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Abstract

Diffusion models, which convert noise into new data instances by learning to reverse a diffusion process,
have become a cornerstone in contemporary generative modeling. In this work, we develop non-asymptotic
convergence theory for a popular diffusion-based sampler (i.e., the probability flow ODE sampler) in
discrete time, assuming access to ℓ2-accurate estimates of the (Stein) score functions. For distributions in
Rd, we prove that d/ε iterations — modulo some logarithmic and lower-order terms — are sufficient to
approximate the target distribution to within ε total-variation distance. This is the first result establishing
nearly linear dimension-dependency (in d) for the probability flow ODE sampler. Imposing only minimal
assumptions on the target data distribution (e.g., no smoothness assumption is imposed), our results also
characterize how ℓ2 score estimation errors affect the quality of the data generation processes. In contrast
to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach
without the need of resorting to SDE and ODE toolboxes.
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1 Introduction
Diffusion models have emerged as a cornerstone in contemporary generative modeling, a task that learns to
generate new data instances (e.g., images, text, audio) that look similar in distribution to the training data
(Ho et al., 2020; Sohl-Dickstein et al., 2015; Song and Ermon, 2019; Dhariwal and Nichol, 2021; Jolicoeur-
Martineau et al., 2021; Chen et al., 2021; Kong et al., 2021; Austin et al., 2021). Originally proposed by
Sohl-Dickstein et al. (2015) and later popularized by Song and Ermon (2019); Ho et al. (2020), the mainstream
diffusion generative models — e.g., denoising diffusion implicit models (DDIMs) (Song et al., 2020a) and
denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) — have underpinned major successes in
content generators like DALL·E (Ramesh et al., 2022), Stable Diffusion (Rombach et al., 2022) and Imagen
(Saharia et al., 2022), claiming state-of-the-art performance in the now broad field of generative artificial
intelligence (AI). See Yang et al. (2022); Croitoru et al. (2023); Chen et al. (2024b) for overviews of recent
development.

In a nutshell, a diffusion generative model is based upon two stochastic processes in Rd:

1) a forward process
X0 → X1 → · · · → XT (1)

that starts from a sample drawn from the target data distribution (e.g., of natural images) and gradually
diffuses it into a noise-like distribution (e.g., standard Gaussians);

2) a reverse process
YT → YT−1 → · · · → Y0 (2)

that starts from pure noise (e.g., standard Gaussians) and successively converts it into new samples
sharing similar distributions as the target data distribution.

Transforming data into noise in the forward process is straightforward, often hand-crafted by increasingly
injecting more noise into the data at hand. What is challenging is the construction of the reverse process:
how to generate the desired information out of pure noise? To do so, a diffusion model learns to build a
reverse process (2) that imitates the dynamics of the forward process (1) in a time-reverse fashion; more
precisely, the design goal is to ascertain distributional proximity1

Yt
d
≈ Xt, t = T, · · · , 1 (3)

through proper learning based on how the training data propagate in the forward process. Encouragingly,
there often exist feasible strategies to achieve this goal as long as faithful estimates about the (Stein) score
functions — the gradients of the log marginal density of the forward process — are available (Anderson,
1982; Haussmann and Pardoux, 1986). Viewed in this light, a diverse array of diffusion models are frequently
referred to as score-based generative modeling (SGM). The popularity of SGM was initially motivated by, and

1Two random vectors X and Y are said to obey X
d
= Y (resp. X

d
≈ Y ) if they are equivalent (resp. close) in distribution.
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has since further inspired, numerous recent studies on the problem of learning score functions, a subroutine
that also goes by the name of score matching (e.g., Hyvärinen (2005, 2007); Vincent (2011); Song et al.
(2020b); Koehler et al. (2023)).

Nonetheless, despite the mind-blowing empirical advances, a mathematical theory for diffusion generative
models is still in its infancy. Given the complexity of developing a full-fledged end-to-end theory, a divide-
and-conquer approach has been advertised, decoupling the score learning phase (i.e., how to estimate score
functions reliably from training data) and the generative sampling phase (i.e., how to generate new data
instances given the score estimates). In particular, the past few years have witnessed growing interest and
remarkable progress from the theoretical community towards understanding the generative sampling phase
(Block et al., 2020; De Bortoli et al., 2021; Liu et al., 2022; De Bortoli, 2022; Lee et al., 2023; Pidstrigach, 2022;
Chen et al., 2022b,a, 2023c; Tang and Zhao, 2024a,b; Pedrotti et al., 2023; Liang et al., 2024; Li and Yan,
2024). For instance, polynomial-time convergence guarantees have been established for stochastic samplers
(e.g., Chen et al. (2022b,a); Benton et al. (2024); Li et al. (2024c); Tang and Zhao (2024a); Li et al. (2024a);
Mbacke and Rivasplata (2023); Liang et al. (2024); Li and Yan (2024)) and deterministic samplers (e.g., Chen
et al. (2023c); Benton et al. (2023); Li et al. (2024c); Gao and Zhu (2024); Li et al. (2024a); Huang et al.
(2024)), both of which accommodated a fairly general family of data distributions.

This paper. The present paper contributes to this growing list of theoretical endeavors by developing
non-asymptotic convergence theory for a popular deterministic sampler (Song et al., 2021b) — originally
proposed based on a sort of ordinary differential equations (ODEs) for the reverse process called probability
flow ODEs or diffusion ODEs, closely related to the DDIM sampler (Song et al., 2020a). For concreteness, we
prove that the iteration complexity is no larger than the order of

(iteration complexity) : d/ε (4)

(up to some logarithmic factor and lower-order term), with d the data dimension and ε the target accuracy
level in total-variation (TV) distance. We impose only minimal assumptions on the target distribution (e.g.,
no smoothness condition is needed), and quantify the impact of ℓ2 score estimation errors upon convergence.
In comparisons to past works, our main contributions are as follows.

• Linear d-dependency. Our iteration complexity scales nearly linearly in the dimension d, which improves
upon all prior theoretical guarantees for deterministic samplers (Li et al., 2023; Chen et al., 2023c; Huang
et al., 2024); in fact, the state-of-the-art d-dependency before our work scales with d2 (Li et al., 2023;
Huang et al., 2024). Note that d-linear convergence theory was established for the stochastic sampler
DDPM (Benton et al., 2024); the theoretical framework for DDPM is not applicable for analyzing
probability flow ODEs, but the use of a stochastic localization result in Benton et al. (2024) motivates
our approach in sharpening the d dependency. Additionally, our result does not exhibit exponential
dependency on the smoothness or regularity conditions as in Chen et al. (2023c); Benton et al. (2023)
(e.g., the regularity parameter used in Benton et al. (2023) might even scale with the dimension d).

• Linear dependency on 1/ε. We derive an iteration complexity upper bound that is proportional to 1/ε.
Note that this was already accomplished in an earlier version of this work (Li et al., 2023), strengthening
prior convergence guarantees considerably (Chen et al., 2023c). This scaling 1/ε was also proven by a
recent work Huang et al. (2024) via a completely different ODE-based approach.

• ℓ2 score estimation errors for the deterministic sampler. Our theory reveals that the TV distance
between X1 and Y1 is proportional to the ℓ2 score estimation error as well as the associated mean
Jacobian errors, an appealing property already established in an earlier version of this work (Li et al.,
2023). In comparison, prior theoretical results either study stochastic variations of this deterministic
sampler (Chen et al., 2023b) (so that the samplers are no longer the original deterministic sampler) or
fall short of accommodating discretization errors (Benton et al., 2023), with the only exception being
the recent work Huang et al. (2024) that also accounts for score errors for deterministic samplers.

• An elementary analysis framework. From the technical point of view, the analysis framework laid out
in this paper is fully non-asymptotic in nature. In contrast to prior theoretical analyses that take a
detour to study the continuum limits and then control the discretization error, our approach tackles the
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discrete-time processes directly using elementary analysis strategies. No knowledge on SDEs or ODEs
is needed for establishing our theory, resulting in a versatile framework and sometimes lowering the
technical barrier towards understanding diffusion models (for those with no background in SDEs/ODEs).

It is worth emphasizing that our analysis for the probability flow ODE differs drastically from the analysis for
DDPM (Chen et al., 2022b,a; Benton et al., 2024). More concretely, the state-of-the-art analysis for DDPM
(Benton et al., 2024) is built upon the Girsanov theorem, a hammer that provides a powerful way to control
the Kullback-Leibler (KL) divergence between the forward process and the sampling process. This approach,
however, is known to be inapplicable to ODE-based deterministic samplers, given that the aforementioned
KL divergence might even approach infinity. Working backward, our proof attempts to track the proximity of
pXt

and pYt
by iteratively computing how pXt

/pYt
evolves from pXt+1

/pYt+1
.

Notation. Before proceeding, we introduce a couple of notation to be used throughout. For any two functions
f(d, T ) and g(d, T ), we adopt the notation f(d, T ) ≲ g(d, T ) or f(d, T ) = O(g(d, T )) (resp. f(d, T ) ≳ g(d, T ))
to mean that there exists some universal constant C1 > 0 such that f(d, T ) ≤ C1g(d, T ) (resp. f(d, T ) ≥
C1g(d, T )) for all d and T ; moreover, the notation f(d, T ) ≍ g(d, T ) indicates that f(d, T ) ≲ g(d, T ) and
f(d, T ) ≳ g(d, T ) hold at once. The notation Õ(·) is defined similar to O(·) except that it hides the logarithmic
dependency. Additionally, the notation f(d, T ) = o

(
g(d, T )

)
means that f(d, T )/g(d, T ) → 0 as d, T tend

to infinity. We shall often use capital letters to denote random variables/vectors/processes, and lowercase
letters for deterministic variables. For any two probability measures P and Q, the TV distance between
them is defined to be TV(P,Q) := 1

2

∫
|dP − dQ|. Throughout the paper, pX(·) (resp. pX |Y (· | ·)) denotes the

probability density function of X (resp. X given Y ). For any matrix A, we denote by ∥A∥ (resp. ∥A∥F) the
spectral norm (resp. Frobenius norm) of A. Also, for any vector-valued function f , we let Jf or ∂f

∂x represent
the Jacobian matrix of f .

2 Preliminaries
In this section, we introduce the basics of diffusion generative models. The ultimate goal of a generative
model can be concisely stated: given data samples drawn from an unknown distribution of interest pdata in
Rd, we wish to generate new samples whose distributions closely resemble pdata.

2.1 Diffusion generative models
Towards achieving the above goal, a diffusion generative model typically encompasses two Markov processes:
a forward process and a reverse process, as described below.

The forward process. In the forward chain, one progressively injects noise into the data samples to
diffuse and obscure the data. The distributions of the injected noise are often hand-picked, with the standard
Gaussian distribution receiving widespread adoption. More specifically, the forward Markov process produces
a sequence of d-dimensional random vectors X1 → X2 → · · · → XT as follows:

X0 ∼ pdata, (5a)

Xt =
√
1− βtXt−1 +

√
βt Wt, 1 ≤ t ≤ T, (5b)

where {Wt}1≤t≤T indicates a sequence of independent noise vectors drawn from Wt
i.i.d.∼ N (0, Id). The

hyper-parameters {βt ∈ (0, 1)} represent prescribed learning rate schedules that control the variance of the
noise injected in each step. If we define

αt := 1− βt, αt :=

t∏
k=1

αk, 1 ≤ t ≤ T, (6)

then it can be straightforwardly verified that for every 1 ≤ t ≤ T ,

Xt =
√
αtX0 +

√
1− αt W t for some W t ∼ N (0, Id). (7)
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Clearly, if the covariance of X0 is also equal to Id, then the covariance of Xt is preserved throughout the
forward process; for this reason, this forward process (5) is sometimes referred to as variance-preserving (Song
et al., 2021b). Throughout this paper, we employ the notation

qt := distribution
(
Xt

)
(8)

to denote the distribution of Xt. As long as αT is vanishingly small, one has the following property for a
fairly general family of data distributions:

qT ≈ N (0, Id). (9)

The reverse process. The reverse chain YT → YT−1 → . . . → Y1 is designed to (approximately) revert
the forward process, allowing one to transform pure noise into new samples with matching distributions as
the original data. To be more precise, by initializing it as

YT ∼ N (0, Id), (10a)

we seek to design a reverse-time process with nearly identical marginals as the forward process, namely,

(goal) Yt
d
≈ Xt, t = T, T − 1, · · · , 1. (10b)

Throughout the paper, we shall often employ the following notation to indicate the distribution of Yt:

pt := distribution
(
Yt

)
. (11)

2.2 The probability flow ODE
Evidently, the most crucial step of the diffusion model lies in effective design of the reverse process. The
data-generation process of a deterministic sampler typically proceeds as follows: starting from YT ∼ N (0, Id),
one selects a set of functions {Φt(·)}1≤t≤T and computes:

YT ∼ N (0, Id), Yt−1 = Φt

(
Yt

)
for t = T, · · · , 1. (12a)

Clearly, the sampling process is fully deterministic except for the initialization YT . Suppose now that we
are armed with the estimates {st(·)}1≤t≤T for the log density functions {s⋆t (·) := ∇ log qt(·)}1≤t≤T — often
referred to as the (Stein) score functions. Then a discrete-time version of the probability flow ODE approach
(cf. (15)) adopts the following mapping:

Φt(x) :=
1

√
αt

(
x+

1− αt

2
st(x)

)
. (12b)

This approach, based on the probability flow ODE (15), often achieves faster sampling compared to the
stochastic counterpart like DDPM (Song et al., 2021b).

In order to elucidate the plausibility of a deterministic approach, we find it helpful to look at the continuum
limit through the lens of SDEs and ODEs. It is worth emphasizing, however, that the development of our
main theory does not rely on knowledge of SDEs and ODEs.

• The forward process. A continuous-time analog of the forward diffusion process can be modeled as

dXt = f(Xt, t)dt+ g(t)dWt (0 ≤ t ≤ T ), X0 ∼ pdata (13)

for some functions f(·, ·) and g(·) (denoting respectively the drift and diffusion coefficient), where Wt

denotes a d-dimensional standard Brownian motion. As a special example, the continuum limit of (5)
takes the following form2 (Song et al., 2021b)

dXt = −1

2
β(t)Xtdt+

√
β(t) dWt (0 ≤ t ≤ T ), X0 ∼ pdata (14)

for some function β(t). As before, we denote by qt the distribution of Xt in (13).
2To see its connection with (5), it suffices to derive from (5) that Xt − Xt−dt =

√
1− βtXt−dt − Xt−dt +

√
βtWt ≈

− 1
2
βtXt−dt +

√
βtWt.
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• The reverse process. As it turns out, there exist reverse processes capable of reconstructing the marginal
distribution of the forward process. In particular, the probability flow ODE is a reverse process taking
the following form (Song et al., 2021b)

dY ode
t =

(
− f

(
Y ode
t , T − t

)
+

1

2
g(T − t)2∇ log qT−t

(
Y ode
t

))
dt (0 ≤ t ≤ T ), Y ode

0 ∼ qT , (15)

where we use ∇ log qt(X) to abbreviate ∇X log qt(X) for notational simplicity. This ODE exhibits
matching distributions with the forward process in that

Y ode
T−t

d
= Xt, 0 ≤ t ≤ T.

As can be easily shown, the continuous-time limit of (12) falls under this category. Note that this
family of deterministic samplers is closely related to the DDIM sampler (Karras et al., 2022; Song et al.,
2021b).

Interestingly, in addition to the functions f and g that define the forward process, construction of (15) relies
only upon knowledge of the (Stein) score function ∇ log qt(·) of the intermediate steps of the forward diffusion
process, an intriguing fact that also holds when designing stochastic samplers like DDPM. Consequently, a
key enabler of diffusion models lies in reliable learning of the score function, and hence the name score-based
generative modeling.

3 Convergence theory for the probability flow ODE sampler
In this section, we analyze the probability flow ODE sampler in discrete time. While the proofs for our
main theory are all postponed to the appendix, it is worth emphasizing upfront that our analysis framework
directly tackles the discrete-time processes without the need of resorting to any toolbox of SDEs and ODEs
tailored to the continuous-time limits. This elementary approach might potentially be versatile for analyzing
a broad class of variations of these samplers.

3.1 Assumptions and learning rates
Before proceeding, we impose some assumptions on the score estimates and the target data distributions, and
specify the hyper-parameters {αt} that shall be adopted throughout all cases.

Score estimates. Given that the score functions are an essential component in score-based generative
modeling, we assume access to faithful estimates of the score functions ∇ log qt(·) across all intermediate
steps t, thus disentangling the score learning phase and the data generation phase. Towards this end, let us
first formally introduce the true score function as follows.

