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Abstract— Statistical inference and information processing of
high-dimensional data often require an efficient and accurate
estimation of their second-order statistics. With rapidly changing
data, limited processing power and storage at the acquisition
devices, it is desirable to extract the covariance structure
from a single pass over the data and a small number of
stored measurements. In this paper, we explore a quadratic
(or rank-one) measurement model which imposes minimal
memory requirements and low computational complexity during
the sampling process, and is shown to be optimal in preserv-
ing various low-dimensional covariance structures. Specifically,
four popular structural assumptions of covariance matrices,
namely, low rank, Toeplitz low rank, sparsity, jointly rank-one
and sparse structure, are investigated, while recovery is achieved
via convex relaxation paradigms for the respective structure.
The proposed quadratic sampling framework has a variety
of potential applications, including streaming data processing,
high-frequency wireless communication, phase space tomogra-
phy and phase retrieval in optics, and noncoherent subspace
detection. Our method admits universally accurate covariance
estimation in the absence of noise, as soon as the number of
measurements exceeds the information theoretic limits. We also
demonstrate the robustness of this approach against noise and
imperfect structural assumptions. Our analysis is established
upon a novel notion called the mixed-norm restricted isometry
property (RIP-£,/¢1), as well as the conventional RIP-{;,/¢,
for near-isotropic and bounded measurements. In addition, our
results improve upon the best-known phase retrieval (including
both dense and sparse signals) guarantees using PhaseLift with
a significantly simpler approach.

Index Terms— Quadratic measurements, rank-one measure-
ments, covariance sketching, energy measurements, phase
retrieval, phase tomography, RIP-{,/¢;, Toeplitz, low rank,
sparsity.

I. INTRODUCTION
CCURATE estimation of second-order statistics of
stochastic processes and data streams is of ever-growing
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importance to various applications that exhibit high
dimensionality. Covariance estimation is the cornerstone
of modern statistical analysis and information processing,
as the covariance matrix constitutes the sufficient statistics to
many signal processing tasks, and is particularly crucial for
extracting reduced-dimension representation of the objects of
interest. For signals and data streams of high dimensionality,
there might be limited memory and computation power
available at the data acquisition devices to process the rapidly
changing input, which requires the covariance estimation task
to be performed with a single pass over the data stream,
minimal storage, and low computational complexity. This is
not possible unless appropriate structural assumptions are
incorporated into the high-dimensional problems. Fortunately,
a broad class of high-dimensional signals indeed possesses
low-dimensional structures, and the intrinsic dimension of
the covariance matrix is often far smaller than the ambient
dimension. For different types of data, the covariance matrix
may exhibit different structures; four of the most widely

considered structures are listed below.
e Low Rank: The covariance matrix is (approximately)

low-rank, which occurs when a small number of
components accounts for most of the variability in the
data. Low-rank covariance matrices arise in applications
including traffic data monitoring, array signal processing,
collaborative filtering, and metric learning.

o Stationarity and Low Rank: The covariance matrix is
simultaneously low-rank and Toeplitz, which arises when
the random process is generated by a few spectral spikes.
Recovery of the stationary covariance matrix, often equiv-
alent to spectral estimation, is crucial in many tasks in
wireless communications (e.g. detecting spectral holes in
cognitive radio networks), and array signal processing
(e.g. direction-of-arrival analysis [3]).

o Sparsity: The covariance matrix can be approximated
in a sparse form [4]. This arises when a large number
of variables have small pairwise correlation, or when
several variables are mutually exclusive. Sparse covari-
ance matrices arise in finance, biology and spectrum
estimation.

o Joint Sparsity and Rank-One: The covariance matrix can
be approximated by a jointly sparse and rank-one matrix.
This has received much attention in recent development
of sparse PCA, and is closely related to sparse signal
recovery from magnitude measurements (called sparse
phase retrieval).

In this paper, we wish to reconstruct an unknown covariance

matrix ¥ € R™" with the above structure from a small
number of rank-one measurements. In particular, we explore
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sampling methods of the form

,m, (1)

where y := {y;}", denotes the measurements, a; € R"
represents the sensing vector, 5 := {ni};" | stands for the noise
term, and m is the number of measurements. The noise-free
measurements aiT):a,- ’s are henceforth referred to as quadratic
measurements (or rank-one measurements). In practice, the
number of measurements one can obtain is constrained by
the storage requirement in data acquisition, which could be
much smaller than the ambient dimension of X. This sampling
scheme finds applications in a wide spectrum of practical
scenarios, admits optimal covariance estimation with tractable
algorithms, and brings in computational and storage advan-
tages in comparison with other types of measurements, as
detailed in the rest of the paper.

yizaiT):ai—i—m, i=1,...

A. Motivation

The quadratic measurements in the form of (1) are
motivated by several application scenarios listed below, which
illustrate the practicability and benefits of the proposed
quadratic measurement scheme.

1) Covariance Sketching for Data Streams: A high-
dimensional data stream model represents real-time data that
arrives sequentially at a high rate, where each data instance
is itself high-dimensional. In many resource-constrained
applications, the available memory and processing power at
the data acquisition devices are severely limited compared with
the volume and rate of the data [5]. Therefore it is desirable to
extract the covariance matrix of the data instances from inputs
on the fly without storing the whole stream. Interestingly, the
quadratic measurement strategy can be leveraged as an effec-
tive data stream processing method to extract the covariance
information from real-time data, with limited memory and low
computational complexity.

Specifically, consider an input stream {x,}7°, that arrives
sequentially, where each x;, € R" is a high-dimensional data
instance generated at time 7. The goal is to estimate the covari-
ance matrix ¥ = E[x,x,/] € R"™". The prohibitively high
rate at which data is generated forces covariance extraction
to function with as small a memory as possible. The scenario
we consider is quite general, and we only impose that the
covariance of a random substream of the original data stream
converges to the true covariance X. No prior information
on the correlation statistics across consecutive instances is
assumed to be known a priori (e.g. they are not necessarily
independently drawn), and hence it is not feasible to exploit
these statistics to enable lower sample complexity.

We propose to pool the data stream {x,};2, into a small
set of measurements in an easy-to-adapt fashion with a
collection of sketching vectors {a;}/" ;. Our covariance sketch-
ing method, termed quadratic sketching, is outlined as follows:

1) At each time ¢, we randomly choose a sketching vector

indexed by ¢; € {1, ..., m}, and obtain a single nonneg-
ative quadratic sketch (agx,)z.

2) All sketches employing the same sketching vector a; are

aggregated and normalized, which converge rapidly to
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a measurement!
yi=E [(aiTxt)z] +n;=alE [x,xtT] ai +1;
=a/Zai+y;, i=1,...,m, 2)
where 5 := {#;}/_, denotes the error term.

There are several benefits of this covariance sketching method.
First, the storage complexity m, as will be shown, can be much
smaller than the ambient dimension of X. The computational
cost for sketching each instance is linear with respect to
the dimension of the instance in the data stream. Unlike
the uncompressed sketching methods where each instance
one measures usually affects many stored measurements, our
scheme allows each aggregate quadratic sketch to be composed
by completely different instances, which allows sketching
to be performed in a distributed and asynchronous manner.
This arises since each randomized sketch is a compressive
snapshot of the second-order statistics, while each uncom-
pressed measurement itself is unable to capture the correlation
information. As we will demonstrate later, this sketching
scheme allows optimal covariance estimation with information
theoretically minimal memory complexity at the data acqui-
sition stage. One motivating application for this covariance
sketching method is covariance estimation of ultra-wideband
random processes, as is further elaborated in Section [-A2.

2) Noncoherent Energy Measurements in Communications

and Signal Processing: When communication takes place in
the high-frequency regime, empirical energy measurements
are often more accurate and cheaper to obtain than phase
measurements. For instance, energy measurements will be
more reliable when communication systems are operating with
extremely high carrier frequencies (e.g. 60GHz communica-
tion systems [6]).

o Spectrum Estimation of Stochastic Processes from Energy
Measurements: Many wireless communication systems
operating in stochastic environments rely on reliable
estimation of the spectral characteristics of random
processes [7], such as recovering the power spectrum
of the ultra-wideband random process characterizing
the spectrum occupancy in cognitive radio [8], [9].
Moreover, optimal signal transmissions are often based on
the Karhunen—Loeve decomposition of a random process,
which requires accurate covariance information [10].
If one employs a sensing vector a;, which is imple-
mentable using random demodulators [11], and observes
the average energy measurements over N instances
{x:}1</<n, then the energy measurements read

1 N
T
Yi:N;’ai Xt

where Xy = % Zivzl x,x, denotes the sample covari-
ance matrix, leading to the quadratic-form observations.

