xt)pXt−1 |Xt(xt−1 |xt)
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Ec
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+
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∫
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(
‖xt‖22 + T 2cR

)
dxt−1dxt

. exp (−c3d log T ) .

Additionally, let us decompose∫
Ec
pXt(xt)pY ?t−1 |Yt(xt−1 |xt)

∥∥xt−1 − µ?t (xt)
∥∥2

2
dxt−1dxt

≤
∫
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−0.5c6d log T
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Substitution into (183a) yields

K2 .
√
K3K4 .

√{
exp (−c3d log T ) +K5 +K6

}
EXt∼qt [εscore,t(Xt)2], (184)

thus motivating us to bound K5 and K6 separately.

– Regarding K6, we can use (89) to demonstrate that

K6 ≤
∫
pXt(xt)E

[∥∥Y ?t−1 − µ?t (Yt)
∥∥2

2
1
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∥∥
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2
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. exp
(
−c3

4
d log T

)
.

– Turning to K5, one can invoke (62) to derive

K5 ≤
∫
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4
c6d log T

)
,

provided that c6 > 0 is large enough.
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Combining the above results with (184), we arrive at

K2 .

√{
exp

(
−c3

4
d log T

)
+ exp

(
−c6

4
d log T

)}
EXt∼qt [εscore,t(Xt)2]

. exp
(
− min{c3, c6}

4
d log T

)
+ exp

(
− min{c3, c6}

4
d log T

)
EXt∼qt

[
εscore,t(Xt)

2
]
. (185)

Taking the above bounds (180), (182) and (185) together with (178) immediately finishes the proof.

D Analysis for the accelerated deterministic sampler (Theorem 2)
The aim of this section is to establish Theorem 2. The proof follows similar arguments as that of Theorem 1.

D.1 Proof of Theorem 2
Auxiliary vectors and their properties. Before embarking on the proof, let us introduce several pieces
of notation:

ϕt(x) := x− ut(x), (186a)

where

ut(x) :=

{
1− αt

2(1− αt)
+

(1− αt)2

8(1− αt)2
− (1− αt)2

8(1− αt)3
‖gt(x)‖22

}
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+
(1− αt)2

8(1− αt)3
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√
αtX0

)(
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√
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)> |Xt = x
]
gt(x)

− (1− αt)2

8(1− αt)3
E
[∥∥Xt −

√
αtX0

∥∥2

2

(
Xt −

√
αtX0 − gt(Xt)

)
|Xt = x

]
(186b)

= −
{

1− αt
2

+
(1− αt)2

8(1− αt)
− (1− αt)2

8
‖s?t (x)‖22

}
s?t (x)− (1− αt)2

8(1− αt)
E
[
W tW

>
t s

?
t (Xt) |Xt = x

]
− (1− αt)2

8(1− αt)
E
[∥∥W t

∥∥2

2

(
1√

1− αt
W t + (1− αt)s?t (Xt)

)
|Xt = x

]
. (186c)

Here, we recall that gt(x) = −(1−αt)s?t (x) has been defined in (36) and that Xt =
√
αtX0 +

√
1− αtW t with

W t ∼ N (0, Id) (see (6)). In view of Assumption 3 and the fact that the MMSE estimator is the conditional
expectation (Hajek, 2015, Section 3.3.1), we have

wt(x) = E
[∥∥W t

∥∥2

2

(
1√

1− αt
W t + (1− αt)s?t (Xt)

)
+

1

1− αt
W tW

>
t s

?
t (Xt) | Xt = x

]
,

which taken together with (186) and (27) confirms the following equivalent expression for the sampler (27):

Yt−1 =
1
√
αt
ϕt
(
Yt
)

=
1
√
αt
Yt −

1
√
αt
ut(Yt). (187)

We now single out a useful property about ut(·). For any point xt ∈ Rd obeying − log pXt(xt) ≤ c6d log T
for some large constant c6 > 0 (see Lemma 1), one has

∥∥ut(xt)∥∥2
. (1− αt)

(d log T

1− αt

)1/2

, (188a)

and one can also write

ut(xt) =
1− αt

2(1− αt)
gt(xt) + ξt(xt) (188b)
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for some residual term ξt(xt) obeying

∥∥ξt(xt)∥∥2
. (1− αt)2

(
d log T

1− αt

)3/2

. (188c)

To streamline presentation, we leave the proof of (188) to the end of this subsection.

Main steps of the proof. Akin to the proof of Theorem 1, the key idea lies in understanding the
transformation Φt (cf. (27)), or equivalently, ϕt (cf. (186)). There are several objects that play an important
role in the analysis, which we single out as follows:

At :=
1

1− αt

∫
pX0 |Xt(x0 |x)

∥∥x−√αtx0

∥∥2

2
dx0; (189a)

Bt :=
1

1− αt

∥∥∥∥ ∫ pX0 |Xt(x0 |x)
(
x−
√
αtx0

)
dx0

∥∥∥∥2

2

; (189b)

Ct :=
1

(1− αt)2

∫
pX0 |Xt(x0 |x)

∥∥x−√αtx0

∥∥4

2
dx0; (189c)

Dt :=
1

(1− αt)2

∫
pX0 |Xt(x0 |x)

(〈
gt(x), x−

√
αtx0

〉)2

dx0; (189d)

Et :=
1

(1− αt)2

∫
pX0 |Xt(x0 |x)

∥∥x−√αtx0

∥∥2

2

〈
gt(x), x−

√
αtx0

〉
dx0. (189e)

Here, we suppress the dependency on x in the above five objects to simplify notation whenever it is clear
from the context. In view of Lemma 1 and the properties (39), we have the following bounds:∣∣Bt∣∣ ≤ ∣∣At∣∣ . 1

1− αt
· d(1− αt) log T � d log T ; (190a)∣∣Ct∣∣ . 1

(1− αt)2
d2(1− αt)2 log2 T � d2 log2 T ; (190b)

∣∣Dt

∣∣ ≤ ‖gt(x)‖22
(1− αt)2

∫
pX0 |Xt(x0 |x)

∥∥x−√αtx0

∥∥2

2
dx0 . d2 log2 T ; (190c)

∣∣Et∣∣ ≤ ‖gt(x)‖22
(1− αt)2

∫
pX0 |Xt(x0 |x)

∥∥x−√αtx0

∥∥3

2
dx0 . d2 log2 T. (190d)

As it turns out, Theorem 2 can be established in a very similar way as in the proof of Theorem 1. In
essence, the only step that needs to be changed is to replace (58) in Lemma 4 with (191) in the lemma below.