Definition 1 (Score function). The score function, denoted by s⋆t : Rd → Rd (1 ≤ t ≤ T ), is defined as

s⋆t (X) := ∇ log qt(X), 1 ≤ t ≤ T. (16)

As has been pointed out by previous works concerning score matching (e.g., Hyvärinen (2005); Vincent
(2011); Chen et al. (2022b)), the score function s⋆t admits an alternative form as follows (owing to properties
of Gaussian distributions):

s⋆t := arg min
s:Rd→Rd

E
W∼N (0,Id),X0∼pdata

[∥∥∥∥s(√αtX0 +
√
1− αtW

)
+

1√
1− αt

W

∥∥∥∥2
2

]
, (17)

which takes the form of the minimum mean square error estimator for − 1√
1−αt

W given
√
αtX0 +

√
1− αtW

and is often more amenable to training.
With Definition 1 in place, we can readily introduce the following assumptions that capture the quality of

the score estimate {st}1≤t≤T we have available.
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Assumption 1. Suppose that the score function estimate {st}1≤t≤T obeys

1

T

T∑
t=1

E
X∼qt

[∥∥st(X)− s⋆t (X)
∥∥2
2

]
≤ ε2score. (18)

Assumption 2. For each 1 ≤ t ≤ T , assume that st(·) is continuously differentiable, and denote by Js⋆t =
∂s⋆t
∂x

and Jst =
∂st
∂x the Jacobian matrices of s⋆t (·) and st(·), respectively. Assume that the score function estimate

{st}1≤t≤T obeys

1

T

T∑
t=1

E
X∼qt

[∥∥Jst(X)− Js⋆t (X)
∥∥] ≤ εJacobi. (19)

In a nutshell, Assumption 1 reflects the ℓ2 score estimation error, whereas Assumption 2 is concerned with
the estimation error in terms of the corresponding Jacobian matrix (so as to ensure certain continuity of the
score estimator). Both assumptions consider the average estimation errors over all T steps. As we shall see
momentarily, our theory for the deterministic sampler relies on both Assumptions 1 and 2, while the theory
for the stochastic sampler requires only Assumption 1. We shall discuss in Section 3.2 the insufficiency of
Assumption 1 alone for the probability flow ODE sampler.

Target data distributions. Our goal is to uncover the effectiveness of diffusion models in generating a
broad family of data distributions. Throughout this paper, the only assumptions we need to impose on the
target data distribution pdata are the following:

• X0 is an absolutely continuous random vector, and

P
(
∥X0∥2 ≤ R = T cR

)
= 1, X0 ∼ pdata (20)

for some arbitrarily large constant cR > 0.

This assumption allows the radius of the support of pdata to be exceedingly large (given that the exponent cR
can be arbitrarily large).

Learning rate schedule. Let us also take a moment to specify the learning rates to be used for our
theory and analyses. For some large enough numerical constants c0, c1 > 0, we set

β1 = 1− α1 =
1

T c0
; (21a)

βt = 1− αt =
c1 log T

T
min

{
β1

(
1 +

c1 log T

T

)t
, 1

}
. (21b)

In words, our choice of {βt} undergoes two phases: at the beginning (when t is small), βt exhibits
exponential increase; once it reaches the level of c1 log T

T , it stays flat for the remaining steps. This two-phase
choice shares similarity with the choice adopted in prior diffusion model theory like Benton et al. (2024).

3.2 Main results
We are now ready to present our non-asymptotic convergence guarantee — measured by the total variation
distance between the forward and the reverse processes — for the discrete-time version (12) of the probability
flow ODE. The proof of our theory is postponed to Section 5.2.

Theorem 1. Suppose that (20) holds true. Assume that the score estimates st(·) (1 ≤ t ≤ T ) satisfy
Assumptions 1 and 2. Then the sampling process (12) with the learning rate schedule (21) satisfies

TV
(
q1, p1

)
≤ C1

d log4 T

T
+ C1

√
d log4 T εscore + C1d(log

2 T )εJacobi (22)

for some universal constants C1 > 0, provided that T ≥ C2d
2 log5 T for some large enough constant C2 > 0.

Here, we recall that p1 (resp. q1) represents the distribution of Y1 (resp. X1).
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Let us remark on the main implications of Theorem 1, as well as several points worth discussing. Before
proceeding, we shall note that our theory is concerned with convergence to q1. Given that X1 ∼ q1 and
X0 ∼ q0 are very close due to the choice of α1, focusing on the convergence w.r.t. q1 instead of q0 remains
practically relevant.

Iteration complexity. Consider first the scenario that has access to perfect score estimates (i.e., εscore = 0).
In order to achieve ε-accuracy (in the sense that TV(q1, p1) ≤ ε), the number of steps T only needs to exceed

Õ

(
d

ε

)
(23)

for small enough accuracy level ε. As far as we know, this is the first result that unveils linear dimension
dependency for the probability flow ODE sampler. Note that our theory is established without assuming any
sort of smoothness or log-concavity on the target data distribution.

Stability. Turning to the more general case with imperfect score estimates (i.e., εscore > 0), the deterministic
sampler (12) yields a distribution whose distance to the target distribution (measured again by the TV
distance) scales proportionally with εscore and εJacobi. It is noteworthy that in addition to the ℓ2 score
estimation errors, we are in need of an assumption on the stability of the associated Jacobian matrices, which
plays a pivotal in ensuring that the reverse-time deterministic process does not deviate considerably from the
desired process.

Insufficiency of the score estimation error assumption alone. The careful reader might wonder why
we are in need of additional assumptions beyond the ℓ2 score error stated in Assumption 1. To answer this
question, we find it helpful to look at a simple example below.

• Example. Consider the case where X0 ∼ N (0, 1), and hence X1 ∼ N (0, 1). Suppose that the reverse
process for time t = 2 can lead to the desired distribution if exact score function is employed, namely,

Y ⋆
1 :=

1
√
α2

(
Y2 −

1− α2

2
s⋆2(Y2)

)
∼ N (0, 1).

Now, suppose that the score estimate s2(·) we have available obeys

s2(y2) = s⋆2(y2) +
2
√
α2

1− α2

{
y⋆1 − L

⌊
y⋆1
L

⌋}
with y⋆1 :=

1
√
α2

(
y2 −

1− α2

2
s⋆2(y2)

)
for some L > 0, where ⌊z⌋ is the greatest integer not exceeding z. It follows that

Y1 = Y ⋆
1 +

1− α2

2
√
α2

[
s⋆2(Y2)− s2(Y2)

]
= L

⌊
Y ⋆
1

L

⌋
.

Clearly, the score estimation error EX2∼N (0,1)

[
|s2(X2) − s⋆2(X2)|2

]
can be made arbitrarily small by

taking L to be sufficiently small. However, the discrete nature of Y1 forces the TV distance to be

TV(Y1, X1) = 1.

The above example demonstrates that, for the deterministic sampler, the TV distance between Y1 and X1

might not improve as the score error decreases. This is in stark contrast to the stochastic sampler like DDPM.
If we wish to eliminate the need of imposing Assumption 2, one potential way is to resort to other metrics
(e.g., the Wasserstein distance) instead of the TV distance between Y1 and X1.
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Support size of pdata. It is noteworthy that our theory holds true even when the support size of the target
distribution is polynomially large (see (20)). This implies that careful normalization of the target data is
often unnecessary. Furthermore, we note that the assumption (20) can also be relaxed. Supposing that
P
(
∥X0∥2 ≤ B | X0 ∼ pdata

)
= 1 for some quantity B > 0 (which is allowed to grow faster than a polynomial

in T ), we can readily extend our analysis to obtain

TV
(
q1, p1

)
≤ C1

(
d

T
+

√
d εscore + dεJacobi

)
polylog(T,B).

Importantly, the convergence rate depends only logarithmically in B.

Comparisons to previous works. Next, let us compare our results with past works.

• The first analysis for the discretized probability flow ODE approach in prior literature was derived by a
recent work Chen et al. (2023c), which established non-asymptotic convergence guarantees that exhibit
polynomial dependency in both d and 1/ε (see, e.g., Chen et al. (2023c, Theorem 4.1)). However, it fell
short of providing concrete polynomial dependency in d and 1/ε, suffered from exponential dependency
in the Lipschitz constant of the score function, and relied on exact score estimates. In contrast, our
result in Theorem 1 uncovers a concrete Õ(d/ε) scaling (ignoring lower-order and logarithmic terms)
without imposing any smoothness assumption on the target data distribution, and makes explicit the
effect of ℓ2 score estimation errors, both of which were previously unavailable for such discrete-time
deterministic samplers.

• Benton et al. (2023) studied the convergence of the probability flow ODE approach without accounting
for the discretization error. The result therein also exhibited exponential dependency on a certain
Lipschitz constant w.r.t. the forward flow and a regularity parameter (denoted by λ therein, which
might scale with the dimension d).

• Chen et al. (2023b) studied two variants of the probability flow ODE. By inserting an additional
stochastic corrector step — based on overdamped (resp. underdamped) Langevin diffusion — in each
iteration of the probability flow ODE (so strictly speaking, these variations are no longer deterministic
samplers), Chen et al. (2023b) showed that Õ(L3d/ε2) (resp. Õ(L2

√
d/ε)) steps are sufficient, where L

denotes the Lipschitz constant of the score function. In comparison, our result demonstrates for the
first time that the plain probability flow ODE already achieves the Õ(d/ε) scaling without requiring
either corrector steps or smoothness assumptions.

• The very recent work Huang et al. (2024) developed a novel suite of theory for the probability flow
ODE, accounting for p-th (p ≥ 1) order Runge-Kutta integrators (so as to demonstrate the degree of
acceleration based on higher-order ODEs). When p = 1, the algorithm resembles what we analyze herein;
let us make comparisons for this case in the following. The iteration complexity derived by Huang
et al. (2024) scales as Õ(d2/ε), whereas we obtain a sharper bound Õ(d/ε). In addition, the iteration
complexity in Huang et al. (2024) scales quadratically in the support size of the target distribution, while
our theory allows the support size to be polynomially large without affecting the iteration complexity.
Moreover, the TV distance bound in Huang et al. (2024) scales proportionally to d3/4εscore (in addition
to other multiplicative factors like the support size and Lipschitz constants), which is weaker than our
result

√
dεscore in terms of the d-dependency.

Another recent work Gao and Zhu (2024) established the first non-asymptotic theory for the probability flow
ODE in 2-Wasserstein distance. The results therein require the target data distribution to satisfy strong
log-concavity though.

Finally, let us briefly compare our result with the theory for the popular stochastic sampler: DDPM. The
state-of-the-art convergence theory Benton et al. (2024) reveals that the iteration complexity for DDPM
scales as Õ(d/ε2), which exhibits worse ε-dependency compared to our theory for the probability flow ODE.

9



4 Other related works

Convergence theory for diffusion models. Early theoretical efforts in understanding the convergence of
score-based stochastic samplers suffered from being either not quantitative (De Bortoli et al., 2021; Liu et al.,
2022; Pidstrigach, 2022), or the curse of dimensionality (e.g., exponential dependencies in the convergence
guarantees) (Block et al., 2020; De Bortoli, 2022). The recent work Lee et al. (2022) provided the first
polynomial convergence guarantee in the presence of ℓ2-accurate score estimates, for any smooth distribution
satisfying the log-Sobelev inequality. Chen et al. (2022b); Lee et al. (2023); Chen et al. (2022a) subsequently
lifted such a stringent data distribution assumption. More concretely, Chen et al. (2022b) accommodated a
broad family of data distributions under the premise that the score functions over the entire trajectory of the
forward process are Lipschitz; Lee et al. (2023) only required certain smoothness assumptions but came with
worse dependence on the problem parameters; and more recent results in Chen et al. (2022a); Benton et al.
(2024) applied to literally any data distribution with bounded second-order moment. In addition, Wibisono
and Yang (2022) also established a convergence theory for score-based generative models, assuming that
the error of the score estimator has a bounded moment generating function and that the data distribution
satisfies the log-Sobelev inequality. The recent work Li and Yan (2024) further showed that DDPM can
automatically adapt to intrinsic low dimensionality of the target distribution and converge faster. Turning
attention to samplers based on the probability flow ODE, Chen et al. (2023c) derived the first non-asymptotic
bounds for this type of samplers. Improved convergence guarantees have recently been provided by a
concurrent work Chen et al. (2023b), with the assistance of additional corrector steps inerspersed in each
iteration of the probability flow ODE. It is worth noting that the corrector steps proposed therein are based
on Langevin-type diffusion and inject additive noise, and hence the resulting sampling processes are not
deterministic. Additionally, theoretical justifications for DDPM in the context of image in-painting have
been developed by Rout et al. (2023). Moreover, convergence results based on the Wasserstein distance have
recently been derived as well (e.g., Tang and Zhao (2024a); Benton et al. (2023)), although these results
typically exhibit exponential dependency on the Lipschitz constants of the score functions. While the vast
majority of past theory has been devoted to accommodating general distributions in Rd, acceleration is shown
to be possible if we restrict attention to discrete-valued distributions (Chen and Ying, 2024). Another strand
of recent works (e.g., Chen et al. (2024a); Gupta et al. (2024)) explored how to exploit parallel sampling
to achieve considerable speed-up. Theoretical guarantees have also recently been extended to cover other
popular methods like consistency models (Song et al., 2023; Li et al., 2024b; Dou et al., 2024) and diffusion
guidance (Ho and Salimans, 2022; Wu et al., 2024; Fu et al., 2024).

Score matching. Hyvärinen (2005) showed that the score function can be estimated via integration by
parts, a result that was further extended in Hyvärinen (2007). Song et al. (2020b) proposed sliced score
matching to tame the computational complexity in high dimension. The consistency of the score matching
estimator was studied in Hyvärinen (2005), with asymptotic normality established in Forbes and Lauritzen
(2015). Optimizing the score matching loss has been shown to be intimately connected to minimizing upper
bounds on the Kullback-Leibler divergence (Song et al., 2021a) and Wasserstein distance (Kwon et al., 2022)
between the generated distribution and the target data distribution. The recent work Koehler et al. (2023)
studied the statistical efficiency of score matching by connecting it with the isoperimetric properties of the
target data distribution. Furthermore, Feng et al. (2024) showed that statistical procedures based on score
matching can achieve minimal asymptotic covariance for convex M -estimation.

Other theory for diffusion models. The development of diffusion model theory is certainly beyond the
above two strand of works. For instance, Oko et al. (2023) studied the approximation and generalization
capabilities of diffusion modeling for distribution estimation; Kadkhodaie et al. (2024); Zhang et al. (2024);
Biroli et al. (2024) investigated the phase transition between the memorization regime and the generalization
regime in diffusion models; Chen et al. (2023a); Wang et al. (2024) studied how diffusion models can adapt to
low-dimensional structure. Moreover, Ghimire et al. (2023) adopted a geometric perspective and showed that
the forward and backward processes of diffusion models are essentially Wasserstein gradient flows operating
in the space of probability measures. Recently, the idea of stochastic localization, which is closely related to
diffusion models, is adopted to sample from posterior distributions (Montanari and Wu, 2023; El Alaoui et al.,
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2022), which has been implemented using the approximate message passing algorithm (Donoho et al. (2009);
Li and Wei (2022)); some results discovered in the stochastic localization literature (e.g., Eldan (2020)) have
also paved the way to sharpening of dimension dependency (Benton et al., 2024). In addition to the DDPM
and DDIM type samplers discussed herein, convergence of other flow-based generative modeling has also
been established in recent works (e.g., Gao et al. (2024); Cheng et al. (2024); Xu et al. (2024)). Xu and Chi
(2024) developed provably robust methods for posterior sampling with diffusion priors for general nonlinear
inverse problems, whereas Montanari and Wu (2024) exploited the idea of measure decomposition to improve
posterior sampling for linear inverse problems. There have also been a couple of recent works that delve into
various properties of diffusion models for Gaussian mixture models (Wu et al., 2024; Chen et al., 2024c; Cui
et al., 2023; Li and Chen, 2024).

5 Analysis
In this section, we describe our non-asymptotic proof strategies for establishing Theorem 1.

5.1 Preliminary facts
Before proceeding, we gather a couple of facts that will be useful for the proof, with most proofs postponed
to Appendix A.

Properties related to the score function. First of all, in view of the alternative expression (17) for the
score function and the property of the minimum mean square error (MMSE) estimator (e.g., Hajek (2015,
Section 3.3.1)), we know that the true score function s⋆t is given by the conditional expectation

s⋆t (x) = E
[
− 1√

1− αt
W

∣∣∣∣√αtX0 +
√
1− αtW = x

]
=

1

1− αt
E
[√

αtX0 − x
∣∣√αtX0 +

√
1− αtW = x

]
= − 1

1− αt

∫
x0

(
x−

√
αtx0

)
pX0|Xt

(x0 |x)dx0︸ ︷︷ ︸
=: gt(x)

. (24)

Let us also introduce the Jacobian matrix associated with gt(·) as follows:

Jt(x) :=
∂gt(x)

∂x
, (25a)

which can be equivalently rewritten as

Jt(x) = Id −
1

1− αt
Cov

(
Xt −

√
αtX0 | Xt = x

)
. (25b)

Properties about the learning rates. Next, we isolate a few useful properties about the learning rates
as specified by {αt} in (21):

αt ≥ 1− c1 log T

T
≥ 1

2
, 1 ≤ t ≤ T (26a)

1

2

1− αt

1− αt
≤ 1

2

1− αt

αt − αt
≤ 1− αt

1− αt−1
≤ 4c1 log T

T
, 2 ≤ t ≤ T (26b)

1 ≤ 1− αt

1− αt−1
≤ 1 +

4c1 log T

T
, 2 ≤ t ≤ T (26c)

αT ≤ 1

T c2
, (26d)

αt+1

1− αt+1
≤ αt

1− αt
≤ 4αt+1

1− αt+1
, 1 ≤ t < T (26e)
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provided that T is large enough. Here, c1 is defined in (21), and c2 ≥ 1000 is some large numerical constant.
In addition, if d(1−αt)

αt−αt
≪ 1, then one has( 1− αt

αt − αt

)d/2
= 1 +

d(1− αt)

2(αt − αt)
+

d(d− 2)(1− αt)
2

8(αt − αt)2
+O

(
d3
( 1− αt

αt − αt

)3)
, (26f)( 1− αt

αt − αt

)d/2
= exp

(
1− αt

αt − αt
· d
2

)
·
(
1 +O

(
d
( 1− αt

αt − αt

)2))
. (26g)

The proof of these properties is postponed to Appendix A.2.