2 T
=a; Xya;, i=1,....,m (3)

I'Note that we might only be able to obtain measurements for empirical
covariance matrices instead of X, but this inaccuracy can be absorbed into
the noise term x. In fact, for stationary data streams, y; converges rapidly
to a;r):ai with a few instances x;.
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o Noncoherent  Subspace  Detection  from  Energy
Measurements: Matched subspace detection [12] spans
many applications in wireless communication, radar,
and pattern recognition when the transmitted signal is
encoded by the subspaces. The problem can also be cast
as recovering the principal subspace of a dataset {x,}ﬁ\’: 1

with an energy detector obtaining m measurements in the
form of (3). Thus, the noncoherent subspace detection is
subsumed by the formulation (1).

3) Phaseless Measurements in Physics: Optical imaging
devices are incapable of acquiring phase measurements due
to ultra-high frequencies associated with light. In many
applications, measurements taking the form of (1) arise
naturally.

o Compressive Phase Space Tomography: Phase Space
Tomography [13] is an appealing method to measure the
correlation function of a wave field in physics. However,
tomography becomes challenging when the dimension-
ality of the correlation matrix becomes large. Recently,
it was proposed experimentally in [14] to recover an
approximately low-rank correlation matrix, which often
holds in physics, by only taking a small number of
measurements in the form of (1).

e Phase Retrieval: Due to the physical constraints, one
can only measure amplitudes of the Fourier coefficients
of an optical object. This gives rise to the problem of
recovering a signal x € R” from magnitude measure-
ments, which is often referred to as phase retrieval.
Several convex (see [15]-[17]) and nonconvex algorithms
(see [18]-[21]) have been proposed that enable exact
phase retrieval (i.e. recovers x - x | ) from random mag-
nitude measurements. If we set ¥ := xx', then our
problem formulation (1) subsumes phase retrieval as a
special case in the low-rank setting.

Apart from the preceding applications, we are aware that
this rank-one measurement model naturally arises in the
mixture of linear regression problem [22]. All in all, all of
these applications require structured matrix recovery from a
small number of rank-one measurements (1). The aim of this
paper to develop tractable recovery algorithms that enjoy near-
optimal performance guarantees.

B. Contributions

Our main contributions are three fold. First, we have devel-
oped convex optimization algorithms for covariance estimation
from a set of quadratic measurements as given in (1) for a
variety of structural assumptions including low-rank, Toeplitz
low-rank, sparse, and sparse rank-one covariance matrices. The
proposed algorithms exploit the presumed low-dimensional
structures using convex relaxation tailored for respective struc-
tures. For a large class of sub-Gaussian sensing vectors, we
derive theoretical performance guarantees (Theorems 1 — 4)
from the following aspects:

1) Exact and Universal Recovery: once the sensing vectors
are selected, then with high probability, all covari-
ance matrices satisfying the presumed structure can be
recovered;
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2) Stable Recovery: the proposed algorithms allow recon-
struction of the true covariance matrix to within high
accuracy even under imperfect structural assumptions;
additionally, if the measurements are corrupted by noise,
possibly adversarial, the estimate deviates from the true
covariance matrix by at most a constant multiple of the
noise level;

3) Near-minimal Measurements: the proposed algorithms
succeed as soon as the number of measurements is
slightly above the information theoretic limits for most
of the respective structure. For the special case of
(sparse) rank-one matrices, our result recovers and
strengthens the best-known reconstruction guarantees of
(sparse) phase retrieval using PhaseLift [15], [23], [24]
with a much simpler proof technique.

Secondly, to obtain some of the above theoretical guarantees
(Theorems 1, 3, and 4), we have introduced a novel mixed-
norm restricted isometry property, denoted by RIP-£,/{;.
An operator is said to satisfy the RIP-£5/¢ if the strength
of the signal class of interest before and after measure-
ments are preserved when measured in the £ norm and in
the £; norm, respectively. While the conventional RIP-£»/€>
does not hold for the quadratic sensing model for general
low-rank structures as pointed out by [15], we have established
that the sensing mechanism does satisfy the RIP-£»/{; after a
“debiasing” modification, under general low-rank, sparse, and
simultaneously sparse and rank-one structural assumptions.
This seemingly subtle change enables a significantly simpler
analytical approach without resorting to complicated dual
construction as in [15], [23], and [24].

On the other hand, we demonstrate, via the entropy
method [25], that linear combinations of the quadratic
measurements satisfy RIP-£,/f> when restricted to Toeplitz
low-rank covariance matrices. This leads to near-optimal
recovery guarantees for Toeplitz low-rank covariance matrices
(Theorem 2). Along the way, we have also established a
RIP-£5/¢> for bounded and near-isometric operators
(Theorem 5), which strengthens previous work [26], [27]
by offering universal and stable recovery guarantees
for a broader class of operators including Fourier-type
measurements.

Last but not least, our measurement schemes and algorithms
may be of independent interest to high-dimensional data
processing. The measurements in (1) are rank-one measure-
ments with respect to the covariance matrix, which are much
easier to implement and bear a smaller computational cost than
full-rank measurement matrices with i.i.d. entries. Moreover,
the performance guarantees of the measurement scheme (1) is
universal, which does not require any additional incoherence
conditions on the covariance matrix as required in the standard
matrix completion framework [26], [28], [29].

C. Related Work

In most existing work, the covariance matrix is estimated
from a collection of full data samples, and fundamental
guarantees have been derived on how many samples are
sufficient to approximate the ground truth [4], [30]. In contrast,
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this paper is motivated by the success of Compressed
Sensing (CS) [31], [32], which asserts that compression can
be achieved at the same time as sensing without losing
information. Efficient algorithms have been developed to esti-
mate a deterministic signal from a much smaller number of
linear measurements that is proportional to the complexity of
the parsimonious signal model. As we will show in this paper,
covariance estimation from compressive measurements can be
highly robust.

When the covariance matrix is assumed to be
approximately sparse, recent work [8], [33] explored
reconstruction of second-order statistics of a cyclostationary
signal from random linear measurements, by £1-minimization
without performance guarantees. Other spectral prior
information has been considered as well in [34] for stationary
processes. These problem setups are quite different from (1)
in the current work. Another work by Dasarathy et al. [35]
proposed estimating an approximately sparse covariance
matrix from measurements of the form ¥ = AXAT,
where A € R"™*" denotes the sketching matrix constructed
from expander graphs. Nevertheless, this scheme cannot
accommodate low-rank covariance matrix estimation.

Our covariance estimation method 1is inspired by
recent developments in phase retrieval [15], [17], [20],
[23], [36], [37], which is tantamount to recovering
rank-one covariance matrices from quadratic measurements.
In particular, our recovery algorithm coincides with
PhaseLift [15], [23] when applied to low-rank matrices.
In [23], it is shown that PhaseLift succeeds at reconstructing
a signal of dimensionality n from ©(n) phaseless Gaussian
measurements, and stable recovery has also been established
in the presence of noise. When specializing our result to
this case, we have shown that the same type of theoretical
guarantee holds for a much larger class of sub-Gaussian
measurements, with a different proof technique that yields
a much simpler proof. Moreover, when the signal is further
assumed to be k-sparse, the pioneering work [24] showed
that O (k? logn) Gaussian measurements suffice; this result is
extended to accommodate sub-Gaussian measurements
and approximately sparse signals by our framework
with a much simpler proof. More details can be found
in Section II-D.

We also put the proposed covariance sketching scheme in
Section I-Al into perspective. In a streaming setting, online
principal component analysis (PCA) has been an active area
of research for decades [38] using full data samples, where
non-asymptotic convergence guarantees have only been
recently developed [39]. Inspired by CS, subspace tracking
from partial observations of a data stream [40], [41], which
can be regarded as a variant of incremental PCA [42] in the
presence of missing values, is also closely related. However,
existing subspace tracking algorithms mainly aim to recover
the data stream, which is not necessary if one only cares to
extract the second-order statistics.

Finally, after we posted our work on Arxiv, Cai and Zhang
made available their manuscript [43], an independent work
that studies low-rank matrix recovery under rank-one mea-
surements via the notion of restricted uniform boundedness.
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In comparison, our results accommodate a larger class of
covariance structures including Toeplitz low-rank, sparse, and
jointly low-rank and sparse matrices.

D. Organization

The rest of this paper is organized as follows. We first
present the convex optimization based algorithms in Section II,
and establish their theoretical guarantees. The analysis frame-
work is based upon a novel mixed-norm restricted isometry
property as well as conventional RIP for near-isotropic and
bounded measurements, as elaborated in Sections III and IV.
The proof of main theorems is deferred to the appendices.
Numerical examples are provided in Sections V. Finally,
Section VI concludes the paper with a summary of our findings
and a discussion of future directions.

E. Notations

Before proceeding, we provide a brief summary of useful
notations that will be used throughout this paper. A variety of
matrix norms will be discussed; in particular, we denote by
X1, I X|lg, and || X||,. the spectral norm, the Frobenius norm,
and the nuclear norm (i.e. sum of all singular values) of X,
respectively. When X is a positive semidefinite (PSD) matrix,
the nuclear norm coincides with the trace || X+ = Tr(X).
We use || X||; and || X||p to denote the £; norm and support
size of the vectorized X, respectively. The Euclidean inner
product between X and Y is defined as (X,Y) = Tr(X'Y).
We will abuse the notation and let X, and X; stand for the
best rank-r approximation and the best k-term approximation
of X respectively, i.e.