Lemma 11. Suppose that d2(1−αt) log T
αt−αt . 1. For every x ∈ R obeying − log pXt(x) ≤ c6d log T for some

large enough constant c6 > 0, we have

p√αtXt−1
(ϕt(x))

pXt(x)
= 1 +

(1− αt)(d+Bt −At)
2(1− αt)

+O
(
d3
( 1− αt
αt − αt

)3

log3 T
)

+
(1− αt)2

8(1− αt)2

[
d(d+ 2) + (4 + 2d)(Bt −At)−B2

t + Ct + 2Dt − 3Et +AtBt
]
. (191a)

Moreover, for any random vector Y , one has

pϕt(Y )(ϕt(x))

pY (x)
= 1 +

(1− αt)(d+Bt −At)
2(1− αt)

+O
(
d6
( 1− αt
αt − αt

)3

log3 T
)

+
(1− αt)2

8(1− αt)2

[
d(d+ 2) + (4 + 2d)(Bt −At)−B2

t + Ct + 2Dt − 3Et +AtBt
]
. (191b)

Here, the quantities At, . . . , Et are defined in (189).
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The proof of this lemma can be found in Appendix D.2. Crucially, the terms in (191a) and those in (191b)
coincide (except for the residual terms O

(
d3
(

1−αt
αt−αt

)3
log3 T

)
and O

(
d6
(

1−αt
αt−αt

)3
log3 T

)
), which will cancel

each other during the subsequent proof.
With Lemma 11 in place, we claim that for every t ≥ 1,

P
(
Yt ∈ Et

)
≥ 1− (T − t+ 1) exp(−c3d log T ) (192)

for some constant c3 > 0, where the set Et is defined as

Et :=

{
y :
∣∣∣ pYt(y)

pXt(y)
− 1
∣∣∣ ≤ c5(T − t+ 1)

d6 log6 T

T 3

}
for some constant c5 > 0. We leave its proof to the end of this section.

Suppose for the moment that the above claim (192) is valid. Then taking t = 1 leads to

P(Y1 ∈ E1) = P

(∣∣∣∣ q1(Y1)

p1(Y1)
− 1

∣∣∣∣ ≤ c5d
6 log6 T

T 2

)
≥ 1− T exp

(
− c3d log T

)
,

which also reveals that
∫
y/∈E1 p1(y)dy ≤ T exp

(
− c3d log T

)
. Additionally, we make the observation that∫

y/∈E1

∣∣p1(y)− q1(y)
∣∣dy ≤ ∫

y/∈E1
p1(y)dy +

∫
y/∈E1

q1(y)dy =

∫
y/∈E1

p1(y)dy + 1−
∫
y∈E1

q1(y)dy

≤
∫
y/∈E1

p1(y)dy + 1−
∫
y∈E1

p1(y)dy +

∫
y∈E1

∣∣p1(y)− q1(y)
∣∣dy

= 2

∫
y/∈E1

p1(y)dy +

∫
y∈E1

∣∣p1(y)− q1(y)
∣∣dy.

The above results together with the definition of the total variation distance gives

TV
(
q1, p1

)
=

1

2

∫
y∈E1

∣∣q1(y)− p1(y)
∣∣dy +

1

2

∫
y/∈E1

∣∣q1(y)− p1(y)
∣∣dy

≤
∫
y∈E1

∣∣q1(y)− p1(y)
∣∣dy +

∫
y/∈E1

p1(y)dy

= EY1∼p1

[∣∣∣ q1(Y1)

p1(Y1)
− 1
∣∣∣ · 1 {Y1 ∈ E1}

]
+

∫
y/∈E1

p1(y)dy

≤ c5d
6 log6 T

T 2
+ exp

(
− c3d log T

)
� d6 log6 T

T 2
. (193)

This establishes the advertised result in Theorem 2, provided that Claim (192) can be verified.

Proof of properties (188). To justify the above results (188), note that Lemma 1 implies that∥∥gt(xt)∥∥2
≤ E

[∥∥Xt −
√
αtX0

∥∥
2
|Xt = xt

]
.
√
d(1− αt) log T , (194a)

1− αt
1− αt

∥∥gt(xt)∥∥2
.

1− αt
1− αt

√
d(1− αt) log T � (1− αt)2

√
d log T

1− αt
, (194b)

(1− αt)2

(1− αt)2

∥∥gt(xt)∥∥2
.

(1− αt)2

(1− αt)2

√
d(1− αt) log T � (1− αt)2

√
d log T

(1− αt)3/2
, (194c)

(1− αt)2

(1− αt)3
‖gt(xt)‖32 .

(1− αt)2

(1− αt)3
(d(1− αt) log T )

3/2 � (1− αt)2

(
d log T

1− αt

)3/2

, (194d)

(1− αt)2

(1− αt)3

∥∥∥E [(xt −√αtX0

)(
xt −

√
αtX0

)> |Xt = xt

]
gt(xt)

∥∥∥
2
.

(1− αt)2
∥∥gt(xt)∥∥2

(1− αt)3
E
[∥∥xt −√αtX0

∥∥2

2
|Xt = xt

]
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. (1− αt)2

(
d log T

1− αt

)3/2

, (194e)

and

(1− αt)2

(1− αt)3

∥∥∥E [∥∥xt −√αtX0

∥∥2

2

(
xt −

√
αtx0 − gt(Xt)

)
|Xt = xt

]∥∥∥
2

≤ (1− αt)2

(1− αt)3

{∥∥∥E [∥∥xt −√αtX0

∥∥3

2
|Xt = xt

]∥∥∥
2

+
∥∥gt(xt)∥∥2

∥∥∥E [∥∥xt −√αtX0

∥∥2

2
|Xt = xt

]∥∥∥
2

}
. (1− αt)2

(
d log T

1− αt

)3/2

. (194f)

Substituting the bounds (194) into (186b) immediately establishes (188).