Properties of the forward process. Recall that the forward process satisfies Xt
d
=

√
αtX0 +

√
1− αtW

with W ∼ N (0, Id). We have the following tail bound concerning the random vector X0 conditional on Xt,
whose proof can be found in Appendix A.3. Here and throughout, we take

θt(x) := max

{
− log pXt(x)

d log T
, c6

}
(27)

for any x ∈ Rd, where c6 > 0 is some large enough constant obeying c6 ≥ 2cR + c0.

Lemma 1. Suppose that (20) holds true. Then for any quantity c5 ≥ 2, conditioned on Xt = y one has∥∥√αtX0 − y
∥∥
2
≤ 5c5

√
θt(y)d(1− αt) log T (28)

with probability at least 1− exp
(
− c25θt(y)d log T

)
. In addition, it holds that

E
[∥∥√αtX0 − y

∥∥
2

∣∣Xt = y
]
≤ 12

√
θt(y)d(1− αt) log T , (29a)

E
[∥∥√αtX0 − y

∥∥2
2

∣∣Xt = y
]
≤ 120θt(y)d(1− αt) log T, (29b)

E
[∥∥√αtX0 − y

∥∥3
2

∣∣Xt = y
]
≤ 1040

(
θt(y)d(1− αt) log T

)3/2
, (29c)

E
[∥∥√αtX0 − y

∥∥4
2

∣∣Xt = y
]
≤ 10080

(
θt(y)d(1− αt) log T

)2
. (29d)

In order to interpret Lemma 1, let us look at the case with θt(y) = c6, corresponding to the scenario where
pXt

(y) ≥ exp(−c6d log T ) (so that pXt
(y) is not exceedingly small). In this case, Lemma 1 implies that

conditional on Xt = y taking on a “typical” value, the vector
√
αtX0 −Xt =

√
1− αt W t (see (7)) might

still follow a sub-Gaussian tail, whose expected norm remains on the same order of that of an unconditional
Gaussian vector N (0, (1− αt)Id).

Properties about the conditional covariance matrices. We shall also single out two basic properties
about certain conditional covariances as follows. To be precise, generate

X0 ∼ pdata and Z ∼ N (0, Id) (30)

independently. Define, for any α ∈ (0, 1) and any x ∈ Rd, the following conditional covariance matrix

Σα(x) := Cov
(
Z |

√
αX0 +

√
1− αZ = x

)
. (31)

The lemma below reveals two properties about Σα(·) that play a crucial role in our analysis; the proof is
postponed to Appendix A.4.

Lemma 2. The conditional covariance matrix defined in (31) satisfies the following properties.

(a) For any α, α′ ∈ (0, 1) obeying |α′−α|
α(1−α) ≲

1
d log T and 1− α ≥ T−c0 (with c0 the constant defined in (21)),

it holds that

E
[(

Σα′
(√

α′X0 +
√
1− α′Z

))2]
⪯ C2

3E
[(

Σα

(√
αX0 +

√
1− αZ

))2]
+ C8 exp

(
− C9d log T

)
Id

for some universal constants C3, C8, C9 > 0.
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(b) For the learning rates (21), one has

T∑
t=2

1− αt

1− αt
Tr

(
E
[(

Σαt

(√
αtX0 +

√
1− αtZ

))2])
≲ d log T.

Remark 1. This lemma, which plays a pivotal role in achieving linear d-dependency, is inspired by the
analysis of Benton et al. (2024) for DDPM, exploiting an intriguing property (see (88)) originally discovered
in the stochastic localization literature (Eldan, 2020). Note, however, that this property can also be established
using elementary analysis without resorting to any sort of SDE toolboxes (El Alaoui and Montanari, 2022).

Distance between pT and qT . We now record a simple result that demonstrates the proximity of pT and
qT , whose proof is provided in Appendix A.5.

Lemma 3. For any large enough T , it holds that(
TV(pXT

∥ pYT
)
)2 ≤ 1

2
KL(pXT

∥ pYT
) ≲

1

T 200
. (32)

Additional notation about score errors. For any vector x ∈ Rd and any 1 < t ≤ T , let us define

εscore,t(x) :=
∥∥st(x)− s⋆t (x)

∥∥
2

and εJacobi,t(x) :=
∥∥Jst(x)− Js⋆t (x)

∥∥, (33)

with Jst and Js⋆t the Jacobian matrices of st(·) and s⋆t (·), respectively. Under Assumption 1, we have

1

T

T∑
t=1

EX∼qt

[
εscore,t(X)

]
≤
(
1

T

T∑
t=1

EX∼qt

[
εscore,t(X)2

])1/2

≤ εscore. (34a)

Also, Assumption 2 says that

1

T

T∑
t=1

EX∼qt

[
εJacobi,t(X)

]
≤ εJacobi. (34b)

5.2 Main steps for the proof of Theorem 1
We now present the proof for our main result (i.e., Theorem 1) for the discrete-time sampler (12) based on
the probability flow ODE. Given that the TV distance is always bounded above by 1, it suffices to assume

εscore ≤
1

C1

√
d log2 T

(35a)

εJacobi ≤
1

C1d log
2 T

(35b)

throughout the proof; otherwise the claimed result (22) becomes trivial.

Preparation. Before proceeding, we find it convenient to introduce a function

ϕ⋆
t (x) = x+

1− αt

2
s⋆t (x) = x− 1− αt

2(1− αt)

∫
x0

(
x−

√
αtx0

)
pX0|Xt

(x0 |x)dx0, (36a)

ϕt(x) = x+
1− αt

2
st(x), (36b)

where the first line follows from (24). The update rule (12) can then be expressed as follows:

Yt−1 = Φt(Yt) =
1

√
αt

ϕt(Yt). (37)
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Moreover, for any point yT ∈ Rd (resp. y′T ∈ Rd), let us define the corresponding deterministic sequence

yt−1 =
1

√
αt

ϕt(yt), y′t−1 =
1

√
αt

ϕt(y
′
t), t = T, T − 1, · · · (38)

In other words, {yT−1, . . . , y1} (resp. {y′T−1, . . . , y
′
1}) is the (reverse-time) sequence generated by the probabil-

ity flow ODE (cf. (37)) when initialized to YT = yT (resp. YT = y′T ). We also define the following quantities
for any point yT ∈ Rd and its associated sequence {yT−1, . . . , y1}:

ξt(yt) :=
log T

T

(
dεJacobi,t(yt) +

√
d log Tεscore,t(yt)

)
; (39a)

St(yT ) :=
∑

1<k≤t

ξk(yk), for t ≥ 2, and S1(yT ) = 0. (39b)

In words, for any given starting point yT , ξt(yt) captures the (properly weighted) score error incurred in the
t-th iteration, whereas St(yT ) quantifies the aggregate weighted score error up to the t-th iteration.

With the above notation in place, we can readily proceed to our proof, which consists of several steps.

Step 1: bounding the density ratios of interest. To begin with, we note that for any vectors yt−1 and
yt, elementary properties about transformation of probability distributions give

pYt−1
(yt−1)

pXt−1
(yt−1)

=
p√αtYt−1

(
√
αtyt−1)

p√αtXt−1
(
√
αtyt−1)

=
p√αtYt−1

(
√
αtyt−1)

pYt
(yt)

·
(
p√αtXt−1

(
√
αtyt−1)

pXt
(yt)

)−1

· pYt(yt)

pXt
(yt)

, (40)

thus converting the density ratio of interest into the product of three other density ratios. Noteworthily, this
observation (40) connects the target density ratio

pYt−1

pXt−1
at the (t− 1)-th step with its counterpart pYt

pXt
at the

t-th step, motivating us to look at the density changes within adjacent steps in both the forward and the
reverse processes (i.e., pXt−1 vs. pXt and pYt−1 vs. pYt). In light of this expression, we develop a key lemma
related to some of these density ratios.

Lemma 4. Recall the definition of θt(x) in (27). Consider any x ∈ Rd obeying 40c1εscore,t(x) log
3
2 T

T ≤
√

θt(x)d.
Then one has

p√αtXt−1

(
ϕt(x)

)
pXt

(x)
≤ 2 exp

((
5εscore,t(x)

√
θt(x)d log T + 60θt(x)d log T

) 1− αt

αt − αt

)
. (41)

If, in addition, we have C10
θt(x)d log2 T+εscore,t(x)

√
θt(x)d log3 T

T ≤ 1 for some large enough constant C10 > 0,
then it holds that

p√αtXt−1
(ϕt(x))

pXt
(x)

= 1 +
d(1− αt)

2(αt − αt)
+

(1− αt)
(∥∥ ∫ (x−

√
αtx0

)
pX0 |Xt

(x0 |x)dx0

∥∥2
2
−
∫ ∥∥x−

√
αtx0

∥∥2
2
pX0 |Xt

(x0 |x)dx0

)
2(αt − αt)(1− αt)

+O

(
θt(x)

2d2
( 1− αt

αt − αt

)2
log2 T + εscore,t(x)

√
θt(x)d log T

( 1− αt

αt − αt

))
. (42a)

Moreover, for any random vector Y , one has

pϕt(Y )(ϕt(x))

pY (x)

= 1 +
d(1− αt)

2(αt − αt)
+

(1− αt)
(∥∥ ∫ (x−

√
αtx0

)
pX0 |Xt

(x0 |x)dx0

∥∥2
2
−
∫ ∥∥x−

√
αtx0

∥∥2
2
pX0 |Xt

(x0 |x)dx0

)
2(αt − αt)(1− αt)
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+O

(
θt(x)

2d2
( 1− αt

αt − αt

)2
log2 T +

d log TεJacobi,t(x)

T

)
, (42b)

provided that C11
d2 log2 T+dεJacobi,t(x) log T

T ≤ 1 for some large enough constant C11 > 0.

Proof. The proof of this lemma is postponed to Appendix B.1.

Remark 2. Combining Lemma 4 with Lemma 1 and (26) gives: if C10
θt(x)d log2 T+εscore,t(x)

√
θt(x)d log3 T

T ≤ 1
and if θt(x) ≲ 1, then (42a) tells us that

log
p√αtXt−1

(ϕt(x))

pXt
(x)

≤ 4c1d log T

T
+ C10

{
d2 log4 T

T 2
+

εscore,t(x)
√
d log3 T

T

}
(43)

under our sample size assumption (35), where C10 > 0 is some large enough constant. Here, we have made
use of the fact that the penultimate term in (42a) is non-positive due to Jensen’s inequality.

Informally, the result in (42) already tells us that

pϕt(Yt)(ϕt(x))

pYt
(x)

/
p√αtXt−1

(ϕt(x))

pXt
(x)

≈ 1

for many points x if we ignore the residual terms, which combined with (40) shows that

pYt−1
(yt−1)

pXt−1(yt−1)
≈ pYt

(yt)

pXt(yt)

for many points yt. However, it is worth pointing out that: while Lemma 4 already provides useful estimates
for the density ratios of interest, these results alone are not sufficient to yield the desired d-dependency. For
instance, the residual term in (42) scales quadratically in d, thereby precluding one from obtaining linear
d-dependency.

To further make improvements, we develop a more refined bound below when θt(x) ≲ 1, whose proof can
be found in Appendix B.2.

Lemma 5. Recall the definition of θt(·) in (27). There exists some function ζt(·) such that: for any x obeying

θt(x) ≲ 1, C10
θt(x)d log2 T+εscore,t(x)

√
θt(x)d log3 T

T ≤ 1 and C11
dεJacobi,t(x) log T

T ≤ 1 (with the constants C10, C11

defined in Lemma 4), one has

pϕt(Yt)(ϕt(x))

pYt(x)
/
p√αtXt−1

(ϕt(x))

pXt(x)

= 1 + ζt(x) +O

(∥∥∥∥∂ϕ⋆
t (x)

∂x
− I

∥∥∥∥2
F

+
εscore,t(x)

√
d log3 T

T
+

d log TεJacobi,t(x)

T
+

d log3 T

T 2

)
(44)

with ζt(x) ≤ 0. In addition, this function ζt(·) satisfies

E
X∼qt

[∣∣ζt(X)
∣∣] ≲ E

X∼qt

[∥∥∥∂ϕ⋆
t

∂x
(X)− I

∥∥∥2
F

]
+

d log3 T

T 2
, (45)

provided that T ≳ d2 log5 T .

In words, Lemma 5 makes apparent that a key quantity to control when bounding the density ratios of
interest is ∥∥∥∂ϕ⋆

t

∂x
(X)− I

∥∥∥2
F

(46)

While we are unable to obtain the desired control of (46) in a pointwise manner, the expected sum of this
quantity (46) over all t can be bounded in a fairly tight manner (we shall demonstrate this momentarily in
(58)), which forms a crucial step towards sharpening the dimension dependency.
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Step 2: decomposing the TV distance based on “typical” points. To bound the TV distance of
interest, it is helpful to isolate the following sets

E :=
{
y : q1(y) > max

{
p1(y), exp

(
− c6d log T

)}}
, (47)

where c6 > 0 is some large enough universal constant introduced in Lemma 4. In words, this set E contains
all y that can be viewed as “typical” values under the distribution q1 (meaning that q1(y) is not exceedingly
small), while at the same time obeying q1(y) > p1(y).

In view of the basic properties about the TV distance, we can derive

TV
(
q1, p1

)
=

∫
y:q1(y)>p1(y)

(
q1(y)− p1(y)

)
dy

=

∫
y∈E

(
q1(y)− p1(y)

)
dy +

∫
y:p1(y)<q1(y)≤exp(−c6d log T )

(
q1(y)− p1(y)

)
dy. (48)

In order to bound the second term on the right-hand side of (48), we make note of a basic fact: since

Xt
(d)
=

√
αtX0 +

√
1− αtW with W ∼ N (0, Id) and P(∥X0∥2 ≤ T cR) = 1, it holds that

P
{
∥Xt∥2 ≥ T cR+2

}
≤ P

{
∥W∥2 ≥ T 2

}
< exp (−c6d log T ) (49)

under our assumption (35) on T , thereby indicating that∫
y:∥y∥2≥T cR+2

qt(y)dy < exp (−c6d log T ) . (50)

This basic fact in turn reveals that∫
y:p1(y)<q1(y)≤exp(−c12d log T )

(
q1(y)− p1(y)

)
dy ≤

∫
y:q1(y)≤exp(−c6d log T )

q1(y)dy

≤ exp(−c6d log T )

∫
y:∥y∥2≤T cR+2

dy + exp (−c6d log T )

≤ exp(−c6d log T )
(
2T cR+2

)d
+ exp (−c6d log T )

≤ exp
(
− 0.5c6d log T

)
,

provided that c6 ≥ 4(cR + 2). Substitution into (48) then yields

TV
(
q1, p1

)
≤ EY1∼p1

[( q1(Y1)

p1(Y1)
− 1
)
1 {Y1 ∈ E}

]
+ exp

(
− c6d log T

)
, (51)

with the proviso that c6 ≥ 4(cR + 2).
To proceed, let us isolate the following set

I1 :=
{
yT | ST

(
yT
)
≤ c14

}
(52)

for some small enough constant c14 > 0. In words, I1 is composed of a set of points whose aggregated
score error along the backward trajectory is well-controlled; in fact, these are points that exhibit “typical”
behavior under the assumptions (35a) and (35b). As a result, we can decompose the first term of (51) into
the influence of “typical” points and that of the remaining points as follows:

E
Y1∼p1

[( q1(Y1)

p1(Y1)
− 1
)
1 {Y1 ∈ E}

]
= E

YT∼pT

[( q1(Y1)

p1(Y1)
− 1
)
1 {Y1 ∈ E}

]
= E

YT∼pT

[( q1(Y1)

p1(Y1)
− 1
)
1 {Y1 ∈ E , YT ∈ I1}

]
+ E

YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT /∈ I1}

]
, (53)

where the first identity holds since Y1 is determined purely by YT via deterministic update rules. The
decomposition (53) leaves us with two terms to control, which we accomplish in the next two steps.
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Step 3: controlling the first term on the right-hand side of (53). This step analyzes the first term
on the right-hand side of (53). We would like to make the analysis in this step slightly more general than
needed, given that it will be useful for the subsequent analysis as well.

To begin with, let us introduce the following quantity:

τ(yT ) := max
{
2 ≤ t ≤ T + 1 : St−1

(
yT
)
≤ c14

}
, (54)

meaning that the score errors exhibit “typical” behavior up to the
(
τ(yT )− 1

)
-th iteration. As can be clearly

seen from the definition (52) of I1,

τ(yT ) = T + 1, ∀yT ∈ I1. (55)

In the sequel, we first single out the following lemma, whose proof is deferred to Appendix B.3.

Lemma 6. Consider any yT and its associated sequence {yT−1, · · · , y1} (see (38)). If − log q1(y1) ≤ c6d log T ,
then one has

− log qk(yk) ≤ 2c6d log T (56)

for any 1 ≤ k < τ(yT ) (cf. (54)), provided that c6 ≥ 3c1.