X, = argminM:rank(M):r X — Mg,
and
Xy = argmingg pp,=« 12 — Mllg,

whenever clear from context. Besides, we denote by 7 the
orthogonal projection operator onto Toeplitz matrices, and
T+ its orthogonal complement. Some useful notations are
summarized in Table I.

II. CONVEX RELAXATION AND ITS
PERFORMANCE GUARANTEES

In  general, recovering the covariance  matrix
Y € R”" from m < n( + 1)/2 measurements is
ill-posed, unless the sampling mechanism can effectively
exploit the low-dimensional covariance structure. Random
sampling often preserves the information structure from
minimal observations, and allows robust recovery from noisy
measurements.

In this paper, we restrict our attention to the following
random sampling model. We assume that the sensing vectors
are composed of i.i.d. sub-Gaussian entries. In particular, we
assume a;’s (1 <i < m) arei.i.d. copies of z = [z1, - - - 7zl "
where each z; is i.i.d. drawn from a distribution with the
following properties

>

E[zi]=0, Elz2]=1, and uq ;:E[z;‘]>1. @)
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TABLE I
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SUMMARY OF NOTATION AND PARAMETERS

DIND INED I true covariance matrix, best rank-r approximation of 3, and ¥ := 3 — X,
3, ¥ag- EQE’ true covariance matrix, best k-sparse approximation of 3, and ZQE’ =3 - 3q,
T, T+ orthogonal projection operator onto Toeplitz matrices, and its orthogonal complement.
n,y € R™ noise, quadratic measurements {a,;r Ya; + ni}1<i<m
a; € R", A; € R"™ ™  ith sensing vector, ith sensing matrix A; := a; -70,?
B; € R*X™ auxiliary sensing matrix
A A linear transformation X +— aZTXai , linear mapping X — {ajxai}lgigm
Bi.B linear transformation X — (B, X) , linear mapping X — {B; (X)}, <, <.,
We assume that the error term n := [n,---, 77,,,]T is program (7) (with € = 0) allows perfect covariance

bounded in either £; norm or {> norm as specified later
in the theoretical guarantees. For notational simplicity, let
A = aia;r represent the equivalent sensing matrix, and
hence the measurements y := [y, --- ,ym]T obeys y; =
(A;, X) + n;. We also define the linear operator A(M) :
R™" 1 R™ that maps a matrix M € R™" to {(M, A;)}.,.
These notations allow us to express the measurements as

y=AX) +n. 35)

A. Recovery of Low-Rank Covariance Matrices

Suppose that X is approximately low-rank, a natural heuris-
tic is to perform rank minimization to encourage the low-rank
structure

A

X = argmin,; rank(M) subjectto M > 0,
ly =AMl < e, (6)

where €] is an upper bound on |n||; and assumed known
a priori. However, the rank minimization problem is in general
NP-hard. Therefore, we replace it with trace minimization over
all matrices compatible with the measurements

A

Y = argminy, Tr(M) subjectto M >0,
ly =AM =e1. (7)

Since X is PSD, the trace norm forms a convex surrogate for
the rank function, which has proved successful in matrix com-
pletion and phase retrieval problems [15], [28], [44]. It turns
out that this convex relaxation approach (7) admits stable
and faithful estimates even when X is approximately low
rank and/or when the measurements are corrupted by bounded
noise. This is formally stated in the following theorem.
Theorem 1: Consider the sub-Gaussian sampling model
in (4) and assume that ||n||; < €1. Then with probability
exceeding 1 — Co exp(—com), the solution 2 1o (7) satisfies
12— X,
Jr
simultaneously for all ¥ € R" ", provided that m > cnr.
Here, X, represents the best rank-r approximation of X, and
co, c1, Co, C1 and Cy are some positive numerical constants.

The main implications of Theorem 1 and its associated
performance bound (8) are listed as follows.

1) Exact Recovery From Noiseless Measurements:

Consider the case where rank (¥) = r. In the absence

of noise, one can see from (8) that the trace minimization

A €1
1% —Xllr < Cy +C2Z @)

2)

3)

4)

recovery with exponentially high probability, provided
that the number m of measurements exceeds the order
of nr. Notice that each PSD matrix can be uniquely
decomposed as ¥ = LLT, where L has orthogonal
columns. That said, the the intrinsic degrees of freedom
carried by PSD matrices is ® (nr), indicating that our
algorithm achieves order-wise optimal recovery.
Near-Optimal Universal Recovery: The trace minimiza-
tion program (7) allows universal recovery, in the
sense that once the sensing vectors are chosen, all
low-rank covariance matrices can be perfectly recovered
in the absence of noise. This highlights the power of
convex programming, which allows universally accurate
estimates as soon as the number of measurements
exceeds the order of the information theoretic limit.
In addition, the universality and optimality results hold
for a large class of sub-Gaussian measurements beyond
the Gaussian sampling model.

Robust Recovery for Approximately Low-Rank Matrices:
In the absence of noise (¢; = 0), if X is approximately
low-rank, then by (8) the reconstruction inaccuracy is at

most
|@—zw50(ELEﬂQ
Jr

with probability at least 1 —exp(—c1m), as soon as m is
about the same order of nr. One can obtain a more
intuitive understanding through the following power-
law covariance model. Let 1, represent the {th largest
singular value of X, and suppose the decay of i, obeys
a power law, i.e. 1p < ;‘—ﬂ for some constant & > 0 and
decay rate exponent f > 1. Then simple computation
reveals that

IE=%l _ 1 < @ _ a
Jr VT gyt

which in turn implies

=<

ni—zw=0( ﬂ). ©)
rf=2

This asserts that (7) returns an almost accurate estimate
of ¥ in a manner which requires no prior knowledge
on the signal (other than the power law decay that is
natural for a broad class of data).

Stable Recovery From Noisy Measurements: When X is
exactly of rank r and the noise is bounded |5 < €1,
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the reconstruction inaccuracy of (7) is bounded above
by

€]

1£-Zr =0 () (10)

with exponentially high probability, provided that
m exceeds O (nr). This reveals that the algorithm (7)
recovers an unknown object with an error at most
proportional to the average per-entry noise level, which
makes it practically appealing.

5) Phase Retrieval With Sub-Gaussian Measurements: The
proposed algorithm (7) appears in the same form as the
convex algorithm called PhaseLift, which was proposed
in [15] for phase retrieval. It is equivalent to treating
¥ as the rank-one lifted matrix xx T from an unknown
signal x. It has been established in [23] that with high
probability, it is feasible to recover x exactly from
® (n) quadratic measurements, assuming that the sens-
ing vectors are i.i.d. Gaussian. Our result immediately
recovers all results of [15] and [23] including exact
and stable recovery. In fact, our analysis framework
yields a much simpler and shorter proof of all these
results, and immediately extends to a broader class of
sub-Gaussian sampling mechanisms. We will further
discuss our improvement of sparse recovery from mag-
nitude measurements [24], [45] in Section II-D.

Remark 1: A lower bound on the minimax risk has recently

been established by Cai and Zhang [43, Th. 2.4]. Specifically,
if the noise § ~ ./\/(0,021) with ¢ = © (iﬂ—l), then for any
estimator X (y),

inf  sup \/IE,, |:Hf)(y)—2”2] Za:@(e—l),

() X: rank(X)=r F m
provided that m = ® (nr). While our results are established for
bounded (possibly adversarial) noise, it is straightforward to
see that the above argument reveals the orderwise minimaxity
of our stability bound.

B. Recovery of Low-Rank Covariance Matrices for
Stationary Instances

Suppose that ¥ € R™ " is simultaneously low-rank and
Toeplitz, which can represent the covariance matrix of a wide-
sense stationary random process. Similar to recovery in the
general low-rank model, we propose to seek a nuclear norm
minimizer over all matrices compatible with the measure-
ments as well as the Toeplitz constraint, which results in the
following estimator:

3= argminy, Tr(M) subjectto M > 0,
ly — AM)|2 < €, M is Toeplitz,

Y

where €7 is an upper bound of ||5||,.

Encouragingly, the PSD Toeplitz cone can be very pointy
around many low-rank feasible points, as illustrated in Fig. 1.
Therefore, the intersection between the PSD Toeplitz cone and
a random hyperplane passing through X often contains only
a single point. As a result, the semidefinite relaxation (11) is
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Fig. 1. Representation of the unit PSD Toeplitz ball consisting of all (x, y, z)

14 x y z
_ x 1/4 x 'y _
such that T = y ox 1/4 x >0and Tr(T) = 1.
Lz y x 1/4

exact with high probability under noise-free measurements, as
stated in the following theorem.