Proof of the claim (192). We would like to prove this claim by induction, for which we start with the base
case with t = T . Recall that XT

d
=
√
αTX0 +

√
1− αTB and YT

d
= B with B ∼ N (0, Id) independent of X0,

and that ‖X0‖2 ≤ R with R = T cR for some constant cR > 0. For large enough T , it immediately follows
from (39d) that

P(YT ∈ Et) ≥ 1− exp(−c3d log T ) (195)

for some constant c3 > 0 large enough.
Suppose now that the claim (192) holds for some t ≥ 2, and we wish to prove the claim for t − 1. We

would first like to claim that with probability at least 1− (T − t) exp(−c3d log T ) for some constant c3 > 0,
one has

qt(Yt) ≥ exp
(
− c6d log T

)
. (196)

With (196) in place, one sees that Lemma 11 is applicable to x = Yt with high probability.
Next, consider any y obeying − log pXt(y) ≤ c6d log T . With these bounds (190) in mind, applying

relations (191a) and (191b) in Lemma 11 leads to

p√αtYt−1

(
φt(y)

)
pYt(y)

(
p√αtXt−1

(
φt(y)

)
pXt(y)

)−1

=
pφt(Yt)

(
φt(y)

)
pYt(y)

(
p√αtXt−1

(
φt(y)

)
pXt(y)

)−1

= 1 +O

(
d6
( 1− αt
αt − αt

)3

log3 T

)
.

Replacing y with Yt in the above display, using the fact that Yt−1 = 1√
αt
φt(Yt), and invoking the relation

(55), we immediately arrive at

pt−1(Yt−1)

qt−1(Yt−1)
=

{
1 +O

(
d6
( 1− αt
αt − αt

)3

log3 T

)}
· pt(Yt)
qt(Yt)

with probability exceeding 1− (T − t) exp(−c3d log T ). This concludes the proof of Claim (192) via standard
induction arguments.

D.2 Proof of Lemma 11
The proof of Lemma 11 is derived in a very similar way to the proof of Lemma 4, as detailed below. For
notational simplicity, we shall abbreviate

u = ut(x) and z = gt(x) (197)

whenever it is clear from the context.
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D.2.1 Proof of relation (191a)

Through direct calculations as shown in (127), we can obtain

p√αtXt−1

(
ϕt(x)

)
= pXt(x)

(
1− αt
αt − αt

)d/2
·
∫
x0

pX0 |Xt(x0 |x) exp

(
−

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
−
‖u‖22 − 2u>

(
x−
√
αtx0

)
2(αt − αt)

)
dx0. (198)

Moreover, similar to the analysis of Lemma 4, we focus our attention on the set given x:

E :=
{
x0 :

∥∥x−√αtx0

∥∥
2
≤ 5c5

√
d(1− αt) log T

}
, (199)

which allows us to derive, for some numerical constant c8 > 0,∫
pX0 |Xt(x0 |x) exp

(
−

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
−
‖u‖22 − 2u>

(
x−
√
αtx0

)
2(αt − αt)

)
dx0

= O
(
exp(−c8c25d log T )

)
+

∫
x0∈E

pX0 |Xt(x0 |x) exp

(
−

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
−
‖u‖22 − 2u>

(
x−
√
αtx0

)
2(αt − αt)

)
dx0

=: RHS (200)

To further control the right-hand side above, recall that the learning rates are selected such that 1−αt
1−αt−1

≤
4c1 log T

T for 1 < t ≤ T (see (39b)). In view of the Taylor expansion e−x = 1− x+ 1
2x

2 +O(x3) for x ≤ 1/2,
we can derive

RHS = O
(
exp(−c8c25d log T )

)
+

∫
x0∈E

pX0 |Xt(x0 |x)

{
1−

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
−

(1−αt)2
4(1−αt)2 ‖z‖

2
2 − 2u>

(
x−
√
αtx0

)
2(αt − αt)

+
(1− αt)2

8(αt − αt)2(1− αt)2

(∥∥x−√αtx0

∥∥2

2
− z>

(
x−
√
αtx0

))2

+O
(
d3
( 1− αt
αt − αt

)3

log3 T
)}

dx0. (201)

In order to see this, we recall the property of u (cf. (188)) as∥∥∥∥u− 1− αt
2(1− αt)

z

∥∥∥∥
2

≤ O
(

(1− αt)2
(d log T

1− αt

)3/2
)
. (202)

As a consequence, for any x0 ∈ E we have

(1− αt)
∥∥x−√αtx0

∥∥2

2

2(αt − αt)(1− αt)
= O

(
d
( 1− αt
αt − αt

)
log T

)
and

‖u‖22 − 2u>
(
x−
√
αtx0

)
2(αt − αt)

=

(1−αt)2
4(1−αt)2 ‖z‖

2
2 − 2u>

(
x−
√
αtx0

)
2(αt − αt)

+O

(
d2
( 1− αt
αt − αt

)3

log2 T

)
=

z>
(
x−
√
αtx0

)
2(αt − αt)(1− αt)

+O

(
d2
( 1− αt
αt − αt

)2

log2 T

)
= O

(
d
( 1− αt
αt − αt

)
log T

)
,

where we have invoked the properties (39). Taking the above results together and using the following basic
properties regarding quantities At, . . . , Et (defined in (189))∫

pX0 |Xt(x0 |x)
∥∥x−√αtx0

∥∥2

2
dx0 = (1− αt)At,
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∫
pX0 |Xt(x0 |x)‖z‖22dx0 = (1− αt)Bt,∫
pX0 |Xt(x0 |x)u>

(
x−
√
αtx0

)
dx0 =

1− αt
2

Bt +
(1− αt)2

8(1− αt)
[
Bt −B2

t +Dt − Et +AtBt
]
,∫

pX0 |Xt(x0 |x)
(∥∥x−√αtx0

∥∥2

2
− z>

(
x−
√
αtx0

))2

dx0 = (1− αt)2
[
Ct +Dt − 2Et

]
,

we arrive at

(201) = 1− (1− αt)(At −Bt)
2(αt − αt)

+
(1− αt)2

8(1− αt)2

[
−B2

t + Ct + 2Dt − 3Et +AtBt
]

+O

(
d3
( 1− αt
αt − αt

)3

log3 T

)
.

Once again, we note that integrating over set E and over all possible x0 only incurs a difference at most
as large as O

(
exp(−c8c25d log T )

)
. Putting all this together establishes the advertised result (191a).