As a consequence of Lemma 6, we are able to control the density ratio qt/pt up to the
(
τ(yT ) − 1

)
-th

iteration, as stated in the following lemma. The proof can be found in Appendix B.4.

Lemma 7. Consider any yT , along with the deterministic sequence {yT−1, · · · , y1} (cf. (38))), and set
τ = τ(yT ) (cf. (54)). Then one has

q1(y1)

p1(y1)
=

{
1 +O

(
d log4 T

T
+
∑
t<τ

(
ζt(yt) +

∥∥∥∂ϕ⋆
t (yt)

∂x
− I
∥∥∥2
F

)
+ Sτ−1(yτ−1)

)}
qτ−1(yτ−1)

pτ−1(yτ−1)
, (57a)

and
qk(yk)

2pk(yk)
≤ q1(y1)

p1(y1)
≤ 2

qk(yk)

pk(yk)
, ∀k < τ, (57b)

where the function ζt(·) is defined in Lemma 5.

Moreover, according to the definition in (36), we can invoke the properties (25) to obtain

∂ϕ⋆
t

∂x
(x)− Id = − 1− αt

2(1− αt)
Jt(x) =

1− αt

2(1− αt)
Cov

(
Xt −

√
αtX0√

1− αt
|Xt = x

)
− 1− αt

2(1− αt)
Id,

which combined with Lemma 2(b) and the property (26b) leads to

T∑
t=2

E
Xt∼qt

[∥∥∥∂ϕ⋆
t

∂x
(Xt)− I

∥∥∥2
F

]
≤

T∑
t=2

E
Xt∼qt

[∥∥∥ 1− αt

2(1− αt)
Cov

(
Xt −

√
αtX0√

1− αt
|Xt

)∥∥∥2
F

]
+

T∑
t=2

∥∥∥ 1− αt

2(1− αt)
Id

∥∥∥2
F

=

T∑
t=2

(
1− αt

2(1− αt)

)2

E
Xt∼qt

[
Tr

((
Cov

(Xt −
√
αtX0√

1− αt
|Xt

))2
)]

+

T∑
t=2

∥∥∥ 1− αt

2(1− αt)
Id

∥∥∥2
F

≲
log T

T

T∑
t=2

1− αt

1− αt
Tr

(
E

X0∼pdata,Z∼N (0,Id)

[(
Σαt

(√
αtX0 +

√
1− αtZ

))2])
+

T∑
t=2

d log2 T

T 2

≍ d log2 T

T
. (58)

Now let us look at the set I1. Taking τ(yT ) = T + 1 (cf. (55)) in Lemma 7 yields

E
YT∼pT

[( q1(Y1)

p1(Y1)
− 1
)
1 {Y1 ∈ E , YT ∈ I1}

]
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= E
YT∼pT

[({
1 +O

(
d log4 T

T
+
∑
t

(
ζt(yt) +

∥∥∥∂ϕ⋆
t (yt)

∂x
− I
∥∥∥2
F

)
+ ST (yT )

)}
qT (YT )

pT (YT )
− 1

)
1 {Y1 ∈ E , YT ∈ I1}

]

=

∫ {(
1 +O

(
d log4 T

T
+
∑
t

(
ζt(yt) +

∥∥∥∂ϕ⋆
t (yt)

∂x
− I
∥∥∥2
F

)
+ ST (yT )

))
qT (yT )− pT (yT )

}
1 {y1 ∈ E , yT ∈ I1} dyT

≤
∫ ∣∣qT (yT )− pT (yT )

∣∣dyT +O

(
d log4 T

T
+

√
d log3 Tεscore + (d log T )εJacobi

)
≲

d log4 T

T
+

√
d log3 Tεscore + (d log T )εJacobi. (59)

Here, the last line holds since TV(pT , qT ) ≲ T−100 (according to Lemma 4), and the penultimate line follows
from the observations below:∫ (

ST (yT ) +
∑
t

(
|ζt(yt)|+

∥∥∥∂ϕ⋆
t (yt)

∂x
− I
∥∥∥2
F

))
qT (yT )1 {y1 ∈ E , yT ∈ I1} dyT

=

T∑
t=1

∫ (
log T

T

(
dεJacobi,t(yt) +

√
d log Tεscore,t(yt)

)
+ |ζt(yt)|+

∥∥∥∂ϕ⋆
t (yt)

∂x
− I
∥∥∥2
F

)
qT (yT )1 {y1 ∈ E , yT ∈ I1}dyT

≤ 4

T∑
t=1

E
YT∼pT

[(
log T

T

(
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

)
+ |ζt(Yt)|+

∥∥∥∂ϕ⋆
t (Yt)

∂x
− I
∥∥∥2
F

)
qt(Yt)

pt(Yt)

]

= 4

T∑
t=1

E
Yt∼qt

[
log T

T

(
dεJacobi,t(Yt) +

√
d log Tεscore,t(Yt)

)
+ |ζt(Yt)|+

∥∥∥∂ϕ⋆
t (Yt)

∂x
− I
∥∥∥2
F

]
≲

d log4 T

T
+ (d log T )εJacobi +

√
d log3 Tεscore,

where the first inequality is due to (57), and the last relation comes from (34) and (58).

Step 4: controlling the second term on the right-hand side of (53). In this step, we find it helpful
to introduce the following sets (in addition to I1 defined in (52)), where we again abbreviate τ = τ(yT ) as
long as it is clear from the context:

I2 :=
{
yT : c14 ≤ Sτ

(
yT
)
≤ 2c14

}
, (60a)

I3 :=

{
yT : Sτ−1

(
yT
)
≤ c14, ξτ

(
yT
)
≥ c14,

qτ−1(yτ−1)

pτ−1(yτ−1)
≤ 8qτ (yτ )

pτ (yτ )

}
, (60b)

I4 :=

{
yT : Sτ−1

(
yT
)
≤ c14, ξτ

(
yT
)
≥ c14,

qτ−1(yτ−1)

pτ−1(yτ−1)
>

8qτ (yτ )

pτ (yτ )

}
. (60c)

It follows immediately from the definition that I1 ∪ I2 ∪ I3 ∪ I4 = Rd. In words, for any point yT in I2,
the resulting score error remains well-controlled in the τ -th iteration; in comparison, the points in I3 and
I4 might incur large score errors in the τ -th iteration. The difference between I3 and I4 then lies in the
comparison between the density ratios qt/pt in the (τ − 1)-th and the τ -th iteration.

We shall tackle each of these sets separately, with the combined result summarized in the lemma below.

Lemma 8. It holds that

E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I2 ∪ I3 ∪ I4}

]
≲

d log4 T

T
+

√
d log3 Tεscore + (d log T )εJacobi. (61)

See Appendix B.5 for the proof of this lemma.
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Step 5: putting all pieces together. Recall that I1 ∪ I2 ∪ I3 ∪ I4 = Rd. Taking (51), (53), (59) and
(61) collectively, we conclude that

TV(p1, q1) ≤ E
YT∼pT

[( q1(Y1)

p1(Y1)
− 1
)
1
{
Y1 ∈ E , YT ∈ I1

}]
+ E

YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I2 ∪ I3 ∪ I4}

]
+ exp(−c6d log T )

≲
d log4 T

T
+

√
d log3 Tεscore + dεJacobi log T

as claimed.

6 Discussion
In this paper, we have developed a new suite of non-asymptotic theory for establishing the convergence and
faithfulness of the probability flow ODE based sampler, assuming access to reliable estimates of the (Stein)
score functions. Our analysis framework seeks to track the dynamics of the reverse process directly using
elementary tools, which eliminates the need to look at the continuous-time limit and invoke the SDE and
ODE toolboxes. Our result is the first to establish nearly linear dimension dependency for the iteration
complexity of this sampler, where only very minimal assumptions on the target data distribution are imposed.
The analysis framework laid out in the current paper might shed light on how to analyze other variants of
score-based generative models as well.

Moving forward, there are plenty of questions that require in-depth theoretical understanding. For instance,
can we establish sharp convergence results in terms of the Wasserstein distance for general non-strongly-
log-concave data distributions, which could sometimes be “closer” to how humans differentiate pictures and
might potentially help relax Assumption 2 in the case of deterministic samplers? To what extent can we
further accelerate the sampling process, without requiring much more information than the score functions?
Ideally, one would hope to achieve acceleration with the aid of the score functions only. It would also be of
paramount interest to establish end-to-end performance guarantees that take into account both the score
learning phase and the sampling phase.
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A Proof for several preliminary facts

A.1 Proof of properties (25b)
Elementary calculations reveal that: the (i, j)-th entry of Jt(x) is given by

[
Jt(x)

]
i,j

= 1{i = j}+ 1

1− αt

{(∫
x0

pX0 |Xt
(x0 |x)

(
xi −

√
αtx0,i

)
dx0

)(∫
x0

pX0 |Xt
(x0 |x)

(
xj −

√
αtx0,j

)
dx0

)
−
∫
x0

pX0 |Xt
(x0 |x)

(
xi −

√
αtx0,i

)(
xj −

√
αtx0,j

)
dx0

}
. (62)

This immediately establishes the matrix expression (25b).
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A.2 Proof of properties (26) regarding the learning rates
Proof of property (26a). From the choice of βt in (21), we have

αt = 1− βt ≥ 1− c1 log T

T
≥ 1

2
, t ≥ 2.

The case with t = 1 holds trivially since β1 = 1/T c0 for some large enough constant c0 > 0.

Proof of properties (26b) and (26c). We start by proving (26b). Let τ be an integer obeying

β1

(
1 +

c1 log T

T

)τ

≤ 1 < β1

(
1 +

c1 log T

T

)τ+1

, (63)

and we divide into two cases based on τ .

• Consider any t satisfying t ≤ τ . In this case, it suffices to prove that

1− αt−1 ≥ 1

3
β1

(
1 +

c1 log T

T

)t

. (64)

Clearly, if (64) is valid, then any t ≤ τ obeys

1− αt

1− αt−1
=

βt

1− αt−1
≤

c1 log T
T β1

(
1 + c1 log T

T

)t
1
3β1

(
1 + c1 log T

T

)t =
3c1 log T

T

as claimed. Towards proving (64), first note that the base case with t = 2 holds true trivially since
1− α1 = 1− α1 = β1 ≥ β1

(
1 + c1 log T

T

)2
/3. Next, let t0 > 2 be the first time that Condition (64) fails

to hold and suppose that t0 ≤ τ . It then follows that

1− αt0−2 = 1− αt0−1

αt0−1
≤ 1− αt0−1 <

1

3
β1

(
1 +

c1 log T

T

)t0

≤ 1

2
β1

(
1 +

c1 log T

T

)t0−1

<
1

2
, (65)

where the last inequality result from (63) and the assumption t0 ≤ τ . This taken together with the
assumptions (64) and t0 ≤ τ implies that

(1− αt0−1)αt0−1

1− αt0−2
≥

c1 log T
T β1 min

{(
1 + c1 log T

T

)t0−1
, 1
}
·
(
1− 1

2

)
1
2β1

(
1 + c1 log T

T

)t0−1 =
c1 log T

T β1

(
1 + c1 log T

T

)t0−1

β1

(
1 + c1 log T

T

)t0−1 =
c1 log T

T
.

As a result, we can further derive

1− αt0−1 = 1− αt0−1αt0−2 = 1− αt0−2 + (1− αt0−1)αt0−2

=

(
1 +

(1− αt0−1)αt0−2

1− αt0−2

)
(1− αt0−2)

≥
(
1 +

c1 log T

T

)
(1− αt0−2) ≥

(
1 +

c1 log T

T

)
·
{
1

3
β1

(
1 +

c1 log T

T

)t0−1}
=

1

3
β1

(
1 +

c1 log T

T

)t0

,

where the penultimate line holds since (64) is first violated at t = t0; this, however, contradicts with
the definition of t0. Consequently, one must have t0 > τ , meaning that (64) holds for all t ≤ τ .

• We then turn attention to those t obeying t > τ . In this case, it suffices to make the observation that

1− αt−1 ≥ 1− ατ−1 ≥ 1

3
β1

(
1 +

c1 log T

T

)τ

=
1
3β1

(
1 + c1 log T

T

)τ+1

1 + c1 log T
T

≥ 1

4
, (66)
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where the second and the third inequalities come from (64). Therefore, one obtains

1− αt

1− αt−1
≤

c1 log T
T

1/4
≤ 4c1 log T

T
.

The above arguments taken together establish property (26b).
In addition, it comes immediately from (26b) that

1 ≤ 1− αt

1− αt−1
= 1 +

αt−1 − αt

1− αt−1
= 1 +

αt−1(1− αt)

1− αt−1
≤ 1 +

4c1 log T

T
,

thereby justifying property (26c).

Proof of property (26d). Turning attention to the second claim (26d), we note that for any t obeying
t ≥ T

2 ≳ T
log T , one has

1− αt =
c1 log T

T
min

{
β1

(
1 +

c1 log T

T

)t
, 1

}
=

c1 log T

T
.

This in turn allows one to deduce that

αT ≤
∏

t:t≥T/2

αt ≤
(
1− c1 log T

T

)T/2

≤ 1

T c2

for an arbitrarily large constant c2 > 0.

Proof of property (26e). It follows that

αt

1−αt

αt+1

1−αt+1

=

1−αt+1

1−αt

αt+1
∈ [1, 4],

where the last inequality makes use of (26a) and (26c).

Proof of property (26f). It is easily seen from the Taylor expansion that the learning rates {αt} satisfy

( 1− αt

αt − αt

)d/2
=

(
1 +

1− αt

αt − αt

)d/2

= 1 +
d(1− αt)

2(αt − αt)
+

d(d− 2)(1− αt)
2

8(αt − αt)2
+O

(
d3
( 1− αt

αt − αt

)3)
,

provided that d(1−αt)
αt−αt

≲ 1.

Proof of property (26g). Finally, recognizing that

exp(dx)− (1 + x)d

exp(dx)
= 1−

(
1 + x

exp(x)

)d

= 1−
(
1−O(x2)

)d
= O(dx2)

for any x obeying |dx| < 1/4, one can deduce that

( 1− αt

αt − αt

)d/2
=

(
1 +

1− αt

αt − αt

)d/2

= exp

(
1− αt

αt − αt
· d
2

)
·
(
1 +O

(
d
( 1− αt

αt − αt

)2))
,

given the fact that d(1−αt)
αt−αt

≪ 1.
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A.3 Proof of Lemma 1
For notational simplicity, we drop the subscript t and denote θ(y) := θt(y) throughout this subsection. To
establish this lemma, we first make the following claim, whose proof is deferred to the end of this subsection.

Claim 1. Consider any c5 ≥ 2 and suppose that c6 ≥ 2cR. There exists some x0 ∈ Rd such that

∥
√
αtx0 − y∥2 ≤ c5

√
θ(y)d(1− αt) log T and (67a)

P
(
∥X0 − x0∥2 ≤ ϵ

)
≥
( ϵ

T 2θ(y)

)d
with ϵ =

1

T c0/2
(67b)

hold simultaneously, where c0 is defined in (21).

With the above claim in place, we are ready to prove Lemma 1. For notational simplicity, we let X
represent a random vector whose distribution pX(·) obeys

pX(x) = pX0|Xt
(x | y). (68)

Consider the point x0 in Claim 1, and let us look at a set:

E :=
{
x :

√
αt∥x− x0∥2 > 4c5

√
θ(y)d(1− αt) log T

}
,

where c5 ≥ 2 (see Claim 1). Combining this with property (67a) about x0 results in

P
(
∥
√
αtX − y∥2 > 5c5

√
θ(y)d(1− αt) log T

)
≤ P(X ∈ E). (69)

Consequently, everything boils down to bounding P(X ∈ E). Towards this, we first invoke the Bayes rule
pX0 |Xt

(x | y) ∝ pX0
(x)pXt |X0

(y |x) to derive

P(X0 ∈ E |Xt = y) =

∫
x∈E pX0(x)pXt |X0

(y |x)dx∫
x
pX0(x)pXt |X0

(y |x)dx

≤
∫
x∈E pX0(x)pXt |X0

(y |x)dx∫
x:∥x−x0∥2≤ϵ

pX0(x)pXt |X0
(y |x)dx

≤
supx∈E pXt |X0

(y |x)
infx:∥x−x0∥2≤ϵ pXt |X0

(y |x)
· P(X0 ∈ E)
P(∥X0 − x0∥2 ≤ ϵ)

. (70)

To further bound this quantity, note that: in view of the definition of E and expression (67a), one has

sup
x∈E

pXt |X0
(y |x) = sup

x:∥
√
αtx−

√
αtx0∥2>4c5

√
θ(y)d(1−αt) log T

pXt |X0
(y |x)

≤ sup
x:∥

√
αtx−y∥2>3c5

√
θ(y)d(1−αt) log T

pXt |X0
(y |x)

≤ 1(
2π(1− αt)

)d/2 exp

(
− 9c25θ(y)d log T

2

)
and

inf
x:∥x−x0∥2≤ϵ

pXt |X0
(y |x) ≥ 1(

2π(1− αt)
)d/2 inf

x:∥x−x0∥2≤ϵ
exp

(
− ∥y −

√
αtx∥22

2(1− αt)

)

≥ 1(
2π(1− αt)

)d/2 inf
x:∥x−x0∥2≤ϵ

exp

(
− ∥y −

√
αtx0∥22

1− αt
− ∥

√
αtx−

√
αtx0∥22

1− αt

)

≥ 1(
2π(1− αt)

)d/2 exp

(
− ∥y −

√
αtx0∥22

1− αt
− ϵ2

1− αt

)
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≥ 1(
2π(1− αt)

)d/2 exp

(
− c25θ(y)d log T − 1

T c0

1

1− αt

)
≥ 1(

2π(1− αt)
)d/2 exp

(
− 2c25θ(y)d log T

)
,

where the second line is due to the elementary inequality ∥a + b∥22 ≤ 2∥a∥22 + 2∥b∥22, the penultimate line
relies on (67), and the last line holds true since 1−αt ≥ 1−α1 = 1/T c0 (see (21)). Substitution of the above
two displays into (70), we arrive at

P(X0 ∈ E |Xt = y) ≤ exp
(
− 2.5c25θ(y)d log T

)
· 1

P(∥X0 − x0∥2 ≤ ϵ)

≤ exp
(
− 2.5c25θd log T

)
·
(
T 2θ(y)+c0/2

)d
≤ exp

(
− (2.5c25θ(y)− 2θ(y)− c0/2)d log T

)
, (71)

where the second inequality invokes (67b). Substituting this into (69) and recalling the distribution (68) of
X, we arrive at

P
(
∥
√
αtX − y∥2 > 5c5

√
θ(y)d(1− αt) log T

)
≤ exp

(
− (2.5c25θ(y)− 2θ(y)− c0/2)d log T

)
≤ exp

(
− c25θ(y)d log T

)
,

with the proviso that c5 ≥ 2 and c6 ≥ c0 (so that θ(y) ≥ c6 ≥ c0). This concludes the proof of the advertised
result (28) when c5 ≥ 2 and c6 ≥ 2cR + c0, as long as Claim 1 can be justified.