Theorem 2: Consider the sub-Gaussian sampling model
in (4), and assume that us < 3 and 9|, < €2. Then with
probability exceeding 1 — 1/n?,

1% - ElF < -~
Jm
holds simultaneously for all Toeplitz covariance matrices X of
rank at most r, provided that m > cor 1og'® n. Here, co and C
are some universal constants.
We highlight some implications of Theorem 2 as follows.

1) Exact Recovery Without Noise: As any rank-r PSD
Toeplitz matrix admits a unique rank-r Vandemonde
decomposition that can be specified by 2r parameters,
by Theorem 2, exact recovery of Toeplitz low-rank
covariance matrices occurs as soon as m is slightly
larger than the information theoretic limit Q (r) (modulo
some poly-logarithmic factor). Note that this sampling
requirement is much smaller than that for general low-
rank matrices, and also much smaller than the degrees
of freedom for general Toeplitz matrices (which is n).

2) Stable and Universal Recovery From  Noisy
Measurements: The proposed convex relaxation (11)
returns faithful estimates in the presence of noise,
as revealed by Theorem 2. This feature is universal:
if A is randomly sampled and then fixed thereafter,
then, with high probability, the error bounds (12) hold
simultaneously for all Toeplitz low-rank matrices. Note
that the error bound (12) is stated in terms of the
¢> norm of n. This is out of mathematical convenience
for this special setup, which will be discussed later.

Remark 2: Two aspects of Theorem 2 are worth noting.

First, Theorem 2 does not guarantee recovery with exponen-
tially high probability as ensured in Theorem 1. This arises
from our use of stochastic RIP, as will be seen in the analysis.
Secondly, we are only able to provide theoretical guarantees
when u4 < 3; roughly speaking, the tails of these distributions
are typically not heavier than those of the Gaussian measure

(12)



4040

(e.g. nua = 3 for Gaussian distribution and u4 = 1 for
Bernoulli distribution). We conjecture that these two aspects
can be improved via other proof techniques.

C. Recovery of Sparse Covariance Matrices

Assume that ¥ is approximately sparse, we propose to seek
a matrix with minimal support size that is compatible with
observations:

A

Y = argminy, [|[M]|lo subjectto M >0,

ly — AM)Il1 <€, (13)

where €] is an upper bound on ||;. However, the £y min-
imization problem in (13) is also intractable, and one can
instead solve a tractable convex relaxation of (13), given as

A

Y = argminy, |[M||; subjectto M >0,

ly — AM)Il1 €. (14)

Here, the ¢; norm is the convex relaxation of the
support size, which has proved successful in many compressed
sensing algorithms [32], [46]. It turns out that the convex
relaxation (14) allows stable and reliable estimates even when
Y is only approximately sparse and the measurements are
contaminated by noise, as stated in the following theorem.
Theorem 3: Consider the sub-Gaussian sampling model
in (4) and assume that ||n||; < €1. Then with probability
exceeding 1 — Coexp(—com), the solution ¥ to (14) satisfies

o 1% — Xl €1
I1X-2r<Ci——F——+C2—, (15)

Vk m
simultaneously for all X € R"™"  provided that

m > ciklog(n®/k). Here, Xq denotes the best k-sparse
approximation of X, and co, c1, Co, C1 and Cy are positive
universal constants.

Theorem 3 leads to similar implications as those listed in
Section II-A, which we briefly summarize as follows.

1) Exact Recovery Without Noise: When X is exactly
k-sparse and no noise is present, by setting €] = 0, the
solution to (14) is exactly equal to the ground truth with
exponentially high probability, as soon as the number
m of measurements is about the order of klog(n?/k).
Therefore our performance guarantee in (15) is optimal
within a constant factor.

2) Universal Recovery: Our performance guarantee in (15)
is universal in the sense that the same sensing mech-
anism simultaneously works for all sparse covariance
matrices.

3) Imperfect Structural Models: The estimate (15) allows
robust recovery for approximately sparse matrices
(which appears in a similar form as that for CS [46]),
indicating that quadratic measurements are order-wise at
least as good as linear measurements.

D. Recovery of Jointly Sparse and Rank-One Matrices

If we set the covariance matrix ¥ = xx | to be a rank-one
matrix, then covariance estimation from quadratic measure-
ments is equivalent to phase retrieval as studied in [15].
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In addition to the general rank-one model, our approach allows
simple analysis for recovering jointly sparse and rank-one
covariance matrices or, equivalently, sparse signal recovery
from magnitude measurements. Specifically, suppose that x is
(approximately) sparse, and we collect a small number of
phaseless measurements as
yi={lla 0P +m)
1<i<m

When x is sparse, the lifting matrix xx | is simultaneously

low rank and sparse, which motivates us to adapt the convex
program proposed in [24] to accommodate bounded noise as
follows

A

X = argminy, Tr(M)+ 1| M|,
subject to M > 0,
ly — AM)I, < e. (16)

Here, / is a regularization parameter that balances the two con-
vex surrogates (i.e. trace norm and ¢ norm) associated with
the low-rank and sparse structural assumptions, respectively,
and €] is an upper bound of |z||;. Our analysis framework
ensures stable recovery of an approximately sparse signal,
as stated in the following theorem.

Theorem 4: Set A € [%,ﬁp] for some quantity p.
Consider the sub-Gaussian sampling model in (4) and
assume that ||p|l; < €1. Then with probability at least
1 — Copexp (—com), the solution X to (16) satisfies

A

X —xxTH < (C {HxxT —xgxg
F

*

€
+ 2 HxxT — xngTIH + —1} (17)
1 m
simultaneously for all signals x € R" satisfying % > p,

provided that m > Cﬂgg”. Here, xq denotes the best

k-sparse approximation of x, and Coy, C1,Ca and co are
positive universal constants.

Theorem 4, depending on the choice of 4, provides universal
recovery guarantees over a large class of signals obeying

lxal, > p. Some implications of Theorem 4 are as follows.

xqlly
1) Exact Recovery for Exactly Sparse Signals: When
x is an exactly k-sparse signal, we can set p = ﬁ
and 4 = % in Theorem 4, which implies the algo-

rithm (16) universally recovers all k-sparse signals x
from O(k*logn) noise-free measurements, with expo-
nentially high probability. This recovers the theoretical
performance guarantees established in [24] for Gaussian
sensing vectors, but extends it to a large class of sub-
Gaussian sensing vectors, using a simpler proof.

2) Near-Optimal Recovery for Power-Law Exactly Sparse
Signals: Somewhat surprisingly, if the nonzero entries
of x are known to be decaying in a power-law fashion,
then the algorithm (16) allows near-optimal recovery.
Specifically, suppose that the non-zero entries of x
satisfies the power-law decay such that the magnitude
of the /th largest entry of xq/ ||xqll, is bounded above
by cpi/l* for some constants cp and exponent a > 1,
then

xall2/llxalli = O (1/logk) := p.
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TABLE II
SUMMARY OF MAIN RESULTS

Structure Number of Measurements Noise RIP
rank-r O(nr) 12 02/l
Toeplitz rank-r O(rpolylogn) Lo 2Y12
k-sparse O(klog(n?/k)) 2 2V
k-sparse and rank-one O(k?logn) (general sparse); I la/01
O(klog? n) (power-law sparse)

By setting 1 = ©((~/klogn)~!), one can obtain accu-
rate recovery from O (k log? n) noiseless samples, which
is only a logarithmic factor from the minimum sample
complexity requirement.

3) Stable and Universal Recovery for Imperfect Models and
Noisy Samples: When the sparsity assumption is inexact,
or measurements are noisy, the estimate X will not be
exact, and we can recover the estimate of the signal x
as the top (normalized) eigenvector of X. Using the
Davis-Kahan theorem in standard matrix perturbation
theory [47], we have

sin/Z(x,x) < % H)A( —xxTH

llxll3 F
bounded by Theorem 4, where /(X,x) represents the
angle between X and x. The recovered signal X is a
highly accurate estimate if xqgc is small enough. The
estimation inaccuracy due to noise corruption is also
small, in the sense that it is at most proportional to the
per-entry noise level. This generalizes prior work [24]
to imperfect structural assumptions as well as noisy
measurements.

E. Extension to General Matrices

Table II summarizes the main results of Theorems 1-4.
We further remark that the main results hold even when
Y is not PSD but a symmetric matrix.2 When ¥ is not a
covariance matrix but a general low-rank, Toeplitz low-rank,
or sparse matrix, one can simply drop the PSD constraint in the
proposed algorithms, and replace the trace norm objective by
the nuclear norm in (7). As will be shown, the PSD constraint
is never invoked in the proof, hence it is straightforward to
extend all results to the more general cases where X is a
general n x n low-rank, Toeplitz low-rank, or sparse matrix.
Note that in this more general scenario, the measurements
in (1) are no longer nonnegative.

III. APPROXIMATE {3 /{1 ISOMETRY FOR
LOW-RANK AND SPARSE MATRICES

In this section, we present a novel concept called the mixed-
norm restricted isometry property (RIP-£>/£1) that allows us to
establish Theorems 1, 3, and 4 concerning universal recovery
of low-rank, sparse and sparse rank-one covariance matrices
from quadratic measurements.