D.2.2 Proof of relation (191b)

Consider any random vector Y , and let us invoke again the basic transformation

pϕt(Y )(ϕt(x)) = det
(∂ϕt(x)

∂x

)−1

pY (x),

where ∂ϕt(x)
∂x denotes the Jacobian matrix. We are then left with controlling the quantity det

(
∂ϕt(x)
∂x

)−1

.
Towards this, let us again recall that the determinant of a matrix satisfies

det(I +A)−1 = 1− Tr(A) +
1

2

[
Tr(A)2 + ‖A‖2F

]
+O

(
d3‖A‖3

)
,

provided that d‖A‖ ≤ c20 for some small enough constant c20 > 0. This relation leads to

pϕt(Y )(ϕt(x)) = det
(∂ϕt(x)

∂x

)−1

pY (x)

=

{
1 + Tr

(∂u
∂x

)
+

1

2

[
Tr
(∂u
∂x

)2

+
∥∥∥∂u
∂x

∥∥∥2

F

]
+O

(
d3
∥∥∥∂u
∂x

∥∥∥)}pY (x), (203)

where we invoke the definition in (186) that

ϕt(x) = x− u = x−
( (1− αt)

2(1− αt)
+

(1− αt)2

8(1− αt)2
− (1− αt)2

8(1− αt)3
‖z‖22

)
z

− (1− αt)2

8(1− αt)3

∫
x0

pX0 |Xt(x0 |x)
(
x−
√
αtx0

)(
x−
√
αtx0

)>
zdx0

+
(1− αt)2

8(1− αt)3

∫
x0

pX0 |Xt(x0 |x)
∥∥x−√αtx0

∥∥2

2

(
x−
√
αtx0 − z

)
dx0.

To further control the right-hand side above of the above display, let us first make note of several identities.
Proving these identities only requires elementary calculation regarding Gaussian integration and derivatives,
which is omitted here for brevity. Specifically, one has

∂z

∂x
= Jt, (204a)

∂

∂x
‖z‖22z = ‖z‖22Jt + 2zz>Jt, (204b)

∂

∂x

∫
x0

pX0 |Xt(x0 |x)
∥∥x−√αtx0

∥∥2

2

(
x−
√
αtx0

)
dx0
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=

∫
x0

pX0 |Xt(x0 |x)
∥∥x−√αtx0

∥∥2

2
dx0I + 2

∫
x0

pX0 |Xt(x0 |x)
(
x−
√
αtx0

)(
x−
√
αtx0

)>
dx0

+
1

1− αt

((∫
x0

pX0 |Xt(x0 |x)
∥∥x−√αtx0

∥∥2

2

(
x−
√
αtx0

))(∫
x0

pX0 |Xt(x0 |x)
(
x−
√
αtx0

)
dx0

)>
−
∫
x0

pX0 |Xt(x0 |x)
∥∥x−√αtx0

∥∥2

2

(
x−
√
αtx0

)(
x−
√
αtx0

)>
dx0

)
, (204c)

∂

∂x

∫
x0

pX0 |Xt(x0 |x)
∥∥x−√αtx0

∥∥2

2
z =

∫
x0

pX0 |Xt(x0 |x)
∥∥x−√αtx0

∥∥2

2
dx0Jt + 2zz>

+
1

1− αt

((∫
x0

pX0 |Xt(x0 |x)
∥∥x−√αtx0

∥∥2

2

)
zz> − z

(∫
x0

pX0 |Xt(x0 |x)
∥∥x−√αtx0

∥∥2

2

(
x−
√
αtx0

)
dx0

)>)
,

(204d)
∂

∂x

∫
x0

pX0 |Xt(x0 |x)
(
x−
√
αtx0

)(
x−
√
αtx0

)>
zdx0 = ‖z‖22I + zz>

+

∫
x0

pX0 |Xt(x0 |x)
(
x−
√
αtx0

)(
x−
√
αtx0

)>
Jtdx0

+
1

1− αt

∫
x0

pX0 |Xt(x0 |x)
(
z>
(
x−
√
αtx0

))(
x−
√
αtx0

)
z>dx0

− 1

1− αt

∫
x0

pX0 |Xt(x0 |x)
(
z>
(
x−
√
αtx0

))(
x−
√
αtx0

)(
x−
√
αtx0

)>
dx0. (204e)

Equipped with the above relations, we can easily verify that∥∥∥∂u
∂x

∥∥∥ .
d(1− αt) log T

1− αt
, (205a)

Tr
(∂u
∂x

)
=

(1− αt)
(
d+Bt −At

)
2(1− αt)

+
(1− αt)2

8(1− αt)2

(
d− 2At −A2

t + 3AtBt + 2Bt − 3B2
t + Ct + 4Dt − 3Et − Ft

)
, (205b)∥∥∥∂u

∂x

∥∥∥2

F
=

(1− αt)2

4(1− αt)2

∥∥∥∂z
∂x

∥∥∥2

F
+O

(
d5
( 1− αt
αt − αt

)3

log3 T
)

=
(1− αt)2

4(1− αt)2

(
d+ 2(Bt −At) +B2

t + Ft − 2Dt

)
+O

(
d5
( 1− αt
αt − αt

)3

log3 T
)
, (205c)

as long as d2
(

1−αt
αt−αt

)
log T . 1, where we recall the definition of the quantities At to Et in (189), and

Ft(x) :=
∥∥∥ 1

1− αt

∫
x0

pX0 |Xt(x0 |x)
(
x−
√
αtx0

)(
x−
√
αtx0

)>
dx0

∥∥∥2

F
. (205d)

Plugging these results into inequality (203) leads to

pϕt(Y )(ϕt(x)) = pY (x)

{
1 +

(1− αt)(d+Bt −At)
2(1− αt)

+O
(
d6
( 1− αt
αt − αt

)3

log3 T
)

+
(1− αt)2

8(1− αt)2

[
d(d+ 2) + (4 + 2d)(Bt −At)−B2

t + Ct + 2Dt − 3Et +AtBt
]}
. (205e)

We have thus completed the proof of Lemma 11.

E Analysis for the accelerated stochastic sampler (Theorems 4)
The proof of Theorem 4 follows similar structure as the proof of Theorem 3. Throughout the proof, we shall
employ the notation x̂t := xt/

√
αt as before.
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E.1 Proof of Theorem 4
Step 1: expressing the update rule in terms of a Jacobian matrix. Let us recall the Jacobian matrix
Jt(x) = ∂gt(x)

∂x defined in (37). In view of the expression (38) as well as (6) (i.e., Xt −
√
αtX0 =

√
1− αtW t

with W t ∼ N (0, Id)), one can write

Jt(x) = Id + E
[
W t | Xt = x

](
E
[
W t | Xt = x

])>
− E

[
W tW

>
t | Xt = x

]
= Id +

(
1− αt

)
s?t (x)s?t (x)> − E

[
W tW

>
t | Xt = x

]
, (206)

where the last line makes use of the relation (36). Additionally, recall that (i) vt(x, z) (cf. (32)) is the MMSE
estimator for estimating W tW tz given

√
αtX0 +

√
1− αtW t = x and Zt = z, and (ii) Zt is independent

from X0 and W t. Then this MMSE estimator admits the following expression (Hajek, 2015, Section 3.3.1):

vt(x, z) = E
[
W tW

>
t z | Xt = x

]
= E

[
W tW

>
t | Xt = x

]
z. (207)

As a result, the mapping introduced in (33b) can be alternatively expressed as:

Ψt(x, z) =
1
√
αt

(
x+ (1− αt)s?t (x)

)
+ σt

{
z − 1− αt

2(1− αt)
[
z + (1− αt)s?t (x)s?t (x)>z − vt(x, z)

]}
= µt(x) + σt

(
I − 1− αt

2(1− αt)
Jt(x)

)
z, (208)

where we have also used the definition (74b) of µt(·). In comparison to the plain DDPM-type sampler
(cf. (30)), the key correction term is the second component on the right-hand side of (208), which adjusts the
covariance of the additive Gaussian noise.