With the above result in place, it then follows that

E
[∥∥xt −

√
αtX0

∥∥
2

∣∣Xt = xt

]
≤ 5c5

√
θ(y)d(1− αt) log T + E

[∥∥xt −
√
αtX0

∥∥
2
1
{
∥xt −

√
αtX0∥2 ≥ 5c5

√
θ(y)d(1− αt) log T

} ∣∣∣Xt = xt

]
≤ 5c5

√
θ(y)d(1− αt) log T +

∫ ∞

5c5
√

θ(y)d(1−αt) log T

P
(
∥xt −

√
αtx0∥2 ≥ τ |Xt = xt

)
dτ

≤ 5c5
√
θ(y)d(1− αt) log T +

∫ ∞

5c5
√

θ(y)d(1−αt) log T

exp

(
− τ2

25(1− αt)

)
dτ

≤ 5c5
√
θ(y)d(1− αt) log T + exp

(
− c25θ(y)d log T

)
≤ 6c5

√
θ(y)d(1− αt) log T ,

as claimed in (29a) by taking c5 = 2. The proofs for (29b), (29c) and (29d) follow from similar aguments and
are hence omitted for the sake of brevity.

Proof of Claim 1. We prove this claim by contradiction. Specifically, suppose instead that: for every x
obeying ∥

√
αtx− y∥2 ≤ c5

√
θ(y)d(1− αt) log T , we have

P(∥X0 − x∥2 ≤ ϵ) ≤
(

ϵ

2T θ(y)R

)d

with ϵ =
1

T c0/2
. (72)

Clearly, the choice of ϵ ensures that ϵ < 1
2

√
d(1− αt) log T . In the following, we would like to show that this

assumption leads to contradiction.
First of all, let us look at pXt

, which obeys

pXt(y) =

∫
x

pX0(x)pXt |X0
(y |x)dx

=

∫
x: ∥

√
αtx−y∥2≥c5

√
θ(y)d(1−αt) log T

pX0
(x)pXt |X0

(y |x)dx
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+

∫
x: ∥

√
αtx−y∥2<c5

√
θ(y)d(1−αt) log T

pX0
(x)pXt |X0

(y |x)dx. (73)

To further control (73), we make two observations:

1) The first term on the right-hand side of (73) can be bounded by∫
x: ∥

√
αtx−y∥2≥c5

√
θ(y)d(1−αt) log T

pX0(x)pXt |X0
(y |x)dx

≤ sup
z: ∥z∥2≥c5

√
θ(y)d(1−αt) log T

1(
2π(1− αt)

)d/2 exp

(
− ∥z∥22

2(1− αt)

)
<

1

2
exp

(
− θ(y)d log T

)
, (74)

provided that c5 ≥ 2 and c6 > 0 is large enough (note that θ(y) ≥ c6). Here, we have used Xt
(i)
=√

αtX0 +
√
1− αtW with W ∼ N (0, Id) as well as standard properties about Gaussian distributions.

2) Regarding the second term on the right-hand side of (73), let us construct an epsilon-net Nϵ = {zi} for
the following set {

x : ∥
√
αtx− y∥2 ≤ c5

√
θ(y)d(1− αt) log T and ∥x∥2 ≤ R

}
,

so that for each x in this set, one can find a vector zi ∈ Nϵ such that ∥x− zi∥2 ≤ ϵ. Clearly, we can
choose Nϵ so that its cardinality obeys |Nϵ| ≤ (2R/ϵ)d. Define Bi := {x | ∥x − zi∥2 ≤ ϵ} for each
zi ∈ Nϵ. Armed with these sets, we can derive∫

x:∥
√
αtx−y∥2<c5

√
θ(y)d(1−αt) log T

pX0
(x)pXt |X0

(y |x)dx ≤
(
2π(1− αt)

)−d/2
|Nϵ|∑
i=1

P(X0 ∈ Bi)

≤
(
2π(1− αt)

)−d/2
(

ϵ

2T 2θ(y)R

)d(
2R

ϵ

)d

<
1

2
exp

(
− θ(y)d log T

)
,

where the penultimate step comes from the assumption (72).

The above results taken collectively lead to

pXt
(y) < exp

(
− θ(y)d log T

)
, (75)

thus contradicting the definition of θ(y).
Consequently, we have proven the existence of x obeying ∥

√
αtx− y∥2 ≤ c5

√
θ(y)d(1− αt) log T and

P(∥X0 − x∥2 ≤ ϵ) >

(
ϵ

2T θ(y)R

)d

≥
(

ϵ

T 2θ(y)

)d

,

provided that θ(y) ≥ c6 ≥ 2cR. This completes the proof of Claim 1.

A.4 Proof of Lemma 2
Part (a). Before proceeding, we abuse the notation by introducing the following convenient notation:

Xα =
√
αX0 +

√
1− αZ and Xα′ =

√
α′X0 +

√
1− α′Z,

where we recall that X0 ∼ pdata and Z ∼ N (0, Id) are independently generated. Also, when |α′−α|
α(1−α) ≲

1
d log T ,

we make note of several properties that can be easily verified:

α ≍ α′ and 1− α ≍ 1− α′; (76a)
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(
1− α′

1− α

)d/2

=

(
1 +

α− α′

1− α

)d/2

≲

(
1 +O

( 1

d log T

))d/2

≲ 1, and
(
1− α

1− α′

)d/2

≲ 1; (76b)

|α′ − α|
α(1− α)(1− α′)

=
1

1− α
O

(
1

d log T

)
. (76c)

Consider any x′ and let

x =
√

α/α′x′.

Our first step is to demonstrate a certain equivalence result between pXα′ (x
′) and pXα(x). Towards this end,

a little algebra reveals that

∥x′ −
√
α′x0∥22

2(1− α′)
=

∥x−
√
αx0∥22

2(1− α)
+

α′ − α

α(1− α′)(1− α)

∥x−
√
αx0∥22

2
, (77)

and as a result,

pXα′ (x
′) =

∫
pdata(x0)

1(
2π(1− α′)

)d/2 exp

(
− ∥x′ −

√
α′x0∥22

2(1− α′)

)
dx0

=

(
1− α

1− α′

)d/2 ∫
pdata(x0)

1(
2π(1− α)

)d/2 exp

(
− ∥x−

√
αx0∥22

2(1− α)
− (α′ − α)∥x−

√
αx0∥22

2α(1− α)(1− α′)

)
dx0. (78)

Combine this with the assumption |α′−α|
α(1−α) ≲

1
d log T and the properties (76) to yield

pXα′ (x
′) ≍

∫
pdata(x0)

1(
2π(1− α)

)d/2 exp

(
−
(
1 +O

( 1

d log T

)) ∥x−
√
αx0∥22

2(1− α)

)
dx0

=

(∫
x0∈E

+

∫
x0 /∈E

)
pdata(x0)

1(
2π(1− α)

)d/2 exp

(
−
(
1 +O

( 1

d log T

)) ∥x−
√
αx0∥22

2(1− α)

)
dx0, (79)

where

E :=

{
x0 | 1(

2π(1− α)
)d/2 exp

(
−
(
1 +O

( 1

d log T

)) ∥x−
√
αx0∥22

2(1− α)

)
≥ exp (−4c6d log T )

}

with the constant c6 > 0 defined in Lemma 1. Given our assumption that 1− α ≥ 1
T c0

and the fact c0 ≤ c6,
a little algebra leads to

∥x−
√
αx0∥22

2(1− α)
≤ 12c6d log T, ∀x0 ∈ E ,

and as a consequence,∫
x0∈E

pdata(x0)
1(

2π(1− α)
)d/2 exp

(
−
(
1 +O

( 1

d log T

)) ∥x−
√
αx0∥22

2(1− α)

)
dx0

≍
∫

x0∈E
pdata(x0)

1(
2π(1− α)

)d/2 exp

(
− ∥x−

√
αx0∥22

2(1− α)

)
dx0

= pXα(x)−
∫

x0 /∈E
pdata(x0)

1(
2π(1− α)

)d/2 exp

(
− ∥x−

√
αx0∥22

2(1− α)

)
dx0.

Regarding those x0 /∈ E , one can easily derive∫
x0 /∈E

pdata(x0)
1(

2π(1− α)
)d/2 exp

(
−
(
1 +O

( 1

d log T

)) ∥x−
√
αx0∥22

2(1− α)

)
dx0
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≤ exp (−4c6d log T )

∫
pdata(x0)dx0 = exp (−4c6d log T ) ;

similarly, it can also be easily verified that (which we omit here for conciseness)∫
x0 /∈E

pdata(x0)
1(

2π(1− α)
)d/2 exp

(
− ∥x−

√
αx0∥22

2(1− α)

)
dx0 ≤ exp (−1.5c6d log T ) .

Combine the above results with (79) to deduce that

pXα′ (x
′) ≍

∫
pdata(x0)

1(
2π(1− α)

)d/2 exp

(
− ∥x−

√
αx0∥22

2(1− α)

)
dx0 +O

(
exp (−c6d log T )

)
= pXα

(x) +O
(
exp (−1.5c6d log T )

)
(80)

≍ pXα
(x), (81)

where the last line is valid provided that − log pXα(x) ≤ c6d log T .
Based on the above results, we can further demonstrate another equivalence result concerning pX0|Xα′

and pX0|Xα
: if − log pXα

(x) ≤ c6d log T holds and

∥x′ −
√
α′x0∥22 ≍ ∥x−

√
αx0∥22 ≲ d(1− α) log T,

then one has

pX0|Xα′ (x0 |x′) =
pdata(x0)

1
(2π(1−α′))d/2

exp
(
− ∥x′−

√
α′x0∥2

2

2(1−α′)

)
pXα′ (x′)

≍
pdata(x0)

1
(2π(1−α))d/2

exp
(
−
(
1 +O

(
1

d log T

))∥x−√
αx0∥2

2

2(1−α)

)
pXα(x)

≍
pdata(x0)

1
(2π(1−α))d/2

exp
(
− ∥x−

√
αx0∥2

2

2(1−α)

)
pXα(x)

= pX0|Xα
(x0 |x). (82)

Now, we are ready to analyze the conditional covariance matrices of interest. Recalling that

(
x′ −

√
α′x0

)(
x′ −

√
α′x0

)⊤
=

α′(1− α)

α(1− α′)

(
x−

√
αx0

)(
x−

√
αx0

)⊤
,

we can deduce that

Σα′(x′) = Cov
(
Z |

√
α′X0 +

√
1− α′Z = x′

)
= Cov

(
x′ −

√
α′X0√

1− α′ |
√
α′X0 +

√
1− α′Z = x′

)

=
α′(1− α)

α(1− α′)
Cov

(
x−

√
αX0√

1− α
|
√
α′X0 +

√
1− α′Z = x′

)
(i)

⪯ C0Cov

(
x−

√
αX0√

1− α
|
√
α′X0 +

√
1− α′Z = x′

)
(ii)
= C0 inf

µ
E

[(
x−

√
αX0√

1− α
− µ(x′)

)(
x−

√
αX0√

1− α
− µ(x′)

)⊤}
|
√
α′X0 +

√
1− α′Z = x′

]
(iii)

⪯ C0E

[(
x−

√
αX0√

1− α
− µ′(x)

)(
x−

√
αX0√

1− α
− µ′(x)

)⊤

1

{∥∥x−
√
αX0

∥∥2
2

d
(
1− α

)
log T

≲ 1

}
|
√
α′X0 +

√
1− α′Z = x′

]
+ C2 exp

(
− C1d log T

)
Id
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(iv)

⪯ C3E

[(
x−

√
αX0√

1− α
− µ′(x)

)(
x−

√
αX0√

1− α
− µ′(x)

)⊤

1

{∥∥x−
√
αX0

∥∥2
2

d
(
1− α

)
log T

≲ 1

}
|
√
αX0 +

√
1− αZ = x

]
︸ ︷︷ ︸

=: Σ̃α(x)

+ C2 exp
(
− C1d log T

)
Id

for some universal constants C0, C1, C2, C3 > 0, where

µ′(x) := E
[
Z |

√
αX0 +

√
1− αZ = x

]
.

Here, (i) follows since α ≍ α′ and 1−α ≍ 1−α′ (cf. (76)); (ii) holds since Cov
(
x−

√
αX0√

1−α
|
√
α′X0+

√
1− α′Z =

x′) represents the error covariance associated with the minimum mean square error (MMSE) estimator for
Z given

√
α′X0 +

√
1− α′Z = x′; (iii) arises from Lemma 1 (particularly the high-probability bound (28)

stating that the probability of the event ∥x−
√
αX0∥2

2

d(1−α) log T ≫ 1 is exponentially small); and (iv) is an immediate

consequence of (82). In particular, the matrix Σ̃α(x) defined in the step (iv) obeys

Σ̃α(x) ⪯ Cov

(
x−

√
αX0√

1− α
|
√
αX0 +

√
1− αZ = x

)
= Σα(x),

∥∥Σ̃α(x)
∥∥ ≤ E

(∥∥∥∥x−
√
αX0√

1− α

∥∥∥∥2
2

1

{∥∥x−
√
αX0

∥∥2
2

d
(
1− α

)
log T

≲ 1

}
|
√
αX0 +

√
1− αZ = x

)
≲ d log T,

provided that − log pXα(x) ≤ c6d log T . These results in turn imply that

(
Σα′(x′)

)2 ⪯
(
C3Σ̃α(x) + C2 exp

(
− C1d log T

)
Id

)2
⪯ C2

3

(
Σα(x)

)2
+ C4 exp

(
− C5d log T

)
Id (83)

for some universal constants C4, C5 > 0, as long as − log pXα
(x) ≤ c6d log T .

Treating x′ as a random vector with the same distribution as
√
α′X0 +

√
1− α′Z — so that x is a random

vector with the same distribution as
√
αX0 +

√
1− αZ — and taking expectation over x′ (and hence x) on

both sides of (83), we arrive at

E
[(

Σα′
(√

α′X0 +
√
1− α′Z

))2]
= E

x′∼pX
α′

[(
Σα′(x′)

)2]
= E

x′∼pX
α′

[(
Σα′(x′)

)2
1
{
− log pXα

(x) ≤ c6d log T
}]

+ E
x′∼pX

α′

[(
Σα′(x′)

)2
1
{
− log pXα

(x) > c6d log T
}]

⪯ C2
3 E
x∼pXα

[(
Σα(x)

)2]
+ C4 exp

(
− C5d log T

)
Id + E

x′∼pX
α′

[(
Σα′(x′)

)2
1
{
− log pXα

(x) > c6d log T
}]

,

(84)

where we use pXα′ and pXα
to denote the distribution of Xα′ and Xα, respectively. To bound the last term

in the last line of (84), note that for any x obeying − log pXα(x) > c6d log T , it follows from (80) that

pXα′ (x
′) ≍ pXα

(x) +O
(
exp(−1.5c6d log T )

)
= o
(
exp(−c6d log T )

)
,

and hence

E
x′∼pX

α′

[(
Σα′(x′)

)2
1

{
− log pXα

(x)

d log T
> c6

}]
⪯ E

x′∼pX
α′

[∥∥Σα′(x′)
∥∥2 1{− log pXα′ (x

′)

d log T
≥ c6

}]
Id.

Defining

θ(x′) = max

{
− log pXα′ (x

′)

d log T
, c6

}
,
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we can invoke Lemma 1 with a little algebra to derive (details are omitted for brevity)

E
x′∼pX

α′

[∥∥Σα′(x′)
∥∥2 1{− log pXα′ (x

′)

d log T
> c0

}]
≤

∞∑
k=1

E
x′∼pX

α′

[∥∥Σα′(x′)
∥∥2 1{2k−1c6 ≤ θ(x′) ≤ 2kc6

}]
≤ C6 exp (−C7d log T )

for some universal constants C6, C7 > 0, where we have made use of the basic fact that

∥∥Σα′(x′)
∥∥ ≤ E

[
∥ZZ⊤∥ |

√
α′X0 +

√
1− α′Z = x′

]
= E

[∥∥∥∥x′ −
√
α′X0√

1− α′

∥∥∥∥2
2

|
√
α′X0 +

√
1− α′Z = x′

]
.