2The proposed framework and proof arguments can also be easily extended
to handle asymmetric matrices without difficulty, using bilinear rank-one
measurements.
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Prevailing wisdom in CS asserts that perfect recovery from
minimal samples is possible if the dimensionality reduction
projection preserves the signal strength when acting on the
class of matrices of interest [32], [44]. While there are various
ways to define the restricted isometry properties (RIP), an
appropriately chosen approximate isometry leads to a very
simple yet powerful theoretical framework.

A. Mixed-Norm Restricted Isometry (RIP-€3/{;)

Recall that the RIP occurs if the sampling output preserves
the input strength under certain metrics. The most commonly
used one is RIP-{,/¢>, for which the signal strength before
and after the projection are both measured in terms of the
Frobenius norm [44], [46]. This, however, fails to hold
under rank-one measurements — see detailed arguments by
Candes et al. in [15]. Another isometry concept called
RIP-£1/€1 has also been investigated, for which the sig-
nal strength before and after the operation A are measured
both in terms of the £; norms.> This is initially developed
to account for measurements from expander graphs [48],
and has become a powerful metric when analyzing phase
retrieval [15], [23], [24]. Nevertheless, when considering gen-
eral low-rank matrices, RIP-£1 /€1 no longer holds. To see this,
consider two matrices

X, = diag{l, 2, 1,20}
X, = diag{l, /2, — 1,20}

enjoying the same nuclear norm. When m = Q(nr), one
can see from the Bernstein inequality (for sub-exponential
variables) that

LA =0 (), ~14&I = 0 (V7).
m m

precluding the existence of a small RIP-£1/f; constant.
Leaving out this matter, the proof based on RIP-£1/¢{;
typically relies on delicate construction of dual
certificates [15], [23], [24], which is often mathematically
complicated.

One of the key and novel ingredients in our analysis is a
mixed-norm approximate isometry, which measures the signal
strength before and after the projection with different metrics.
Specifically, we introduce RIP-{>/¢;, where the input and
output are measured in terms of the Frobenius norm and
the £; norm, respectively. It turns out that as long as the
input is measured with the Frobenius norm, the standard trick
pioneered in [46] in treating linear measurements carry over
to quadratic measurements with slight modifications and saves
the need for dual construction. We make formal definitions of
RIP-£, /€1 for low-rank/sparse matrices as follows.

Definition 1 (RIP-(3/€; for Low-Rank Matrices): For the
set of rank-r matrices, we define the RIP-C>/€| constants
o and 6" with respect to an operator B as the smallest
numbers such that for all X of rank at most r:

(1= ) 1Xle = 1B CON = (104 °) 1X e

3Note that the nuclear norm is the ¢1-norm counterpart for matrices.



4042

Definition 2 (RIP-(,/€; for Sparse Matrices): For the set
of k-sparse matrices, we define the RIP-(2/{1 constants
> and y™ with B as th Il
Ve and y° with respect to an operator B as the smallest

numbers such that for all X of sparsity at most k:

1
(1=2) 1Xle = — 1B = (14 7°) 1K
Definition 3 (RIP-t2/¢1 for Low-Rank Plus Sparse
Matrices): Consider the class of index sets

Sk = {Q € [n] x [n] ’ 3 an index set w € [n]
of cardinality k such that Q = o x cu}
For the set of matrices
Mir = {X1 X, ‘ 30 € S, rank (X)) <r,

supp(X1) € Q. [ Xallg <1} (1)
we define the RIP-(,/€1 constants 5}(br ; and 5,‘c‘br ; with
respect to an operator BB as the smallest numbers such that
VX € Mgt

1
(1= ) IXle = — 1B QO = (1402, ) 1T

Remark 3: In short, any matrix within My ,; can be
decomposed into two components X; and X;, where X is
simultaneously low-rank and sparse, and X, is sparse. This
allows us to treat each matrix perturbation as a superposition
of a collection of jointly low-rank and sparse matrices and
a collection of general sparse matrices, where the rank-one
measurements of each term can be well controlled under
minimal sample complexity.

B. RIP-t3/€; of Quadratic Measurements for Low-rank
and Sparse Matrices

Unfortunately, the original sampling operator A does not
satisfy RIP-{,/¢1. This occurs primarily because each mea-
surement matrix A; has non-zero mean, which biases the
output measurements. In order to get rid of this undesired bias
effect, we introduce a set of “debiased” auxiliary measurement
matrices as follows

B; := Aji—| — Ay;. (19)
Without loss of generality, denote B; (X) := (B;, X) for all
1 <i <m, and let B (X) represent the linear transformation
that maps X to {B; (X)}i_,. Note that by representing the
sensing process using m rank-2 measurements B;, we have
implicitly doubled the number of measurements for notational
simplicity. This, however, will not change our order-wise
results.

It turns out that the auxiliary operator 53 exhibits the
RIP-£5/€; in the presence of minimal measurements, which
can be shown by combining the following proposition with a
standard covering argument as applied in [49].

Proposition 1: Let A be sampled from the sub-Gaussian
model in (4). For any matrix X, there exist universal
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constants c1, ca, c3 > 0 such that with probability exceeding
1 — exp (—c3m), one has

crIXlg = % I1BX)I <c2 I XlE. (20)
Proof: See Appendix A. O

Remark 4: This statement extends without difficulty to the
bilinear rank-one measurement model where y; = aiT):b,- for
some independently generated sensing vectors a; and b;. This
indicates that all our results hold for this asymmetric sensing
model as well.

An immediate consequence of Proposition 1 is the
establishment of RIP-£»/¢1 of the sampling operator B for
either general low-rank or sparse matrices. The proof of
the corollaries below follows immediately from a standard
covering argument detailed in [49, Sec. III-B] and [50, Sec. 5].
We thus omit the details but refer interested readers to the
above references for details.

Corollary 1 (RIP-€3/¢;  for  Low-Rank  Matrices):
Consider the sub-Gaussian sampling model in (4) and the
universal constants c1,cy > 0 given in (20). There exist
universal constants c3, ca, C3 > 0 such that with probability
exceeding 1 — Cyexp (—c3m), B satisfies RIP->/€1 for all
matrices X of rank at most r, and obeys

1=oP =3, 140" <20, 1)
provided that m > canr.

Corollary 2 (RIP-€3/t; for Sparse Matrices): Consider
the sub-Gaussian sampling model in (4) and the universal
constants ci1,cy > 0 given in (20). Then with probability
exceeding 1 — Czexp (—c3m), B satisfies the RIP-C3/€) for
all matrices X of sparsity at most k, and obeys

L=y = 5, 149 <20, (22)
provided that m > c4klog(n?/k), where c3,c4,C3 > 0 are
some universal constants.

Corollary 3 (RIP-(3/€; for Low-Rank Plus Sparse
Matrices): Consider the sub-Gaussian sampling model in (4)
and the universal constants ci,c> > 0 given in (20). Then
with probability exceeding 1 — C3 exp (—c3m), B satisfies the
RIP-t5 /1 with respect to My, (defined in (18)), and obeys

1b ‘1
L= 2 7

140, < 26, (23)
provided that m > ¢4 max {kr log(n/k),llog(nz/l)}, where
c3, ¢4, C3 > 0 are some universal constants.

Remark 5: Recall that each matrix in My ,; is a sum
of some X; and X,, where X is a rank-r matrix in a
k x k subspace, while X» is an /-sparse matrix. Consequently,
if we let C (M) stand for the covering number of a set M
(i.e. the the fewest number of points in any e-net of M),
then Cc (My,,1) is apparently bounded above by the product
of Cey2 (M;) and C¢ /2 (M), where M, and M; denotes the
rank-r manifold (with ambient dimension k) and the {-sparse
manifold (with ambient dimension nz), respectively. Thus,
log Ce (/\/lk,,,l) cannot exceed krlog(n/k) + [ log (nz/l).
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C. Proof of Theorems 1, 3 and 4 via RIP-(,/{;

Theorems 1 and 3 can thus be proved given that the
auxiliary operator B satisfies RIP-£5 /€| with sufficiently small
constants, as asserted in Corollaries 1 and 2. We first present
Lemma 1 which in turn establishes Theorem 1.

Lemma 1: Consider any matrix ¥ = X, + X, where X, is
the best rank-r approximation of X. If there exists a number

K1 > 2r such that
[ 2r
b

holds for some numerical value B, then the minimizer 3 10 (7)

obeys
~ Cq
||>:—>:||Fs(—+c3) 2.2
B vKi B

for some positive universal constants Cy, C and C3 depending
only on the RIP-{,/€| constants.
Proof: See Appendix C. O
By choosing

1b
1— 52F+K1

24
7 (24

[Zell, | C2 €1

(25)

2
4c,\ 2 14 0%
Klzs(ﬁ) re8 — ) r
€1 1_55}’4—](1

for the universal constants cq, ¢y given in Corollary 1, we
obtain (24) when m > c4 (K| + 2r) n for some constant c4.
This establishes Theorem 1.