Equipped with the above expression (208), we can readily express the conditional distribution of Yt−1

(cf. (33a)) given Yt such that: for any points xt, xt−1 ∈ Rd,

pYt−1 |Yt(xt−1 |xt) =
1(

2π 1−αt
αt

)d/2∣∣det
(
I − 1−αt

2(1−αt)Jt(xt)
)∣∣

· exp

(
− αt

2(1− αt)

∥∥∥∥(I − 1− αt
2(1− αt)

Jt(xt)
)−1(

xt−1 − µt(xt)
)∥∥∥∥2

2

)
. (209)

Step 2: controlling the conditional distributions pXt−1 |Xt and pYt−1 |Yt . Akin to Step 2 in the proof
of Theorem 3, we need to look at the conditional distribution pXt−1 |Xt when restricted to points from the
following set:

E :=

{
(xt, xt−1) | − log pXt(xt) ≤

1

2
c6d log T, ‖xt−1 − x̂t‖2 ≤ c3

√
d(1− αt) log T

}
, (210)

with the numerical constants c3, c6 > 0 introduced in Lemma 2. The following lemma, which is a counterpart
of Lemma 8 for the accelerated sampler, characterizes pXt−1 |Xt in a fairly tight manner over the set E . The
proof is deferred to Appendix E.2.

Lemma 12. There exists some large enough numerical constant cζ > 0 such that: for every (xt, xt−1) ∈ E,

pXt−1 |Xt(xt−1 |xt) =
1(

2π 1−αt
αt

)d/2∣∣det
(
I − 1−αt

2(1−αt)Jt(xt)
)∣∣

· exp

(
− αt

2(1− αt)

∥∥∥∥(I − 1− αt
2(1− αt)

Jt(xt)

)−1(
xt−1 − µt(xt)

)∥∥∥∥2

2

+ ζt(xt−1, xt)

)
(211)

holds for some residual term ζt(xt−1, xt) obeying∣∣ζt(xt−1, xt)
∣∣ ≤ cζ d3 log4.5 T

T 3/2
. (212)

Here, we recall the definition of µt(·) (resp. Jt(·)) in (74b) (resp. (37)).
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Moving beyond the set E , we are still in need of bounding the log density ratio log
pXt−1 |Xt
pYt−1 |Yt

for all pairs

(xt, xt−1) outside E , in a way similar to Lemma 9 in the proof of Theorem 3. Our crude bound towards this
end is stated as follows, whose proof is postponed to Appendix E.3.

Lemma 13. For all (xt, xt−1) ∈ Rd × Rd, we have

log
pXt−1 |Xt(xt−1 |xt)
pYt−1 |Yt(xt−1 |xt)

≤ T c0+2cR+2
{∥∥xt−1 − x̂t

∥∥2

2
+ ‖xt‖22 + 1

}
, (213)

where c0 is defined in (22).

Step 3: bounding the KL divergence of interest. With Lemmas 12-13 in place, one can repeat the
arguments in Step 3 in the proof of Theorem 3 to arrive at

Ext∼Xt
[
KL
(
pXt−1 |Xt(· |xt) ‖ pYt−1 |Yt(· |xt)

)]
.

(
d3 log4.5 T

T 3/2

)2

.

Substitution into (79) and (78) then yields

2TV(pX1
, pY1

)2 ≤ KL(pX1
‖ pY1

) . KL(pXT ‖ pYT ) +

T∑
t≥2

d6 log9 T

T 3
� d6 log9 T

T 2
,

where the last relation results from (122). This completes the proof of Theorem 4.

E.2 Proof of Lemma 12
Recall that an explicit expression for pXt−1 |Xt(xt−1 |xt) has already been established in Lemma 8 (see (160))
A little algebra then allows one to write

pXt−1 |Xt(xt−1 |xt) = f1(xt) exp
(
− f2(xt, xt−1) + ζt,1(xt, xt−1)

)
, (214)

for some function f1(·), where

gt−1(x) :=

∫
x0

(
x−

√
αt−1x0

)
pX0|Xt−1

(x0 |x)dx0, (215a)

f2(xt, xt−1) =
‖xt −

√
αtxt−1‖22

2(1− αt)
+

(xt−1 − x̂t)>gt−1

(
x̂t
)

1− αt−1
+

1
2 (xt−1 − x̂t)>Jt−1

(
x̂t
)(
xt−1 − x̂t

)
1− αt−1

, (215b)

ζt,1(xt, xt−1) = (xt−1 − x̂t)>
∫ 1

0

∫ 1

0
γ
[
Jt−1

(
(1− τ)x̂t + τxt(γ)

)
− Jt−1

(
x̂t
)]

dτdγ

1− αt−1

(
xt−1 − x̂t

)
, (215c)

and we remind the readers that xt(γ) = γxt−1 + (1− γ)x̂t with x̂t = xt/
√
αt.