Putting the preceding resutls together, we can conclude that

E
[(

Σα′
(√

α′X0 +
√
1− α′Z

))2]
⪯ C2

3 E
x∼pXα

[(
Σα(x)

)2]
+
{
C4 exp

(
− C5d log T

)
+ C6 exp (−C7d log T )

}
Id

⪯ C2
3E
[(

Σα

(√
αX0 +

√
1− αZ

))2]
+ C8 exp

(
− C9d log T

)
Id

for some universal constants C8, C9 > 0, as claimed.

Part (b). First, we find it convenient to introduce another conditional covariance, defined as follows:

As(x) := Cov
(
X0 | sX0 +

√
sZ = x

)
, (85)

which clearly satisfies

Cov
(
Z | sX0 +

√
sZ = x

)
= Cov

(
1√
s
x−

√
sX0 | sX0 +

√
sZ = x

)
= sAs(x). (86)

It is easily seen that (by taking s = α
1−α )

Σα(x) = Cov
(
Z |

√
αX0 +

√
1− αZ = x

)
=

α

1− α
A α

1−α

( √
α

1− α
x
)
. (87)

Let us single out a basic property about As and Σα that plays an important role in the subsequent proof.
First of all, it has been shown in previous work (see, e.g., Eldan (2020); El Alaoui and Montanari (2022))
that the time-differential of (85) admits a simple form3

dE
[
As(sX0 +

√
sZ)

]
= −E

[(
As(sX0 +

√
sZ)

)2]
ds. (88)

Replacing s with α
1−α and using (31), we have

As

(
sX0 +

√
sZ
)
=

1− α

α
Σα

(√
αX0 +

√
1− αZ

)
,

and hence (88) immediately tells us that

d

(
1− α

α
E
[
Σα

(√
αX0 +

√
1− αZ

)])
= − (1− α)2

α2 E
[(

Σα

(√
αX0 +

√
1− αZ

))2]
d
( α

1− α

)
. (89)

From now on, let us consider any 0 < αl < αu < 1 obeying αl

1−αl
≤ αu

1−αu
≤ 4αl

1−αl
, and the monotonicity of

f(x) = x
1−x in x gives

αl

1− αl
≤ α

1− α
≤ 4αl

1− αl
for any α ∈ [αl, αu].

3While this result was originally established by Eldan (2020) using stochastic localization, it can also be derived using an
elementary estimation-theoretic approach without introducing any SDEs (see El Alaoui and Montanari (2022)).
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Use the positive semidefiniteness of the covariance matrix and the fact d
(

α
1−α

)
= dα

(1−α)2 to derive∫ αu

αl

(1− α)2

α2 Tr

(
E
[(

Σα

(√
αX0 +

√
1− αZ

))2]) 1

(1− α)2
dα

= −
∫ αu

αl

d
(

1−α
α Tr

(
E
[
Σα

(√
αX0 +

√
1− αZ

)]))
dα

dα

=
1− αl

αl
Tr
(
E
[
Σαl

(√
αlX0 +

√
1− αlZ

)])
− 1− αu

αu
Tr
(
E
[
Σαu

(√
αuX0 +

√
1− αuZ

)])
≥ 0, (90)

where the penultimate line arises from (89).
Moreover, recalling that αt =

∏t
i=1 αi ≥ αt+1, we have(

1− αt

αt

)2

Tr

(
E
[(

Σαt

(√
αtX0 +

√
1− αtZ

))2])
·
∫ αt

αt+1

1

(1− α)2
dα

(i)

≥ 1− αt+1

4αt+1
· 1− αt

αt
· Tr
(
E
[(

Σαt

(√
αtX0 +

√
1− αtZ

))2])
· αt − αt+1

(1− αt)(1− αt+1)

(ii)
=

1− αt+1

4αt+1
Tr

(
E
[(

Σαt

(√
αtX0 +

√
1− αtZ

))2])
(iii)

≥ 1− αt

4αt
Tr

(
E
[(

Σαt

(√
αtX0 +

√
1− αtZ

))2])
(91)

for any t ≥ 2, where (i) results from (26), (ii) is valid since αt − αt+1 = αt(1 − αt+1), and (iii) uses the
property αt ≤ 1 (cf. (26a)) and the fact that 1− αt ≤ 1− αt+1 for t ≥ 2. Recall that (cf. (26b))

0 ≤ αt − αt+1

αt(1− αt)
=

1− αt+1

1− αt
≲

log T

T
≲

1

d log T

and 1− αt+1 ≥ 1− αt ≥ 1− α1 = T−c0 . Taking inequality (91) together with Lemma 2(a) yields∫ αt

αt+1

(
1− α

α

)2

Tr

(
E
[(

Σα

(√
αX0 +

√
1− αZ

))2]) 1

(1− α)2
dα

≥ C8

(
1− αt

αt

)2

Tr

(
E
[(

Σαt

(√
αtX0 +

√
1− αtZ

))2])
·
∫ αt

αt+1

1

(1− α)2
dα− C10 exp(−C9d log T )

∫ αt

αt+1

1

α2 dα

≥ C8
1− αt

4αt
Tr

(
E
[(

Σαt

(√
αtX0 +

√
1− αtZ

))2])
− C10 exp(−C9d log T )

αt − αt+1

αt+1αt

≥ C8
1− αt

4αt

{
Tr

(
E
[(

Σαt

(√
αtX0 +

√
1− αtZ

))2])
− C12 exp(−C11d log T )

}
(92)

for some universal constants C8, C9, C10, C11, C12 > 0, where the first inequality invokes Lemma 2(a), and
the last inequality is valid since αt−αt+1

αt+1αt
= 1−αt+1

αt+1
≍ 1−αt

αt
.

Combine inequality (92) with (90) (with αl = αt+1 and αu = αt) to reach

C8
1− αt

4αt

{
Tr

(
E
[(

Σαt

(√
αtX0 +

√
1− αtZ

))2])
− C12 exp(−C11d log T )

}
≤ 1− αt+1

αt+1
Tr
(
E
[
Σαt+1

(√
αt+1X0 +

√
1− αt+1Z

)])
− 1− αt

αt
Tr
(
E
[
Σαt

(√
αtX0 +

√
1− αtZ

)])
.

Multiplying both sides by αt

1−αt
, we are left with

C8
1− αt

4(1− αt)

{
Tr

(
E
[(

Σαt

(√
αtX0 +

√
1− αtZ

))2])
− C12 exp(−C11d log T )

}
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≤ 1− αt+1

αt+1(1− αt)
Tr
(
E
[
Σαt+1

(√
αt+1X0 +

√
1− αt+1Z

)])
− Tr

(
E
[
Σαt

(√
αtX0 +

√
1− αtZ

)])
≤ Tr

(
E
[
Σαt+1

(√
αt+1X0 +

√
1− αt+1Z

)])
− Tr

(
E
[
Σαt

(√
αtX0 +

√
1− αtZ

)])
+

32c1 log T

T
Tr
(
E
[
Σαt+1

(√
αt+1X0 +

√
1− αt+1Z

)])
≤ Tr

(
E
[
Σαt+1

(√
αt+1X0 +

√
1− αt+1Z

)])
− Tr

(
E
[
Σαt

(√
αtX0 +

√
1− αtZ

)])
+

32c1d log T

T
(93)

for any t ≥ 2. Here, the penultimate inequality in (93) holds since (according to (26a), (26b) and (26c))

1− αt+1

αt+1(1− αt)
− 1 =

1− αt+1

αt+1(1− αt)
≤ 4(1− αt+1)

1− αt+1
≤ 32c1 log T

T
;

and the last inequality in (93) follows since, for any α ∈ (0, 1),

E
[
Σα

(√
αX0 +

√
1− αZ

)]
= E

[
Cov

(
Z |

√
αX0 +

√
1− αZ

)]
⪯ Cov(Z) = Id. (94)

Consequently, sum over t = 2, . . . , T to form a telescopic sum and derive

C8

T∑
t=2

1− αt

4(1− αt)
Tr

(
E
[(

Σαt

(√
αtX0 +

√
1− αtZ

))2])

≤
T∑

t=2

{
Tr
(
E
[
Σαt+1

(√
αt+1X0 +

√
1− αt+1Z

)])
− Tr

(
E
[
Σαt

(√
αtX0 +

√
1− αtZ

)])}
+ 32c1d log T

+ C8

T∑
t=2

1− αt

4(1− αt)
C12 exp(−C11d log T )

≤ Tr
(
E
[
ΣαT+1

(√
αT+1X0 +

√
1− αT+1Z

)])
+ 32c1d log T + 2c1C8C12 exp(−C11d log T ) log T

≤ 34c1d log T,

where the last inequality uses (94) and property (26b). This concludes the proof.

A.5 Proof of Lemma 3
Recognizing that YT ∼ N (0, Id) and that XT

d
=

√
αTX0 +

√
1− αT W t with W t ∼ N (0, Id) (independent

from X0), one has

KL(pXT
∥ pYT

) =

∫
pXT

(x) log
pXT

(x)

pYT
(x)

dx

(i)
=

∫
pXT

(x) log

∫
y:∥y∥2≤

√
αTT cR

p√αTX0
(y)p√1−αT W t

(x− y)dy

pYT
(x)

dx

≤
∫

pXT
(x) log

supy:∥y∥2≤
√
αTT cR p√1−αT W t

(x− y)

pYT
(x)

dx

=

∫
pXT

(x)

(
− d/2 log(1− αT ) + sup

y:∥y∥2≤
√
αTT cR

(
− ∥x− y∥22

2(1− αT )
+

∥x∥22
2

)
dx

(ii)
≤
∫

pXT
(x)

(
− d/2 log(1− αT ) + ∥x∥2 sup

y:∥y∥2≤
√
αTT cR

∥y∥2
1− αT

)
dx

≤ −d/2 log(1− αT ) +

√
αTT

cR

2(1− αT )
E [∥XT ∥2]

(iii)
≲ αT d+

√
αTT

cR

2(1− αT )

(√
αTT

cR +
√
d
) (iv)

≲
1

T 200
, (95)
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where (i) arises from the assumption that ∥X0∥2 ≤ T cR , (ii) applies the Cauchy-Schwarz inequality, (iii) holds
true since

E [∥XT ∥2] ≤
√
αT ∥X0∥2 + E

[
∥W t∥2

]
≤

√
αTT

cR +
√
E
[
∥W t∥22

]
≤

√
αTT

cR +
√
d,

and (iv) makes use of (26d) given that c2 ≥ 1000. The proof is thus completed by invoking the Pinsker
inequality (Tsybakov, 2009, Lemma 2.5).

B Proof of auxiliary lemmas

B.1 Proof of Lemma 4
B.1.1 Proof of relations (41) and (42a)

Recall the definition of ϕt and ϕ⋆
t in (36), and introduce the following vector:

u := x− ϕt(x) = x− ϕ⋆
t (x) + ϕ⋆

t (x)− ϕt(x)

=
1− αt

2(1− αt)

∫
x0

(
x−

√
αtx0

)
pX0 |Xt

(x0 |x)dx0 −
1− αt

2

(
st(x)− s⋆t (x)

)
. (96)

The proof is composed of the following steps.

Step 1: decomposing p√αtXt−1

(
ϕt(x)

)
/pXt(x). Recognizing that

Xt
d
=

√
αtX0 +

√
1− αt W with W ∼ N (0, Id) (97)

and making use of the Bayes rule, we can express the conditional distribution as

pX0 |Xt
(x0 |x) =

pX0(x0)

pXt(x)
pXt |X0

(x |x0) =
pX0

(x0)

pXt(x)
· 1(

2π(1− αt)
)d/2 exp

(
−
∥∥x−

√
αtx0

∥∥2
2

2(1− αt)

)
. (98)

Moreover, it follows from (97) that

√
αtXt−1

d
=

√
αt

(√
αt−1X0 +

√
1− αt−1 W

)
=

√
αtX0 +

√
αt − αt W. (99)

These taken together allow one to rewrite p√αtXt−1
such that:

p√αtXt−1

(
ϕt(x)

)
pXt

(x)

(i)
=

1

pXt
(x)

∫
x0

pX0(x0)
1(

2π(αt − αt)
)d/2 exp

(
−
∥∥ϕt(x)−

√
αtx0

∥∥2
2

2(αt − αt)

)
dx0

(ii)
=

1

pXt
(x)

∫
x0

pX0
(x0)

1(
2π(αt − αt)

)d/2 exp

(
−
∥∥x−

√
αtx0

∥∥2
2

2(1− αt)

)

· exp
(
−

(1− αt)
∥∥x−

√
αtx0

∥∥2
2

2(αt − αt)(1− αt)
−

∥u∥22 − 2u⊤(x−
√
αtx0

)
2(αt − αt)

)
dx0

(iii)
=
( 1− αt

αt − αt

)d/2
·
∫
x0

pX0 |Xt
(x0 |x)·

exp

(
−

(1− αt)
∥∥x−

√
αtx0

∥∥2
2

2(αt − αt)(1− αt)
−

∥u∥22 − 2u⊤(x−
√
αtx0

)
2(αt − αt)

)
dx0 (100)

(iv)
=

{
1 +

d(1− αt)

2(αt − αt)
+O

(
d2
( 1− αt

αt − αt

)2)}
·∫

x0

pX0 |Xt
(x0 |x) exp

(
−

(1− αt)
∥∥x−

√
αtx0

∥∥2
2

2(αt − αt)(1− αt)
−

∥u∥22 − 2u⊤(x−
√
αtx0

)
2(αt − αt)

)
dx0.

(101)
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Here, identity (i) holds due to (99) and hence

p√αtXt−1
(x) =

∫
x0

pX0(x0)p√αt−αtW

(
x−

√
αtx0

)
dx0;

identity (ii) follows from (96) and elementary algebra; relation (iii) is a consequence of the Bayes rule (98);
and relation (iv) results from (26f).

Step 2: controlling the integral in the decomposition (101). In order to further control the right-hand
side of expression (101), we need to evaluate the integral in (101). To this end, we make a few observations.

• To begin with, Lemma 1 tells us that

P
(∥∥√αtX0 − x

∥∥
2
> 5c5

√
θt(x)d(1− αt) log T |Xt = x

)
≤ exp

(
− c25θt(x)d log T

)
(102a)

for any quantity c5 ≥ 2, provided that c6 ≥ 2cR + c0.

• A little algebra based on this relation allows one to bound u (cf. (96)) as follows:

∥u∥2 ≤ 1− αt

2
εscore,t(x) +

1− αt

2(1− αt)
E
[∥∥√αtX0 − x

∥∥
2

∣∣Xt = x
]

≤ 1− αt

2
εscore,t(x) +

6(1− αt)

1− αt

√
θt(x)d(1− αt) log T , (102b)

where the last inequality arises from Lemma 1.

Next, let us define
E typical
c :=

{
x0 :

∥∥x−
√
αtx0

∥∥
2
≤ 5c

√
θt(x)d(1− αt) log T

}
(103)

for any quantity c > 0. Then for any x0 ∈ E typical
c , it is clearly seen from (102) and (26) that

(1− αt)
∥∥x−

√
αtx0

∥∥2
2

2(αt − αt)(1− αt)
≤ 25c2

2

(1− αt)θt(x)d log T

αt − αt
≤ 100c1c

2θt(x)d log
2 T

T
; (104a)

∥u∥22
2(αt − αt)

≤ (1− αt)
2

4(αt − αt)
εscore,t(x)

2 +
36(1− αt)

2

(1− αt)(αt − αt)
θt(x)d log T (104b)

≤ 2c21 log
2 T

T 2
εscore,t(x)

2 +
2304c21
T 2

θt(x)d log
3 T,∣∣∣∣∣u⊤(x−

√
αtx0

)
αt − αt

∣∣∣∣∣ ≤ ∥u∥2
∥∥x−

√
αtx0

∥∥
2

αt − αt

≤ 5c(1− αt)

2(αt − αt)
εscore,t(x)

√
θt(x)d(1− αt) log T +

30c(1− αt)θt(x)d log T

αt − αt
(104c)

≤ 20cc1
T

εscore,t(x)

√
θt(x)d(1− αt) log

3 T +
240cc1θt(x)d log

2 T

T
. (104d)

As a consequence, for any x0 ∈ E typical
c for c ≥ 2, we have seen from (104d) and (26) that

−
(1− αt)

∥∥x−
√
αtx0

∥∥2
2

2(αt − αt)(1− αt)
− ∥u∥22

2(αt − αt)
+

u⊤(x−
√
αtx0

)
αt − αt

≤
u⊤(x−

√
αtx0

)
αt − αt

≤ 5c(1− αt)

2(αt − αt)
εscore,t(x)

√
θt(x)d(1− αt) log T +

30c(1− αt)θt(x)d log T

αt − αt
(105)

≤ 20cc1
T

εscore,t(x)

√
θt(x)d log

3 T +
240cc1

T
θt(x)d log

2 T ≤ cθt(x)d, (106)

provided that
40c1εscore,t(x) log

3
2 T

T
≤
√
θt(x)d and T ≥ 480c1 log

2 T.
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Step 2(a): proof of relation (41). Substituting (105) into (101) and making use of (26) under our
assumption on T yield

p√αtXt−1

(
ϕt(x)

)
pXt

(x)
≤ 2 exp

(
5c(1− αt)

2(αt − αt)
εscore,t(x)

√
θt(x)d log T +

30c(1− αt)

αt − αt
θt(x)d log T

)∫
x0

pX0 |Xt
(x0 |x)dx0

≤ 2 exp

(
5c(1− αt)

2(αt − αt)
εscore,t(x)

√
θt(x)d log T +

30c(1− αt)

αt − αt
θt(x)d log T

)
,

thus establishing (41) by taking c = 2.