Theorem 3 is a direct consequence from the following
lemma.

Lemma 2: Consider any matrix ¥ = X + Xqc, where
Y. is the best k-term approximation of X. If there exists a
number K, > 2k such that

k
(1) [z 0 o

holds for some numerical value B, then the minimizer ¥ 10 @)
obeys

(1 - yly—Jl—Kz)

V2

~ C E C C €
||z—z||ps(—‘+c3) IZacl | Ga o)

b2 VKy  pom

for some positive universal constants C1, Ca, C3 depending
only on the RIP-{,/€| constants.
Proof: See Appendix D. (I
By picking

2
4 2 1+ y ub
K> = (ﬁ) k>4 7152 k,
C‘ U =751k,
one obtains (26) as soon as m > ¢4 (K2 + 2k)log(n?/k) for
the constant ¢4 given in Corollary 2. This concludes the proof
of Theorem 3.

Furthermore, the specialized RIP-£»>/€; concept allows us
to prove Theorem 4 through the following lemma.
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Lemma 3: Set A to be any number within the interval
1 1 |ixoll ; ;
[E’ ﬁm] Suppose that xq is the best k-term approxi-

mation of x. If there exists a number K| such that

1 1b 3 ub
L 1-¢ —2|1+4s
ﬂ( k,2K|,—2§1 ) VK1 ( k,Kl,% )
A

2max{ —— [ 146"°
VK1 kK1,

) 3 (28)
O g

K1, —

—4— <
(1—5"’ NI

K1
Ky, =L
1 2

for some absolute constants 3 and Pa, then the solution X
to (16) satisfies

A

¥ = e o - xaxd],

+ 2 HxxT - xngTIH + 6—1} 29)
1 m

for some constant C that depends only on B3 and fa.
Proof: See Appendix E. d
From Corollary 3, one can ensure small RIP-£» /£ constants
satisfying (28), provided that

K

2 logn.

m > ¢4 max HkKl logn, % logn] =c4
This in turn establishes Theorem 4.

Finally, note that we have not discussed general Toeplitz
low-rank matrices using RIP-£,/{>. We are unaware of a
rigorous approach to prove exact recovery using RIP-£» /{1 for
the Toeplitz case, partly due to the difficulty in characterizing
the covering number for general low-rank Toeplitz matrices.
Fortunately, the analysis for Toeplitz low-rank matrices can be
performed by means of a different method, as detailed in the
next section.

IV. APPROXIMATE {7 /{7 ISOMETRY FOR
TOEPLITZ LOW-RANK MATRICES

While quadratic measurements in general do not exhibit
RIP-£>/¢€> (as introduced in [44]) with respect to the set of
general low-rank matrices (as pointed out in [15]), a slight
variant of them can indeed satisfy RIP-{,/{> when restricted
to Toeplitz low-rank matrices. In this section, we first provide
a characterization of RIP-£, /¢ for the set of general low-rank
matrices under bounded and near-isotropic measurements, and
then convert quadratic measurements into equivalent isotropic
measurements.

A. RIP-, /€ for Near-Isotropic and Bounded Measurements

Before proceeding to the Toeplitz low-rank matrices, we
investigate near-isotropic and bounded operators for the set
of general low-rank matrices as follows. For convenience of
presentation, we repeat the definition of RIP-{, /¢, as follows,
followed by a theorem characterizing RIP-{,/¢> for near-
isotropic and bounded operators.

Definition 4 (RIP-C,/{> for Low-Rank Matrices): For the
set of rank-r matrices, we define the RIP-(>/{> constants o,
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w.r.t. an operator B as the smallest number such that for all
X of rank at most r,

1
(I =9d) I1XlF = = I1BX)l2 = (1+0) IXIlg-
Theorem 5: Suppose that for all 1 <i < m,

1B/l <K and |E[B'B]-1T| < 2—5 (30)
hold for some quantity K < n®. For any small constant § > 0,
if m > corK?log’ n, then with probability at least 1 — 1/n?,
one has®

i) B satisfies RIP-C>/Cy w.rt. all matrices of rank at
most r and obeys o, < 0;

ii) Suppose that K is some convex set. Then for all X of
rank at most r and X € IC, if ||y — B(2)|l, < €2, the solution

¥ = argmin,, || M|«

subject to ||y — B(M)|l, <€, M ek,
satisfies
I - Ellr < G (31)
F < 2ﬂ

for some universal constants cg, C2, c5 > O.
Proof: See Appendix B. (]

In fact, the bound on ||B;| can be as small as ® (ﬁ)
and we say a measurement matrix B; is well-bounded if
K = O (J/npolylogn). Simultaneously well-bounded and
near-isotropic operators (i.e. those satisfying (30)) subsume the
Fourier-type basis discussed in [26]. Theorem 5 strengthens
the result in [26] to admit universal and stable recovery of
low-rank matrices with random subsampling using
Fourier-type basis, by justifying RIP-f,/{» as soon as
m = Q (nrpolylogn).

Unfortunately, Theorem 5 cannot be directly applied to
the class of Toeplitz low-rank matrices for the following
reasons: i) The sampling operator A is neither isotropic nor
well-bounded; ii) Theorem 5 requires m = Q (nrpolylogn)
measurements, which far exceeds the ambient dimension of
a Toeplitz matrix, which is n. This motivates us to construct
another set of equivalent sampling operators that satisfies the
assumptions of Theorem 5, which is the focus of the following
subsection.

B. Construction of RIP-€2/€> Operators for
Toeplitz Low-Rank Matrices

Note that the quadratic measurement matrices A; = aiaiT

are neither non-isotropic nor well bounded. For instance, when
a; ~ N (0, I,), simple calculation reveals that

IAill = © (vn), and E[A;(A;, X)] =2X +t(X) -1,
(32)

precluding A;’s from being isotropic. In order to facilitate the
use of Theorem 5, we generate a new set of measurement
matrices B; through the following procedure.

4The proof of Theorem 5 follows the entropy method introduced in [25],
where log7 n factor is a natural consequence, and might be refined a bit by
generic chaining due to Talagrand [51] as employed in [52]. However, we are
unaware of an approach that can get rid of the logarithmic factor.
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1) Define a set of matrices B; of rank at most 3

1 .
> (A2i— — Ay)), if ug =3,

aA3z + fA3i—1 4+ y Azi—2, if pua <3,

B; = (33)

where a, 8, y are specified in Lemma 4.
2) Generate M (whose choice will be specified later)
matrices independently such that

é _ \/ET (Bi)a
o \/g T+ (Gi), with probability "n;l,
where G; is a random matrix with i.i.d. standard

Gaussian entries.
3) Define a truncated version B; of B; as follows

with probability 1,
(34)

Bi=Bi‘l{Hii,-chlolog%/zn}’ 1 <i<M. (35)
We will demonstrate that the B;’s are nearly-isotropic and
well-bounded, and hence by Theorem 5 the associated opera-
tor B enables exact and stable recovery for all rank-r matrices
when M exceeds O(nrpolylogn). This in turn establishes
Theorem 2 through an equivalence argument, detailed later.

1) Isotropy Trick: While A;’s are in general non-isotropic,
a linear combination of them can be made isotropic when
restricted to Toeplitz matrices. This is stated in the following
lemma.

Lemma 4: Consider the sub-Gaussian sampling model
in (4).

1) When pa = 3, then for any X, the matrix

1
B; = - (A1 — A2) (36)

2

satisfies
E[B; (B;, X)] = X. (37)

2) When u4 < 3, take any constant ¢ > 0 obeying
&2 > 1.5(3 — pu4) and set

B; = aAsi + fAszi-1 + 7 Asia, (38)
2
with the choice of A := — (1 — %) —24+ 32_524,
'a _ 3— ua
= —252 ,
(-5
B = 1 a, (39)
2
¢
— 1 _ _ A
( ﬁ) va
V= 5 a.

Then, for any norm |||, and any X that satisfies X113 =
Xy =--- = Xy, one has

3 — u4
E[Bi] = 2n“;

E[B; (B;, X)] = X;

IBilly < /3 maxi:i<i<m | Ailly -
Proof: See Appendix F. g

(40)
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Recovery of covariance matrices from quadratic measurements when n = 50. For each (m,r) pair, we repeated Monte Carlo trials 20 times.

A PSD matrix ¥ and m sensing vectors are selected at random. The colormap for each cell indicates the empirical probability of success, and the red line
reflects the fundamental information theoretic limit. The results are shown for (a) Gaussian sensing vectors and (b) symmetric Bernoulli sensing vectors.