In order to control (214), we single out two useful facts: for every (xt, xt−1) ∈ E (cf. (210)),

∥∥Jt−1

(
xt(γ)

)
− Jt−1

(
x̂t
)∥∥ . d2

√
1− αt

1− αt−1
log2 T, ∀γ ∈ [0, 1] (216)

and ∥∥∥∥ Jt−1(x̂t)

1− αt−1
− Jt(xt)

1− αt

∥∥∥∥ .
d2(1− αt) log2 T

(αt − αt)2
. (217)

The proofs of these two facts are postponed to Appendix E.2.1. These facts in turn allow us to bound

∣∣ζt,1(xt, xt−1)
∣∣ ≤ ∥∥xt−1 − x̂t

∥∥2

2

2(1− αt−1)
sup
γ∈[0,1]

∥∥Jt−1

(
xt(γ)

)
− Jt−1

(
x̂t
)∥∥ . d3

(
1− αt

1− αt−1

)3/2

log3 T (218)
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and ∣∣∣∣∣ (xt−1 − x̂t)>Jt−1

(
x̂t
)(
xt−1 − x̂t

)
1− αt−1

−
(xt−1 − x̂t)>Jt(xt)

(
xt−1 − x̂t

)
1− αt

∣∣∣∣∣
≤
∥∥xt−1 − x̂t

∥∥2

2

∥∥∥∥ Jt−1(x̂t)

1− αt−1
− Jt(xt)

1− αt

∥∥∥∥ .
d3(1− αt)2 log3 T

(αt − αt)2
� d3(1− αt)2 log3 T

(1− αt−1)2
(219)

for any (xt, xt−1) ∈ E . Consequently, there exists some function f3(·) such that

pXt−1 |Xt(xt−1 |xt) = f3(xt) exp
(
− f4(xt, xt−1) + ζt,2(xt, xt−1)

)
, (220a)

where

f4(xt, xt−1) =
αt‖x̂t − xt−1‖22

2(1− αt)
+

(xt−1 − x̂t)>gt−1

(
x̂t
)

1− αt−1
+

1
2 (xt−1 − x̂t)>Jt(xt)

(
xt−1 − x̂t

)
1− αt

, (220b)

∣∣ζt,2(xt, xt−1)
∣∣ . d3

(
1− αt

1− αt−1

)3/2

log3 T .
d3 log4.5 T

T 3/2
. (220c)

To continue, we further observe that∣∣∣∣∣ (xt−1 − x̂t)>gt−1

(
x̂t
)

1− αt−1
−
√
αt(xt−1 − x̂t)>gt(xt)

1− αt

∣∣∣∣∣ . d3 log3.5 T

T 3/2
, (221)

which is an immediate consequence of the following two bounds (obtained using (161c), (161b) and (39b)):∣∣∣∣∣ (xt−1 − x̂t)>gt−1

(
x̂t
)

1− αt−1
− (xt−1 − x̂t)>gt(xt)

1− αt

∣∣∣∣∣ . d2

√
(1− αt)3

(αt − αt)3
log2 T .

d3 log3.5 T

T 3/2∣∣∣∣(1−√αt) (xt−1 − x̂t)>gt(xt)
1− αt

∣∣∣∣ . d log2 T

T 3/2
.

This bound (221) allows us to replace the second term on the right-hand side of (220b) with
√
αt(xt−1−x̂t)>gt(xt)

1−αt .
It is also seen from (161a) and the properties (39) that∥∥∥∥ 1− αt

2(1− αt)
Jt(xt)

∥∥∥∥ .
log T

T
· d log T � d log2 T

T
= o(1), (222)

and therefore,∥∥∥∥∥(1− αt)
(xt−1 − x̂t)>Jt(xt)

(
xt−1 − x̂t

)
2(1− αt)

∥∥∥∥∥ .
d log2 T

T
·
∥∥xt−1 − x̂t

∥∥2

2
.

(1− αt) d2 log3 T

T
.
d2 log4 T

T 2
.

These combined with (220) allow us to show that: there exist some functions f5(·) and f̃5(·) such that

pXt−1 |Xt(xt−1 |xt) = f5(xt) exp
(
− f6(xt, xt−1) + ζt,3(xt, xt−1)

)
(223a)

where

f6(xt, xt−1) =
αt‖xt−1 − x̂t‖22

2(1− αt)
+

√
αt(xt−1 − x̂t)>gt(xt)

1− αt
+

1
2αt(xt−1 − x̂t)>Jt(xt)

(
xt−1 − x̂t

)
1− αt

=
αt

2(1− αt)

{
‖xt−1 − µt(xt)‖22 +

1− αt
1− αt

(xt−1 − x̂t)>Jt(xt)
(
xt−1 − x̂t

)}
+ f̃t(xt), (223b)

∣∣ζt,3(xt, xt−1)
∣∣ . d3 log4.5 T

T 3/2
. (223c)
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To further proceed, we make note of another useful fact:

αt
1− αt

∣∣∣∣(xt−1 − x̂t
)(1− αt

1− αt
Jt(xt)

)(
1
√
αt

1− αt
1− αt

gt(xt)

)∣∣∣∣
≤ αt

1− αt
∥∥xt−1 − x̂t

∥∥
2
·
∥∥∥∥ 1− αt

2(1− αt)
Jt(xt)

∥∥∥∥ · 1− αt√
αt(1− αt)

E
[∥∥xt −√αtX0

∥∥
2
|Xt = xt

]
.
√
d(1− αt) log T · d log2 T

T
· log T

T
·
√
d(1− αt) log T

� d2 log4 T

T 2

√
1− αt .

d2 log4.5 T

T 3/2
,

where we have made use of the crude bound (222) in conjunction with the properties (39). Taking this
observation together with (223) and (74b), we can apply a little algebra to derive

pXt−1 |Xt(xt−1 |xt) = f7(xt) exp
(
− f8(xt, xt−1) + ζt,4(xt, xt−1)

)
(224a)

for some function f7(·), where

f8(xt, xt−1) =
αt

2(1− αt)

{(
xt−1 − µt(xt)

)>(
I +

1− αt
2(1− αt)

Jt(xt)

)(
xt−1 − µt(xt)

)}
, (224b)

∣∣ζt,4(xt, xt−1)
∣∣ . d3 log4.5 T

T 3/2
. (224c)

Note, however, that the covariance matrix I + 1−αt
2(1−αt)Jt(xt) still differs from the desired one

(
I −

1−αt
2(1−αt)Jt(xt)

)−2. As it turns out, these two matrices are fairly close to each other. To see this, we write(
I − 1− αt

2(1− αt)
Jt(xt)

)−2

= I +
1− αt
1− αt

Jt(xt) +A,

where A is a matrix obeying (see (222))

‖A‖ .
∥∥∥∥ 1− αt

2(1− αt)
Jt(xt)

∥∥∥∥2

.
d2 log4 T

T 2
.

Consequently, we can demonstrate that

αt
2(1− αt)

∥∥∥∥(I − 1− αt
2(1− αt)

Jt(xt)

)−1(
xt−1 − µt(xt)

)∥∥∥∥2

2

=
αt

2(1− αt)

{(
xt−1 − µt(xt)

)>(
I +

1− αt
1− αt

Jt(xt)

)(
xt−1 − µt(xt)

)}
+O

(
αt

2(1− αt)
‖A‖

∥∥xt−1 − µt(xt)
∥∥2

2

)
=

αt
2(1− αt)

(
xt−1 − µt(xt)

)>(
I +

1− αt
1− αt

Jt(xt)

)(
xt−1 − µt(xt)

)
+O

(
d3 log5 T

T 2

)
.