Step 2(b): proof of relation (42a). Suppose now that

C10

θt(x)d log
2 T + εscore,t(x)

√
θt(x)d log

3 T

T
≤ 1 (107)

holds for some large enough constant C10 > 0. Under this additional condition, it can be easily verified that∣∣∣∣∣− (1− αt)
∥∥x−

√
αtx0

∥∥2
2

2(αt − αt)(1− αt)
− ∥u∥22

2(αt − αt)
+

u⊤(x−
√
αtx0

)
αt − αt

∣∣∣∣∣
≤ c10

(
θt(x)d log T + εscore,t(x)

√
θt(x)d log T

) 1− αt

αt − αt
(108)

for any x0 ∈ E typical
2 (with c = 2), where c10 > 0 is some sufficiently small constant. Therefore, the Taylor

expansion e−z = 1− z +O(z2) (for all |z| < 1) gives

exp

(
−

(1− αt)
∥∥x−

√
αtx0

∥∥2
2

2(αt − αt)(1− αt)
−

∥u∥22 − 2u⊤(x−
√
αtx0

)
2(αt − αt)

)
= 1−

(1− αt)
∥∥x−

√
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∥∥2
2
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√
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+O
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)2)
(109)

for any x0 ∈ E typical
2 , which invokes (108) and (104b) (under the assumption (107)). Combine (109) and (106)

to show that∫
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√
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)
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(1− αt)

( ∫
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(
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√
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∥∥2
2
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+O
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∥∥2
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+O

(
θt(x)

2d2
( 1− αt

αt − αt

)2
log2 T + εscore,t(x)

√
θt(x)d log T

( 1− αt

αt − αt

))
, (110)

where the penultimate relation holds since, according to (102a),

∞∑
c=3

∫
x0∈E typical

c \E typical
c−1

pX0 |Xt
(x0 |x) exp (cθt(x)d) dx0 ≤

∞∑
c=3

exp
(
−c2θt(x)d log T

)
exp (cθt(x)d)

≤
∞∑
c=3

exp

(
−1

2
c2θt(x)d log T

)
≤ exp

(
− θt(x)d log T

)
,

and the last line in (110) again utilizes (26) and the fact that θt(x) ≥ c6 for some large enough constant
c6 > 0.

Putting (110) and (101) together yields

p√αtXt−1

(
ϕt(x)

)
pXt(x)

= 1 +
d(1− αt)

2(αt − αt)
+O

(
θt(x)

2d2
( 1− αt

αt − αt

)2
log2 T + εscore,t(x)

√
θt(x)d log T

( 1− αt

αt − αt

))
−

(1− αt)
( ∫

x0
pX0 |Xt

(x0 |x)
∥∥x−

√
αtx0

∥∥2
2
dx0 −

∥∥ ∫
x0

pX0 |Xt
(x0 |x)

(
x−

√
αtx0

)
dx0

∥∥2
2

)
2(αt − αt)(1− αt)

as claimed.

B.1.2 Proof of relation (42b)

Consider any random vector Y . To understand the density ratio pϕt(Y )(ϕt(x))/pY (x), we make note of the
transformation

pϕt(Y )

(
ϕt(x)

)
= det

(∂ϕt(x)

∂x

)−1

pY (x), (111a)

pϕ⋆
t (Y )

(
ϕ⋆
t (x)

)
= det

(∂ϕ⋆
t (x)

∂x

)−1

pY (x), (111b)

where ∂ϕt(x)
∂x and ∂ϕ⋆

t (x)
∂x denote the Jacobian matrices. It thus suffices to control the quantity det

(
∂ϕt(x)

∂x

)−1

.
To begin with, recall from (36) and (24) that

ϕ⋆
t (x) = x− 1− αt

2(1− αt)
gt(x).

As a result, one can use (25a) and (25b) to derive

I − ∂ϕ⋆
t (x)

∂x
=

1− αt

2(1− αt)
Jt(x) =

1− αt

2(1− αt)

{
I − 1

1− αt
Cov

(
Xt −

√
αtX0 | Xt = x

)︸ ︷︷ ︸
=:B

}
. (112)

This allows one to show that

Tr
(
I − ∂ϕ⋆

t (x)

∂x

)
=

d(1− αt)

2(1− αt)
+

(1− αt)
(∥∥ ∫

x0
pX0 |Xt

(x0 |x)
(
x−

√
αtx0

)
dx0

∥∥2
2
−
∫
x0

pX0 |Xt
(x0 |x)

∥∥x−
√
αtx0

∥∥2
2
dx0

)
2(1− αt)2

. (113a)

Moreover, the matrix B defined in (112) satisfies

∥B∥F ≤
∥∥∥E[(Xt −

√
αtX0

)(
Xt −

√
αtX0

)⊤ | Xt = x
]∥∥∥

F
≤
∫
x0

pX0 |Xt
(x0 |x)

∥∥x−
√
αtx0

∥∥2
2
dx0
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due to Jensen’s inequality. Taking this together with (112) and Lemma 1 reveals that

∥∥∥∂ϕ⋆
t (x)

∂x
− I
∥∥∥ ≤

∥∥∥∂ϕ⋆
t (x)

∂x
− I
∥∥∥
F
≲

1− αt

1− αt

(√
d+

∫
x0

pX0 |Xt
(x0 |x)

∥∥x−
√
αtx0

∥∥2
2
dx0

1− αt

)
≲

θt(x)d(1− αt) log T

1− αt
. (113b)

Additionally, the Taylor expansion guarantees that for any A and ∆,

det
(
I +A+∆

)
= 1 + Tr(A) +O

(
(Tr(A))2 + ∥A∥2F + d∥∆∥

)
(114a)

det
(
I +A+∆

)−1
= 1− Tr(A) +O

(
(Tr(A))2 + ∥A∥2F + d∥∆∥

)
(114b)

hold as long as d∥A∥ + d∥∆∥ ≤ c11 for some small enough constant c11 > 0. The above properties taken
collectively with (36) and (33) allow us to demonstrate that

pϕt(Y )(ϕt(x))

pY (x)
= det

(∂ϕt(x)

∂x

)−1

=

(
det

(
∂ϕ⋆

t (x)

∂x
+

1− αt

2

[
Jst(x)− Js⋆t (x)

]))−1

=

(
det

(
I +

∂ϕ⋆
t (x)

∂x
− I +

1− αt

2

[
Jst(x)− Js⋆t (x)

]))−1

(115)

= 1− Tr
(∂ϕ⋆

t (x)

∂x
− I
)
+O

(
θt(x)

2d2
( 1− αt

αt − αt

)2
log2 T + θ3d6 log3 T

( 1− αt

αt − αt

)3
+ (1− αt)dεJacobi,t(x)

)

= 1 +
d(1− αt)

2(αt − αt)
+

(1− αt)
(∥∥ ∫

x0
pX0 |Xt

(x0 |x)
(
x−

√
αtx0

)
dx0

∥∥2
2
−
∫
x0

pX0 |Xt
(x0 |x)

∥∥x−
√
αtx0

∥∥2
2
dx0

)
2(αt − αt)(1− αt)

+O

(
θt(x)

2d2
( 1− αt

αt − αt

)2
log2 T + (1− αt)dεJacobi,t(x)

)
, (116)

with the proviso that

d2(1− αt) log T

αt − αt
≤ 8c1d

2 log2 T

T
≤ c12 and (1− αt)dεJacobi,t(x) ≤

c1dεJacobi,t(x) log T

T
≤ c12

for some sufficiently small constant c12 > 0 (see (26)).

B.2 Proof of Lemma 5
Before proceeding, let us make note of several basic facts: for any x with θt(x) ≲ 1, Lemma 1 and (26) taken
together reveal that:∣∣∣∣ 1− αt

(αt − αt)(1− αt)

(∥∥E[Xt −
√
αtX0 |Xt = yt

]∥∥2
2
− E

[∥∥Xt −
√
αtX0

∥∥2
2
|Xt = yt

])∣∣∣∣
≤

∣∣∣∣∣ (1− αt)E
[∥∥Xt −

√
αtX0

∥∥2
2
|Xt = yt

]
(αt − αt)(1− αt)

∣∣∣∣∣ ≲ (1− αt)d log T

αt − αt
≲

d log2 T

T
= o(1) (117a)

and
d(1− αt)

αt − αt
≲

d log T

T
= o(1). (117b)

Our proof consists of several steps below.

Step 1: obtaining a refined approximation of
p√

αtXt−1
(ϕt(x))

pXt (x)
. To begin with, recalling the definition

of E typical
c in (103), we can repeat the arguments in (100) and (110) to reach

p√αtXt−1

(
ϕt(x)

)
pXt(x)
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=
( 1− αt

αt − αt

)d/2 ∫
x0

pX0 |Xt
(x0 |x) exp

(
−

(1− αt)
∥∥x−

√
αtx0

∥∥2
2

2(αt − αt)(1− αt)
+

2u⊤(x−
√
αtx0

)
− ∥u∥22

2(αt − αt)

)
dx0

=
( 1− αt

αt − αt

)d/2{∫
x0∈E typical

2

pX0 |Xt
(x0 |x) exp

(
−

(1− αt)
∥∥x−

√
αtx0

∥∥2
2

2(αt − αt)(1− αt)
+

2u⊤(x−
√
αtx0

)
− ∥u∥22

2(αt − αt)

)
dx0

+O
(
exp (−θt(x)d log T )

)}

=
( 1− αt

αt − αt

)d/2{∫
x0∈E typical

2

pX0 |Xt
(x0 |x) exp

(
(1− αt)

[(
x−

√
αtx0

)⊤E[x−
√
αtX0 | Xt = x

]
−
∥∥x−

√
αtx0

∥∥2
2

]
2(αt − αt)(1− αt)

)

· exp
(
−

(1− αt)
(
st(x)− s⋆t (x)

)⊤(
x−

√
αtx0

)
2(αt − αt)

− ∥u∥22
2(αt − αt)

)
dx0 +O

(
exp (−θt(x)d log T )

)}

= O
(
exp (−θt(x)d log T )

)
+

(
1 +O

(
d log2 T

T 2

))
·

∫
x0∈E typical

2

pX0 |Xt
(x0 |x) exp

(
d(1− αt)

2(αt − αt)
+

(1− αt)
[(
x−

√
αtx0

)⊤E[x−
√
αtX0 | Xt = x

]
−
∥∥x−

√
αtx0

∥∥2
2

]
2(αt − αt)(1− αt)

)

· exp
(
−

(1− αt)
(
st(x)− s⋆t (x)

)⊤(
x−

√
αtx0

)
2(αt − αt)

− ∥u∥22
2(αt − αt)

)
dx0, (118)

where we remind the reader of the definition of u in (96). Here, the last line in (118) follows since

( 1− αt

αt − αt

)d/2
=

(
1 +O

(
d log2 T

T 2

))
exp

( d(1− αt)

2(αt − αt)

)
≍ 1,

a consequence of the property (26g) and the fact 1−αt

αt−αt
≲ log T

T (cf. (26b)).
Moreover, following the arguments in (104), we can easily derive that: for any x0 ∈ E typical

2 ,

exp

(
−

(1− αt)
(
st(x)− s⋆t (x)

)⊤(
x−

√
αtx0

)
2(αt − αt)

− ∥u∥22
2(αt − αt)

)
= 1 +O

(
(1− αt)∥st(x)− s⋆t (x)∥2∥x−

√
αtx0∥2

αt − αt
+

∥u∥22
αt − αt

)

= 1 +O

(
εscore,t(x)

√
θt(x)d log

3 T

T
+

εscore,t(x)
2 log2 T

T 2
+

θt(x)d log
3 T

T 2

)

= 1 +O

(
εscore,t(x)

√
d log3 T

T
+

d log3 T

T 2

)
, (119)

where the last line invokes the assumptions θt(x) ≲ 1 and εscore,t(x) log
3/2 T

T ≲
√
θt(x)d ≲

√
d. With (118) and

(119) in place, we obtain

p√αtXt−1

(
ϕt(x)

)
pXt

(x)
= O

(
exp

(
− θt(x)d log T

))
+

(
1 +O

(
d log3 T

T 2
+

εscore,t(x)
√

d log3 T

T

))
·

∫
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2

pX0 |Xt
(x0 |x) exp

(
d(1− αt)

2(αt − αt)
+

(1− αt)
[(
x−

√
αtx0

)⊤E[x−
√
αtX0 | Xt = x

]
−
∥∥x−

√
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∥∥2
2

]
2(αt − αt)(1− αt)

)
dx0

= O

(
d log3 T

T 2
+

εscore,t(x)
√

d log3 T

T

)
+
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∫
x0∈E typical

2

pX0 |Xt
(x0 |x) exp

(
d(1− αt)

2(αt − αt)
+

(1− αt)
[(
x−

√
αtx0

)⊤E[x−
√
αtX0 | Xt = x

]
−
∥∥x−

√
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∥∥2
2

]
2(αt − αt)(1− αt)

)
dx0

= O

(
d log3 T

T 2
+

εscore,t(x)
√

d log3 T

T

)
+

∫
pX0 |Xt

(x0 |x) exp
(

d(1− αt)

2(αt − αt)
+

(1− αt)
[(
x−

√
αtx0

)⊤E[x−
√
αtX0 | Xt = x

]
−
∥∥x−

√
αtx0

∥∥2
2

]
2(αt − αt)(1− αt)

)
dx0,

(120)

where the penultimate inequality invokes (117) (so that the integral above is at most O(1)), and the last
inequality repeats the arguments in (110) once again to demonstrate that∫

x0 /∈E typical
2

pX0 |Xt
(x0 |x) exp

(
d(1− αt)

2(αt − αt)
+

(1− αt)
[(
x−

√
αtx0

)⊤E[x−
√
αtX0 | Xt = x

]
−
∥∥x−

√
αtx0

∥∥2
2

]
2(αt − αt)(1− αt)

)
dx0

≲ exp
(
− θt(x)d log T

)
≲

d log3 T

T 2
.

Step 2: obtaining a refined approximation on pϕt(Y )(ϕt(x))

pY (x) . For any matrix ∆ ∈ Rd×d and any
symmetric matrix A ∈ Rd×d obeying ∥A∥ < 1/2 and ∥∆∥ < 1/2, elementary linear algebra (e.g., Weyl’s
inequality) tells us that

d∑
i=1

σi(I +A+∆) =

d∑
i=1

(
σi(I +A) +O(∥∆∥)

)
=

d∑
i=1

λi(I +A) +O(d∥∆∥) = d+ Tr(A) +O(d∥∆∥),

d∑
i=1

(
σi(I +A)− 1

)2
=

d∑
i=1

(
λi(I +A)− 1

)2
=

d∑
i=1

(
λi(A)

)2
= ∥A∥2F,

d∑
i=1

(
σi(I +A+∆)− 1

)2 ≤ 2

d∑
i=1

(
σi(I +A)− 1

)2
+ 2

d∑
i=1

(
σi(I +A+∆)− σi(I +A)

)2
≤ 2∥A∥2F + 2d∥∆∥2,

with σi(Z) (resp. λi(Z)) representing the i-th largest singular value (resp. eigenvalue) of a matrix Z. These
properties in turn allow one to derive

log
∣∣det(I +A+∆)

∣∣ = d∑
i=1

log
(
σi(I +A+∆)

)
=

d∑
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(
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)2)
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(
d∥∆∥+ ∥A∥2F + d∥∆∥2

)
= Tr(A) +O

(
∥A∥2F + d∥∆∥

)
.

With this approximation for the log-determinant function in mind, we can invoke (115) to obtain

log
pϕt(Y )(ϕt(x))

pY (x)
= − log

∣∣∣∣det(Id + ∂ϕ⋆
t (x)

∂x
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2

[
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])∣∣∣∣
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F
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∂x
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F
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)
+

(
1 +O
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·
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+O

(∥∥∥∥∂ϕ⋆
t (x)

∂x
− I

∥∥∥∥2
F

+ d(1− αt)εJacobi,t(x) +
d log2 T

T 2

)
,

where the penultimate relation arises from (113a) and the following fact (which uses (26b))∣∣∣∣∣
1

αt−αt
− 1

1−αt

1
1−αt

∣∣∣∣∣ =
1−αt

(αt−αt)(1−αt)

1
1−αt

=
1− αt

αt − αt
= O

(
log T

T

)
,

and the last relation applies Lemma 1 (under the assumption θt(x) ≲ 1) and (26). It is then easily seen that

pϕt(Y )(ϕt(x))

pY (x)
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(
O
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)
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)
.

(121)

Step 3: computing the density ratio of interest. From relations (42a) and (42b) in Lemma 4 as well
as (117), we see that

pϕt(Yt)(ϕt(x))

pYt
(x)

= 1 + o(1) and
p√αtXt−1

(
ϕt(x)

)
pXt

(x)
= 1 + o(1).