Lemma 4 asserts that a large class of measurement matri-
ces can be made isotropic when restricted to the class of
matrices with identical diagonal entries (e.g. Toeplitz matri-
ces). This immediately implies that the operator B associated
with if,-’s (defined in (34)) is isotropic. Specifically, for any
symmetric X,

E[§i<l}iaX>]
=E(T (B) (Bi, T (X)) + E[ T4 (G (G, T+ (X))
=T [E[B; (B;,T (X)))+T" (E [Gi <Gi° T (X)>])

—T(TX)+TH (7l (X)) - x,

which follows since B; and G; are both isotropic matrices,
a consequence of Lemma 4.

2) Truncation of B is Near-Isotropic: The operators asso-
ciated with f?,-’s are in general not well-bounded. Fortunately,
B;’s are well-bounded with high probability, which comes
from the following lemma whose proof can be found
in Appendix G.

Lemma 5: Consider a random vector z that follows the sub-
Gaussian sampling model as described in (4). There exists an
absolute constant c19 > 0 such that

HT (ZZT) H < e log?n

holds with probability exceeding 1 — n~10,

As ||B;]|| can be bounded above by maxi<i<m | A;|l up to
some constant factor, Lemma 5 reveals that ||7 (B;)|| can be
well controlled for sub-Gaussian vectors, i.e.

(41)

1T (Bl <ciologin, 1<i<m (42)

with probability exceeding 1 — 3n~8. Similarly, classical
results in random matrices (see [53]) assert that ||G;|| can
also be bounded above by O (ﬁ log n) with overwhelming
probability. These bounds taken collectively suggest that

IBill < K :=ciov/nlogin, I<i<m  (43)

for some constant c1o9 > 0 with probability exceeding 1 —n~".

The above stochastic boundedness property motivates us

to study the truncated version B,- of i?,- as defined in (35).
Interestingly, B; is near-isotropic, a consequence of the fol-
lowing lemma whose proof can be found in Appendix H.

Lemma 6: Suppose that the restriction of B;i to Toeplitz
matrices is isotropic. Consider any event E obeying P (E) >
1-— n% Then there is some constant cs > 0 such that

|E[TB;BT1:] - T| <53 (44)
The truncated version of G; can be easily bounded as

in [52], which we omit for simplicity of presentation. This
combined with (44) indicates that

|e[8:8] -2
< [E[78;8,T] - T| + |E[T46:6.7+] - T*|
<8,
T n

C. Proof of Theorem 2

So far we have demonstrated that B;’s are near-isotropic and
satisty || B;|| = O (ﬁlog% n) Suppose that [ y—B () [l» < &.
Theorem 5 implies that if M exceeds © (nr log!®(n)), then the
solution to

Y := argminy, | M|, subject to ||y — B (M) |2 < é,

M is Toeplitz, (45)
satisfies
- é
z—zH <02 (46)
=2, = 7
for the entire set of rank-r matrices X. Apparently, such

low-rank manifolds subsume all rank-r Toeplitz matrices as
special cases. This claim in turn establishes Theorem 2 through
the following argument:

1) From (34) and the Chernoff bound, B entails © (%) =
® (rlog'®n) independent copies of «/n7 (B;), and all
other measurements are on the orthogonal complement
of the Toeplitz space.
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measurements when r = 3; (b) the NMSE vs. the number of measurements for different ranks when running 2000 iterations.

2) For any rank-r Toeplitz matrix X, the original .4 entails
m/3 > O (rlog!®n) measurement matrices of the
form 7 (B;), and any non-Toeplitz component of X is
perfectly known (i.e. equal to 0). This indicates that
the convex program (11) is tighter than (45) when
é =0 (ﬁez), i.e. one can construct (via coupling)
a new probability space over which if the solution
¥ to (45) is exact and unique, then it will be the
unique solution to (11) as well. This combined with the
universal bound (46) establishes Theorem 2.

V. NUMERICAL EXAMPLES

To demonstrate the practical applicability of the proposed
convex relaxation under quadratic sensing, in this section we
present a variety of numerical examples for low-rank or sparse
covariance matrix estimation.

A. Recovery of Low-Rank Covariance Matrices

We conduct a series of Monte Carlo trials for various
parameters. Specifically, we choose n = 50, and for each
(m,r) pair, we repeat the following experiments 20 times.
We generate X, an n x n PSD matrix via X = LLT, where
L is a randomly generated n x r matrix with independent

m——— theoretic sampling limit

r: rank

5 10 15 20 25 30 35 40 45 50
m: number of measurements

Fig. 5. Phase transition plots where frequency locations are randomly
generated. The plot corresponds to the situation where n = 50. The empirical
success rate is calculated by averaging over 50 Monte Carlo trials.

Gaussian components. The sensing vectors are generated as
1.i.d. Gaussian vectors and Bernoulli vectors, and we obtain
noiseless quadratic measurements y. We use the off-the-shelf
SDP solver SDPT3 with the modeling software CVX, and
declare a matrix X to be recovered if the solution ¥ returned
by the solver satisfies ||)A: — Zg/IZlE < 1073. Figure 2



CHEN et al.: EXACT AND STABLE COVARIANCE ESTIMATION FROM QUADRATIC SAMPLING

= theoretic sampling limit 09

01 015 02 025 03 035 04 045 05

m/(n*n)

(a)

Fig. 6.

4047

——theoretic sampling limit J 09

0.25 U‘S 0.155 0.4 O.;S 0‘5
m/(n*n)

(b)

Reconstruction of sparse matrices from Gaussian quadratic measurements when n = 50. For ease of comparison, we let ky denote the number of

non-zero entries above or on the main diagonal, which represents the degrees of freedom for symmetric matrices. For each (m, ky) pair, we conducted Monte
Carlo experiments 20 times. A PSD matrix X and m sensing vectors are selected at random. The colormap for each cell and the red line reflects the empirical
probability of success and the information theoretic limit, respectively. The results are shown for (a) sparse PSD matrices, and (b) sparse symmetric matrices.

illustrates the empirical probability of successful recovery in
these Monte Carlo trials, which is reflected through the color
of each cell. In order to compare the optimality of the practical
performance, we also plot the information theoretic limit in
red lines, i.e. the fundamental lower limit on m required to
recover all rank-r matrices, which is nr — r(r — 1)/2 in our
case. It turns out that the practical phase transition curve is
very close to the theoretic sampling limit, which demonstrates
the optimality of our algorithm.

In the second numerical example, we consider a random
covariance matrix generated via the same procedure as above
but with n = 40. We let the rank r vary as 1, 3,5, 10 and
the number of measurements m vary from 20 to 600. For
each pair of (r, m), we perform 10 independent experiments
where in each run the sensing matrix is generated with i.i.d.
Gaussian entries. Fig. 3 (a) shows the average Normalized
Mean Squared Error (NMSE) defined as |E — T2/ Z |2
with respect to m for different ranks when there is no noise.
We further introduce additive bounded noise to each measure-
ment by letting A; be generated from o - U[—1, 1], where
U[—1, 1] is a uniform distribution on [—1, 1], ¢ is the noise
level. Fig. 3 (b) shows the average NMSE when r = 5 for
different noise levels by setting € = om in (7).

Interestingly, [23], [54] showed that when the covari-
ance matrix is rank-one, if m = O(n), the intersection of
two convex sets, namely S = {M : AM) = y} and
S = {M : M > 0} is a singleton, with high probability.
For the low-rank case, if the same conclusion holds, we can
find the solution via alternating projection between two convex
sets. Therefore, we experiment on the following Projection
Onto Convex Sets (POCS) procedure:

Z[+] = PSQPSIEU (4’7)
where Pgs, denotes the projection onto the PSD cone, and

Ps, i =2 — A(AA") T (AZ) - y).

Fig. 4 (a) shows the NMSE of the reconstruction with
respect to the number of iterations for r = 3 and different

(48)

m = 200, 250, 300, 350. By comparing Fig. 3, we see that
it requires more measurements for the POCS procedure to
succeed, but the computational cost is much lower than the
trace minimization. This is further validated from Fig. 4 (b),
which is obtained under the same simulation setup as Fig. 3
by repeating POCS with 2000 iterations.

B. Recovery of Toeplitz Low-Rank Matrices

To justify the convex heuristic for Toeplitz low-rank matri-
ces, we perform a series of numerical experiments for matrices
of dimension n = 50. By Caratheodory’s theorem, each PSD
Toeplitz matrix can be uniquely decomposed into a linear
combination of line spectrum [55]. Thus, we generate the
PSD Toeplitz matrix by randomly generating the frequen-
cies and amplitudes of each line spectra. In the real-valued
case, the underlying spectral spikes occur in conjugate pairs
G.e. (fi,—f1),(f2, —f2),---). We independently generate
r/2 frequency pairs within the unit disk uniformly at random,
and the amplitudes are generated as the absolute values of i.i.d.
Gaussian variables. Figure 5 illustrates the phase transition
diagram for varying choices of (m,r). Each trial is declared
successful if the estimate ¥ satisfies ||f)—2||p/ 1Zlg < 1073,
The empirical success rate is calculated by averaging over
50 Monte Carlo trials, and is reflected by the color of each cell.
While there are in total r degrees of freedom, our algorithm
exhibits an approximately linear phase transition curve, which
confirms our theoretical prediction in the absence of noise.