To see why the last line holds, note that (according to Lemma 1 and the properties (39))∥∥xt−1 − µt(xt)
∥∥

2
≤
∥∥xt−1 − x̂t

∥∥
2

+
1− αt√
αt(1− αt)

∥∥E [∥∥xt −√αtX0

∥∥
2
|Xt = xt

] ∥∥
2

.
√
d(1− αt) log T +

√
d log T

1− αt
(1− αt) �

√
d(1− αt) log T ,

and hence
αt

1− αt
‖A‖

∥∥xt−1 − µt(xt)
∥∥2

2
.
d3 log5 T

T 2
.
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Combining the above bound with (224), we arrive at

pXt−1 |Xt(xt−1 |xt) = f9(xt) exp
(
− f10(xt, xt−1) + ζt,5(xt, xt−1)

)
(225a)

for some function f9(·), where

f10(xt, xt−1) =
αt

2(1− αt)

∥∥∥∥(I − 1− αt
2(1− αt)

Jt(xt)

)−1(
xt−1 − µt(xt)

)∥∥∥∥2

2

, (225b)

∣∣ζt,5(xt, xt−1)
∣∣ . d3 log4.5 T

T 3/2
. (225c)

To finish up, repeat Step 3 in the proof of Lemma 8 to yield

f7(xt) =

(
1 +O

(
d3 log4.5 T

T 3/2

))
1(

2π 1−αt
αt

)d/2∣∣det
(
I − 1−αt

2(1−αt)Jt(xt)
)∣∣

as claimed. This combined with (225) concludes the proof.

E.2.1 Proof of auxiliary claims in Lemma 12

Proof of relation (216). For any (xt, xt−1) ∈ E , one necessarily has

‖xt(γ)− x̂t‖2 ≤ ‖xt−1 − x̂t‖2 ≤ c3
√
d(1− αt) log T . (226)

Given xt, we define the set

E1 :=
{
x : ‖x̂t −

√
αt−1x‖2 ≤ c4

√
d(1− αt−1) log T

}
.

Then for any x0 ∈ E1, one has∥∥xt(γ)−
√
αt−1x0

∥∥
2
≤ max

{
‖x̂t −

√
αt−1x0‖2, ‖x̂t − xt−1‖2

}
≤ max

{
c4
√
d(1− αt−1) log T , c3

√
d(1− αt) log T

}
= c4

√
d(1− αt−1) log T ,

where the last inequality comes from (39b). This in turn reveals that∣∣∣∣∣pXt−1 |X0

(
xt(γ) |x0

)
pXt−1 |X0

(x̂t |x0)
− 1

∣∣∣∣∣ =

∣∣∣∣∣exp

(∥∥x̂t −√αt−1x0

∥∥2

2

2(1− αt−1)
−
∥∥xt(γ)−

√
αt−1x0

∥∥2

2

2(1− αt−1)

)
− 1

∣∣∣∣∣
≤

∣∣∣∣∣exp

(∥∥x̂t − xt(γ)
∥∥

2

{∥∥x̂t −√αt−1x0

∥∥
2

+
∥∥xt(γ)−

√
αt−1x0

∥∥
2

}
2(1− αt−1)

)
− 1

∣∣∣∣∣
.

∥∥x̂t − xt(γ)
∥∥

2

{∥∥x̂t −√αt−1x0

∥∥
2

+
∥∥xt(γ)−

√
αt−1x0

∥∥
2

}
2(1− αt−1)

. d

√
1− αt

1− αt−1
log T . d

√
log3 T

T
= o(1),

where the second line follows from the elementary relation∣∣∣‖a‖22 − ‖b‖22∣∣∣ =
∣∣∣‖a‖2 − ‖b‖2∣∣∣ · (‖a‖2 + ‖b‖2) ≤ ‖a− b‖2 (‖a‖2 + ‖b‖2) ,

and the last line relies on (39) and our assumption on T . Moreover, repeating the same argument as in (116)
and (120), we arrive at

pXt−1

(
xt(γ)

)
pXt−1(x̂t)

= 1 +O

(
d

√
1− αt

1− αt−1
log T

)
. (227)

63



Putting the above results together leads to

pX0 |Xt−1

(
x0 |xt(γ)

)
pX0 |Xt−1

(x0 | x̂t)
=
pXt−1 |X0

(
xt(γ) |x0

)
/pXt−1

(
xt(γ)

)
pXt−1 |X0

(x̂t |x0)/pXt−1
(x̂t)

= 1 +O

(
d

√
1− αt

1− αt−1
log T

)
.

Equipped with the above relation, we can demonstrate that∥∥∥∫ pX0 |Xt−1

(
x0 |xt(γ)

)(
xt(γ)−

√
αt−1x0

)
dx0 −

∫
pX0 |Xt−1

(x0 | x̂t)
(
x̂t −

√
αt−1x0

)
dx0

∥∥∥
2

≤ O
(
d

√
1− αt

1− αt−1
log T

)
·
(∫

pX0 |Xt−1

(
x0 |xt(γ)

)∥∥xt(γ)−
√
αt−1x0

∥∥
2
dx0

)
+
∥∥∥ ∫ pX0 |Xt−1

(
x0 | x̂t

)(
xt(γ)− x̂t

)
dx0

∥∥∥
2

(228)

.
√
d3(1− αt) log3 T , (229)

where the last step invokes the property (43a). Following similar arguments (which we omit for brevity), we
can also derive ∥∥∥ ∫ pX0 |Xt−1

(
x0 |xt(γ)

)(
xt(γ)−

√
αt−1x0

)(
xt(γ)−

√
αt−1x0

)>
dx0

−
∫
pX0 |Xt−1

(x0 | x̂t)
(
x̂t −

√
αt−1x0

)(
x̂t −

√
αt−1x0

)>
dx0

∥∥∥
. d2

√
(1− αt)(1− αt−1) log2 T, (230)

where we have made use of the property (43b). Taking the above two above perturbation bounds together
with the expression (94) and making use of (43a) immediately lead to the advertised result:

∥∥Jt−1

(
xt(γ)

)
− Jt−1(x̂t)

∥∥ . d2

√
1− αt

1− αt−1
log2 T. (231)

Proof of relation (217). To establish this relation, we first apply the triangle inequality:∥∥∥∥ Jt−1(x̂t)

1− αt−1
− Jt(xt)

1− αt

∥∥∥∥ ≤ ∥∥∥∥Jt−1(x̂t)− Jt(xt)
1− αt−1

∥∥∥∥+

∥∥∥∥( 1

1− αt−1
− 1

1− αt

)
Jt(xt)

∥∥∥∥.
Let us first consider the second term∥∥∥∥( 1

1− αt−1
− 1

1− αt

)
Jt(xt)

∥∥∥∥ =
αt−1(1− αt)

(1− αt−1)(1− αt)
‖Jt(xt)‖ ≤

αt−1(1− αt)d log T

(1− αt−1)(1− αt)
.