Then, compare the preceding two results (120) and (121) (with Y chosen to be Yt) to arrive at
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/
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(
ϕt(x)

)
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=
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+O
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,

where the two functions g1(·) and g2(·) are defined as

g1(x) := exp

(
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(∥∥ ∫
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,
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Jensen’s inequality tells us that g1(x) ≤ g2(x), and hence we can write

pϕt(Yt)(ϕt(x))

pYt
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/
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(
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d log3 T
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T
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d log3 T
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)
for those x obeying the assumptions of this lemma, where ζt(·) = g1(·)/g2(·)− 1 is some function obeying
ζt(x) ≤ 0.
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Similarly, replacing ϕt (resp. Yt) with ϕ⋆
t (resp. Xt) in the above display and repeating the same arguments,

we arrive at

pϕ⋆
t (Xt)(ϕ

⋆
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) =
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F

+
d log3 T

T 2

)
. (122)

The careful reader would immediately note that we have not yet defined ζt(·) for all x. To ease presentation,
we shall simply take ζt(x) = 0 for any x that does not satisfy the assumptions of this lemma.

Step 4: bounding the expectation of ζt(·). Define the set

Eζ :=

{
x | θt(x) ≤ 2C12,

C10θt(x)d log
2 T

T
≤ 1

}
for some large enough constant C12 > 0. With (122) in place, we have

p√αtXt−1

(
ϕ⋆
t (x)

)
ζt(x) = pϕt(Xt)

(
ϕ⋆
t (x)

)
− p√αtXt−1

(
ϕ⋆
t (x)

)
− p√αtXt−1

(
ϕ⋆
t (x)

)
O

(∥∥∥∥∂ϕ⋆
t (x)

∂x
− I

∥∥∥∥2
F

+
d log3 T

T 2

)
for any x ∈ Eζ . In addition, according to the properties (115), (117a), Lemma 1, and the assumption that
T ≳ d2 log5 T , one can easily derive∣∣∣∣det(∂ϕ⋆

t (x)

∂x

)∣∣∣∣ = det

((
1− 1− αt

2(1− αt)

)
Id +

1− αt

2(1− αt)
Cov

(
Xt −

√
αtX0√

1− αt
| Xt = x

))

≤
(
1 +O

(d log2 T
T

))d

= 1 +O
(d2 log2 T

T

)
≤ 2 (123a)

and
∣∣∣∣det(∂ϕ⋆

t (x)

∂x

)∣∣∣∣ ≥ (1− 1− αt

2(1− αt)

)d

=

(
1−O

( log T
T

))d

≥ 1

2
(123b)

for any x ∈ Eζ . These properties in turn allow one to derive

0 ≤ −
∫
p√αtXt−1

(
ϕ⋆
t (x)

)
ζt(x)dx = −

∫
x∈Eζ

p√αtXt−1

(
ϕ⋆
t (x)

)
ζt(x)dx

≍ −
∫

x∈Eζ

p√αtXt−1

(
ϕ⋆
t (x)

)∣∣∣∣det(∂ϕ⋆
t (x)

∂x

)∣∣∣∣ζt(x)dx
= −

∫
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t (Xt)

(
ϕ⋆
t (x)

)∣∣∣∣ det(∂ϕ⋆
t (x)

∂x

)∣∣∣∣dx+

∫
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(
ϕ⋆
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t (x)
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)∣∣∣∣dx
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(
ϕ⋆
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∂x

)∣∣∣∣O(∥∥∥∥∂ϕ⋆
t (x)
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− I

∥∥∥∥2
F

+
d log3 T

T 2

)
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≤ −
∫

x∈Eζ
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t (Xt)

(
ϕ⋆
t (x)

)∣∣∣∣ det(∂ϕ⋆
t (x)
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∫
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(
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)
O
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t (x)

∂x
− I

∥∥∥∥2
F
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(
d log3 T

T 2

)
,

(124)

where the last line is valid since∫
x∈Eζ

p√αtXt−1

(
ϕ⋆
t (x)

)∣∣∣∣ det(∂ϕ⋆
t (x)

∂x

)∣∣∣∣dx ≤
∫

p√αtXt−1

(
ϕ⋆
t (x)

)∣∣∣∣det(∂ϕ⋆
t (x)

∂x

)∣∣∣∣dx =

∫
p√αtXt−1

(x)dx = 1.

It then boils down to evaluating
∫
x∈Eζ

pϕ⋆
t (Xt)

(
ϕ⋆
t (x)

)∣∣det ∂ϕ⋆
t (x)
∂x

∣∣dx. Towards this end, we make the
observation that∫

x∈Eζ

pϕ⋆
t (Xt)

(
ϕ⋆
t (x)

)∣∣∣∣det(∂ϕ⋆
t (x)

∂x

)∣∣∣∣dx =

∫
x∈Eζ

pXt
(x)

∣∣∣∣det(∂ϕ⋆
t (x)
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)−1∣∣∣∣ ∣∣∣∣det(∂ϕ⋆
t (x)

∂x

)∣∣∣∣dx
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=

∫
x∈Eζ

pXt
(x)dx = 1−

∫
x/∈Eζ

pXt
(x)dx. (125)

Moreover, it is seen from (49) that

P
(
∥Xt∥2 > T cR+2

)
≤ exp(−c6d log T ),

thereby allowing us to derive that∫
x/∈Eζ

pXt
(x)dx ≤

∫
x: θt(x)≤C12,∥x∥2≤T cR+2

pXt
(x)dx+

∫
∥x∥2>T cR+2

pXt
(x)dx

≤ (T cR+2)d exp (−2C12d log T ) + exp(−c6d log T )

≤ 2 exp
(
−min{C12, c6}d log T

)
.

Combine this with (125) to reach∫
x∈Eζ

pϕ⋆
t (Xt)

(
ϕ⋆
t (x)

)∣∣∣∣det(∂ϕ⋆
t (x)

∂x

)∣∣∣∣dx = 1−O
(
exp (−min{C12, c6}d log T )

)
.

Substitution into (124) then gives

0 ≤ −
∫
p√αtXt−1

(
ϕ⋆
t (x)

)
ζt(x)dx

≤ −1 +O
(
exp (−min{C12, c6}d log T )

)
+ 1 +

∫
p√αtXt−1

(
ϕ⋆
t (x)

)
O

(∥∥∥∥∂ϕ⋆
t (x)

∂x
− I

∥∥∥∥2
F

)
dx+O

(
d log3 T

T 2

)
≍
∫
p√αtXt−1

(
ϕ⋆
t (x)

)∥∥∥∥∂ϕ⋆
t (x)

∂x
− I

∥∥∥∥2
F

dx+
d log3 T

T 2
. (126)

To finish up, note that Lemma 4 together with Lemma 1 and properties (26) tells us that, for any x ∈ Eζ ,

pXt
(x) ≍ p√αtXt−1

(
ϕ⋆
t (x)

)
.

This taken collectively with (126) leads to the advertised result

0 ≤ −
∫

pXt
(x)ζt(x)dx = −

∫
x∈Eζ

pXt
(x)ζt(x)dx ≍ −

∫
x∈Eζ

p√αtXt−1

(
ϕ⋆
t (x)

)
ζt(x)dx

≲
∫

p√αtXt−1

(
ϕ⋆
t (x)

)∥∥∥∥∂ϕ⋆
t (x)

∂x
− I

∥∥∥∥2
F

dx+
d log3 T

T 2
≍
∫

pXt
(x)
∥∥∥∂ϕ⋆

t (x)

∂x
− I
∥∥∥2
F
dx+

d log3 T

T 2
.

B.3 Proof of Lemma 6
In view of the definition (54), one has

Sk(yT ) ≤ c14, for any k < τ(yT ). (127)

Suppose instead that (56) does not hold true, namely, − log qk(yk) > 2c6d log T for some k < τ(yT ), and we
would like to show that this leads to contradiction.

Towards this, let 1 < t ≤ k be the smallest time step obeying

θt(yt) = max

{
− log qt(yt)

d log T
, c6

}
> 2c6 = 2θ1(y1), (128)

where the last identity holds since − log q1(y1) ≤ c6d log T and hence θ1(y1) = max
{
− log q1(y1)

d log T , c6
}
= c6.

We claim that t necessarily obeys

2c6 < θt(yt) ≤ 4c6. (129)
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Assuming the validity of Claim (129) for the moment, it necessarily satisfies

θ1(y1), θ2(y2), · · · , θt(yt) ∈ [c6, 4c6].

According to the relations (43) and (127), we derive

c6 = θ1(y1) ≤ θt(yt)− θ1(y1) = − log qt(yt)

d log T
− θ1(y1) ≤

− log qt(yt) + log q1(y1)

d log T

=
1

d log T

t−1∑
j=1

(
log qj(yj)− log qj+1(yj+1)

)
≤ 2c1 + C10

{
d log3 T

T
+

Sτ(yT )−1(yT )

d log T

}
< 3c1

under our sample size condition. This, however, cannot possibly hold if c6 ≥ 3c1 as assumed for Lemma 6.
To finish up, it suffices to justify Claim (129). In order to see this, suppose instead that θt(yt) > 4c6.

Given relation (127) that Sk(yT ) ≤ c14, it can be readily seen from (41), (127) as well as the learning rate
properties (26) that

θt−1(yt−1) = θt(yt) + θt−1(yt−1)− θt(yt)

= θt(yt) + θt−1(yt−1) +
log qt(yt)

d log T
≥ θt(yt)−

log qt−1(yt−1)− log qt(yt)

d log T

≥ θt(yt)−
4c1

(
5εscore,t(yt)

√
θt(yt)d log T + 60θt(yt)d log T

)
dT

− log 2

d log T
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(
5εscore,t(yt)

√
d log T + 60d log T

)
dT

θt(yt)−
log 2

d log T

>
1

2
θt(yt) > 2c6,

which is contradictory with the assumption that t is the smallest step obeying θt(yt) > 2c6. Thus, we complete
the proof of relation (56) as required.

B.4 Proof of Lemma 7
Next, consider any yT , with {yT−1, · · · , y1} being the associated deterministic sequence (cf. (38))). As an
immediate consequence of Lemma 6 and the definition (27) of θt(·), one has

θt(yt) ≤ 2c6, ∀t < τ(yT ) (130)

We then intend to invoke Lemma 5 to control the term of interest. To do so, note that Lemma 1, (26) and
the definition (54) of τ(yT ) taken together reveal that: for all t < τ(yT ) one has

d(1− αt)

2(αt − αt)
≲

d log T

T
= o(1),
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2d2
( 1− αt

αt − αt

)2
log2 T + εscore,t(yt)

√
θt(yt)d log T

( 1− αt

αt − αt

)
+ (1− αt)dεJacobi,t(yt)

≲
d2 log4 T

T 2
+

εscore,t(yt)
√

d log3 T

T
+

dεJacobi,t(yt) log T

T
= o(1),
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≤

∣∣∣∣∣ (1− αt)E
[∥∥Xt −

√
αtX0

∥∥2
2
|Xt = yt

]
(αt − αt)(1− αt)

∣∣∣∣∣ ≲ (1− αt)d log T

αt − αt
≲

d log2 T

T
= o(1). (131)

With these bounds in mind, applying relations (42a) and (42b) in Lemma 4 leads to

p√αtYt−1

(
ϕt(yt)

)
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(
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)
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for all t < τ(yT ). Using the fact that yt−1 = 1√
αt
ϕt(yt) and invoking the relation (40), we arrive at
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{
1 +O

(
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for any t < τ(yT ). By abbreviating τ = τ(yT ) for notational simplicity, we reach
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{
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[
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, (132a)

and similarly,

qk(yk)

2pk(yk)
≤ q1(y1)

p1(y1)
≤ 2

qk(yk)

pk(yk)
, ∀k < τ. (132b)

This finishes the proof of the claim (57b).
Regarding the other claim (57a), we first observe from (113b) that∥∥∥∥∂ϕ⋆
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− I
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given our assumption that T ≳ d2 log4 T . Applying Lemma 4 leads to
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)
for all t < τ(yT ), where ζt(·) is the function defined in Lemma 5. Recall the fact that yt−1 = 1√

αt
ϕt(yt) and

invoke the relation (40) to arrive at
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{
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for any t < τ(yT ). Apply this relation recursively over 1 < t < τ to conclude the proof of the claim (57a).

B.5 Proof of Lemma 8
In the following, we shall tackle I2, I3 and I4 separately. Throughout this proof, we shall abbreviate τ = τ(YT )
(cf. (54)) whenever it is clear from the context.

42



The sub-collection in I2. By virtue of the definition (60a) of I2, we make the observation that

E
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]
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≤ E
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]
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√
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Here, (i) follows since Sτ

(
yT
)
≥ c14 in I2 (see (60a)); (ii) comes from the definition of St(·) (see (39)); (iii)

holds since (by repeating the same proof arguments as for (57) as long as 2c14 is small enough)

p1(y1)

q1(y1)
≤ 2pt(yt)

qt(yt)
, ∀t ≤ τ ;

and (iv) arises from (34).

The sub-collection in I3. With regards to I3 (cf. (60b)), we can derive the following bound in a way
similar to (133):
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Here, (i) comes from (60b), (ii) arises from (57b), whereas (iii) is a consequence of (60b).
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The sub-collection in I4. We now turn attention to I4 (cf. (60c)), towards which we find it helpful to
define

J1,t :=
{
yT : ξt

(
yT
)
< c14

}
(136a)

J2,t :=

{
yT : ξt

(
yT
)
≥ c14,
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}
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(
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)
≥ c14,

qt−1(yt−1)
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>

8qt(yt)

pt(yt)

}
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for each 2 ≤ t ≤ T . Equipped with the above definitions, we first make the observation that
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]
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]
, (137)

where the first inequality follows from (57b), and the last line comes from the definition of I4 (cf. (60c)) and
J3,t (cf. (136c)). For notational simplicity, let us define, for 2 ≤ t ≤ T ,

ht :=
qt(Yt)

pt(Yt)
.

In view of the second inequality in (136c), one has ht−1 > 8ht as long as yT ∈ J3,t. Consequently,

T∑
t=2
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<

T∑
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1

7
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7
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)
.

Here, the second line holds true since, for all t, one has (i) J1,t ∪ J2,t ∪ J3,t = Rd, and (ii) J1,t, J2,t and J3,t

are disjoint. Substituting this into (137), we arrive at
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In order to further bound (138), we make note of a few basic facts. Firstly, the identity below holds:

E
YT∼pT

[
ht

]
= E

YT∼pT

[
qt(Yt)

pt(Yt)

]
= E

Yt∼pt

[
qt(Yt)

pt(Yt)

]
= 1, 2 ≤ t ≤ T.
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Secondly, by defining the set

Et :=
{
y : qt(y) > exp

(
− c6d log T

)}
, 2 ≤ t ≤ T, (139)

we can show that

T∑
t=2

E
YT∼pT

[
ht 1 {Yt /∈ Et, YT ∈ J1,t}

]
≤

T∑
t=2

E
YT∼pT

[
qt(Yt)

pt(Yt)
1 {Yt /∈ Et}

]
=

T∑
t=2

E
Yt∼pt

[
qt(Yt)

pt(Yt)
1 {Yt /∈ Et}

]

=

T∑
t=2

PYt∼qt {Yt /∈ Et} =

T∑
t=2

PXt∼qt {Xt /∈ Et}

≤
T∑

t=2

PXt∼qt

{
Xt /∈ Et and ∥Xt∥2 ≤ T 2cR+2

}
+

T∑
t=2

PXt∼qt

{
∥Xt∥2 > T 2cR+2

}
≤

T∑
t=2

∫
xt:qt(xt)≤exp(−c6d log T ),∥xt∥2≤T 2cR+2

qt(xt)dxt + T exp
(
− c6d log T

)
≤ T

(
2T 2cR+2

)d
exp(−c6d log T ) + T exp

(
− c6d log T

)
≤ exp

(
− c6

2
d log T

)
,

where the penultimate line comes from (49), and the last inequality holds true as long as c6 is large enough.
Plugging the preceding two results into (138), we reach

E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I4}

]
≤ 8

7

T∑
t=2

E
YT∼pT

[
(ht − ht−1)1 {yt ∈ Et, YT ∈ J1,t}

]
+

8

7

T∑
t=2

E
YT∼pT

[
ht 1 {YT ∈ J2,t}

]
+ exp

(
− c6

2
d log T

)
. (140)

As it turns out, the sum w.r.t. the set J1,t and the sum w.r.t. the set J2,t in (140) can be controlled
respectively using the same arguments as for I1 and I3 to derive

T∑
t=2

E
YT∼pT

[
(ht − ht−1)1 {yt ∈ Et, YT ∈ J1,t}

]
≲

d log4 T

T
+

√
d log3 Tεscore + (d log T )εJacobi,

T∑
t=2

E
YT∼pT

[
ht 1 {YT ∈ J2,t}

]
≲
√
d log3 Tεscore + (d log T )εJacobi;

we omit the arguments here for the sake of brevity. Therefore, we have proven that

E
YT∼pT

[
q1(Y1)

p1(Y1)
1 {Y1 ∈ E , YT ∈ I4}

]
≲

d log4 T

T
+

√
d log3 Tεscore + (d log T )εJacobi. (141)

Putting all this together. Taking (133), (135) and (141) together, we establish the advertised result.
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