(1− αt)d log T

(αt − αt)2
.

(232)

where the last inequality uses (161a) and the properties (39).
Next, we move on to bound the difference Jt−1(x̂t) − Jt(xt). By virtue of the relation (173), one can

deduce that∥∥∥∥∫ pX0 |Xt−1

(
x0 | x̂t

)(
x̂t −

√
αt−1x0

)
dx0 −

1
√
αt

∫
pX0 |Xt

(
x0 |xt

)(
xt −

√
αtx0

)
dx0

∥∥∥∥
2

=
1
√
αt

∥∥∥∥∫ pX0 |Xt−1

(
x0 | x̂t

)(
xt −

√
αtx0

)
dx0 −

∫
pX0 |Xt

(
x0 |xt

)(
xt −

√
αtx0

)
dx0
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≤ 1
√
αt
O

(
d(1− αt) log T

1− αt−1

)∫
pX0 |Xt

(
x0 |xt

)∥∥xt −√αtx0

∥∥
2
dx0.
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In addition, recognizing that 1√
αt

= 1 + 1−αt√
αt(1+

√
αt)

= 1 + O(1 − αt), we can further invoke the triangle
inequality and (39a) to obtain∥∥∥∥∫ pX0 |Xt−1

(
x0 | x̂t

)(
x̂t −

√
αt−1x0

)
dx0 −

∫
pX0 |Xt

(
x0 |xt

)(
xt −

√
αtx0

)
dx0

∥∥∥∥
2

.
d(1− αt) log T

1− αt−1

∫
pX0 |Xt

(
x0 |xt

)∥∥xt −√αtx0

∥∥
2
dx0.

Repeating the same argument also reveals that∥∥∥∥∫ pX0 |Xt−1

(
x0 | x̂t

)(
x̂t −

√
αt−1x0

)(
x̂t −

√
αt−1x0

)>
dx0 −

∫
pX0 |Xt

(
x0 |xt

)(
xt −

√
αtx0

)(
xt −

√
αtx0

)>
dx0
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.
d(1− αt) log T

1− αt−1

∥∥∥∥∫ pX0 |Xt
(
x0 |xt

)(
xt −

√
αtx0

)(
xt −

√
αtx0

)>
dx0

∥∥∥∥ .
In view of the expression (94) for Jt, combining the preceding two bounds with a little algebra yields

1

1− αt−1

∥∥Jt−1(x̂t)− Jt(xt)
∥∥

.
1

(1− αt−1)(1− αt)
d(1− αt) log T

1− αt−1

·

{∥∥∥∥∫ pX0 |Xt
(
x0 |xt

)(
xt −

√
αtx0

)(
xt −

√
αtx0

)>
dx0

∥∥∥∥+

(∫
pX0 |Xt

(
x0 |xt

)∥∥xt −√αtx0

∥∥
2
dx0

)2
}

.
d2(1− αt) log2 T

(αt − αt)2
,

where the last line follows from Lemma 1 and the properties (39).
Putting the above bounds together immediately establishes relation (217).

E.3 Proof of Lemma 13
According to the expression (209), one has

Yt−1 | Yt = xt ∼ N

(
µt(xt),

1− αt
αt

(
I − 1− αt

2(1− αt)
Jt(xt)

)2

︸ ︷︷ ︸
=: Σ(x̂t)

)
.

In order to quantify the density, we first bound the Jacobian matrix Jt(x) defined in (37). On the one hand,
the expression (38) tells us that Jt(x) � Id for any x, given that the term within the curly bracket in (38) is
a negative covariance matrix. On the other hand, Jt(x) can be lower bounded by

Jt(x) � − 1

1− αt
E
[(
Xt −

√
αtX0

)(
Xt −

√
αtX0

)> | Xt = x
]

� −
E
[∥∥Xt −

√
αtX0

∥∥2

2
| Xt = x

]
1− αt

Id � −
2‖x‖22 + 2T 2cR

1− αt
Id

� −T c0+1
(
‖x‖22 + T 2cR

)
Id,

where the second line applies the assumption that ‖X0‖2 ≤ T cR , and the last line invokes the choice (22). As
a consequence, we have

Σ(x̂t) �
1− αt
αt

(
1− 1− αt

2(1− αt)

)2

Id =
1− αt

4αt

(
1− αt + αt − αt

1− αt

)2

Id �
1− αt

4αt
Id �

1− αt
4

Id; (233a)
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Σ(x̂t) �
1− αt
αt

T 2c0+2
(
2‖x̂t‖42 + 2T 4cR

)
Id � 4T 2c0+2

(
‖x̂t‖42 + T 4cR

)
Id. (233b)

With the above relations in mind, we are ready to bound the density function pYt−1 |Yt(xt−1 |xt) for any
xt, xt−1 ∈ Rd. It is seen from (209) that

log
1

pYt−1|Yt(xt−1 |xt)
=

(
xt−1 − µt(xt)

)>(Σ(x̂t)
)−1(

xt−1 − µt(xt)
)

2
+

1

2
log det

(
Σ(x̂t)

)
+
d

2
log(2π)

≤
2
∥∥xt−1 − µt(xt)

∥∥2

2

1− αt
+
d

2
log
(

8πT 2c0+2
(
‖x̂t‖42 + T 4cR

))
≤ 2T c0+1

{
2
∥∥xt−1 − x̂t

∥∥2

2
+ ‖xt‖22 + T 2cR

}
+
d

2
log
(

8πT 2c0+2
(
‖x̂t‖42 + T 4cR

))
≤ T c0+2cR+2

{∥∥xt−1 − x̂t
∥∥2

2
+ ‖xt‖22 + 1

}
,

where the second inequality results from (233), and the third inequality makes use of (177) and (22). Given
that log

pXt−1|Xt (xt−1 | xt)
pYt−1|Yt (xt−1 | xt) ≤ log 1

pYt−1|Yt (xt−1 | xt) , we have concluded the proof.
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