C. Recovery of Sparse Matrices

We perform a series of Monte Carlo trials for various
parameters for matrices of dimensions 50 x 50. We first
generate PSD sparse covariance matrices in the following way.
For each sparsity value k, we generate a v/k x +/k matrix via
¥ = LLT, where L is a vk x vk matrix with independent
Gaussian components. We then randomly select +/k rows and
columns of ¥ and embed X into the corresponding vk x v/k
submatrix; all other entries of X are set to 0. In addition,
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Fig. 7. The NMSE of the reconstructed sparse matrix via £| minimization
when no noise is present; (b) for different noise levels when k = 240.

we also conduct numerical simulations for general symmetric
sparse matrices, where the non-zero entries are drawn from
an i.i.d. Gaussian distribution and the support is randomly
chosen. For each (m, k) pair in each scenario, we repeated
the experiments 20 times, and solve it using CVX. Again,
a matrix ¥ is claimed to be recovered if the solution %
returned by the solver satisfies | — Z|g/|IZllg < 1073.
Figure 6 illustrates the empirical success probability in these
Monte Carlo experiments. For ease of comparison, we also

. . . VE(vE)
plot the degrees of freedom in red lines, which is ————=
in our case. It turns out that the practical phase transition curve
is close to the theoretic sampling limit, which demonstrates the
optimality of our algorithm.

Another numerical example concerns recovery of a random
symmetric sparse matrix (not necessarily PSD). We randomly
generated a symmetric sparse matrix of sparsity level k with
n = 40, and sketched it with i.i.d. Gaussian vectors. For
each pair of (r, m), we perform 10 independent runs where in
each run the sensing matrix is generated with i.i.d. standard
Gaussian entries. Fig. 7 (a) shows the average NMSE with
respect to m for different sparsity levels when there is no
noise. We further introduce additive bounded noise to each
measurement by letting 4; be generated from o - U[—1, 1],
and run 10 trials for each pair of (o, m). Fig. 7 (b) shows the
average NMSE when k = 240 for different noise levels by
setting € = om in (14).

VI. CONCLUSIONS AND FUTURE WORK

We have investigated a general covariance estimation prob-
lem under a quadratic (rank-one) sampling model. This sam-
pling model acts as an effective signal processing method for
real-time data with limited processing power and memory at
the data acquisition devices, and subsumes many sampling
strategies where we can only obtain magnitude or energy
samples. Three of the most popular covariance structures,
i.e. sparsity, low rank, and jointly Toeplitz and low-rank
structure, have been explored as well as sparse phase retrieval.

Our results indicate that covariance matrices under the
above structural assumptions can be perfectly recovered from
a small set of quadratic measurements and minimal storage, as
long as the sensing vectors are i.i.d. drawn from sub-Gaussian

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 7, JULY 2015

—e—sigma = 1e—4| i &g IR
—=—sigma =1e-3| !
——sigma =1e-2| :
——sigma =1e-1| :

O e S S
0 100 200 300 400 500

Number of measurements
(b)

vs. the number of measurements when n = 40: (a) for different sparsity level

600

distributions. The recovery can be achieved via efficient con-
vex programming as soon as the memory complexity exceeds
the fundamental sampling theoretic limit. We also observe
universal recovery phenomena, in the sense that once the
sensing vectors are chosen, all covariance matrices possessing
the presumed structure can be recovered. Our results high-
light the stability and robustness of the convex program in
the presence of noise and imperfect structural assumptions.
The performance guarantees for low-rank, sparse and jointly
rank-one and sparse models are established via a novel notion
of a mixed-norm restricted isometry property (RIP-{,/¢7),
which significantly simplifies the proof. Our contribution also
includes a systematic approach to analyze Toeplitz low-rank
structure, which relies on RIP-{>/¢> under near-isotropic and
bounded operators.

Several future directions of interest are as follows.

« Another covariance structure of interest is an approxi-
mately sparse inverse covariance matrix rather than a
sparse covariance matrix. In particular, when the sig-
nals are jointly Gaussian, the inverse covariance matrix
encodes the conditional independence, which is often
sparse. It remains to be seen whether the measurement
scheme in (1) can be used to recover a sparse inverse
covariance matrix.

« It will be interesting to explore whether more general
types of sampling models satisfy RIP-£5 /€. For instance,
when the sensing vectors do not have i.i.d. entries, more
delicate mathematical tricks are necessary to establish
RIP-(> /7.

o In the case where RIP-{>/¢; is difficult to evaluate
(e.g. the case with random Fourier sensing vectors), it
would be interesting to develop an RIP-less theory in a
similar flavor for linear measurement models [52].

APPENDIX A
PROOF OF PROPOSITION 1

To prove Proposition 1, we will first derive an upper bound
and a lower bound on E[|(B;, X)|], and then apply the
Bernstein-type inequality [56, Proposition 5.16] to establish
the large deviation bound.

In order to derive an upper bound on E[|(B;, X)|], the
key step is to apply the Hanson-Wright inequality [57], [58],
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which characterizes the concentration of measure for quadratic
forms in sub-Gaussian random variables. We adopt the version
in [58] and repeat it below for completeness.

Lemma 7 (Hanson-Wright Inequality): Let X = (X1,...,
X,) € R" be a random vector with independent components
X; which satisfy E[X;] = 0 and || X;|ly, < K. Let A be an
n x n matrix. Then for any t > 0,

-

|

XTAX—E [XTAX]

2
t t
< 2exp | —cmin , . 49)
K*AIE" K21All
Remark 6: Here, || - ||, denotes the sub-Gaussian norm

. 1

1X 1y, = min p~ 72 (E[I1X|7])"7 .

p=1
Similarly, the sub-exponential norm || - ||, is defined as

. _ 1
1Xllyy = min p LExP)

See [56, Secs. 5.2.3 and 5.2.4] for an introduction.
Observe that (B;, X) can be written as a symmetric
quadratic form in 2n i.i.d. sub-Gaussian random variables

o=l ) [C ][]

The Hanson-Wright inequality (49) then asserts that: there
exists an absolute constant ¢ > 0 such that for any
matrix X, |[(B;, X)| <t with probability at least

) , 12 t
— 2€Xp | —cmin . .
4K4 X2 K2 X

This indicates that (B;, X) is a sub-exponential random vari-
able [56, Sec. 5.2.4] satisfying

E[(Bi, X)|] < c1 [ X]F

(50)

for some positive constant cj.

On the other hand, to derive a lower bound on E [|(B;, X)|],
we notice that for a random variable ¢, repeatedly applying
the Cauchy-Schwartz inequality yields

(&[€])” < Enene[ier] < even JE[2]E[e].

which further leads to

E[IS] = 61V

Let ¢ := (B;, X), of which the second moment can be
expressed as

E [52] —E [|(Bl-, X>|2] = (X,E[BB; (X)]).
Simple algebraic manipulation yields
E[BiBi (X)] = 4X + 2 (u4 — 3) diag(X),
and hence
E[&2] = 41X +2 (s = 3) Y 1Xal?

i=1

> min{4, 2(ug — D} IX1E =2 IX1E,  (52)
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where ¢, := min{4,2(u4 — 1)}. Furthermore, since
¢ := (B, X) has been shown to be sub-exponential with sub-
exponential norm ® (|| X||g), one can derive [56]

4
E[e] = (1€l < es Xt (53)
for some constant ¢; > 0. This taken collectively with
(51) and (52) gives rise to

3 6
BB, 00> |20y,
& IXIE

for some constant ¢4 > 0.

Now, we are ready to characterize the concentration of
(B;, X), which is a simple consequence of the following sub-
exponential variant of Bernstein inequality.

Lemma 8 ([56, Proposition 5.16]): Let Xi,...,.Xm
be independent sub-exponential random variables with
E[X;] =0 and K = max; || X;|ly,. Then for every t > 0, we

have

pl! >l<o n( 2! (54)
— exp| —cmmin (| —, —
m === K? K

where ¢ is an absolute constant.

Recall that it has been shown in (50) that the sub-
exponential norm of X; := |(B;, X)| — E[|(B;, X)|] satisfies
IXilly, < c'lIX|lg for some universal constant ¢’. Therefore,
Lemma 8 implies that for any € > 0, one has

m
2. Xi

i=1

Lisxon - Le[is @] < elxir
m m

with probability exceeding 1 — 2exp(—cme?) for some
absolute constant ¢ > 0. This yields

LBl < SE[IB@)IL] + el Xl < (1 + O I1XIr
m m

and
1 1
LBl = LE[IBX)IL] - el Xlle = (s — O 1X]r
m m

with probability at least 1 — 2exp(—cme?), where the con-
stants ¢, ¢ and ¢4 depend only on the sub-Gaussian norm of
a;. Renaming the universal constants establishes Proposition 1.

APPENDIX B
PROOF OF THEOREM 5

The proof of Theorem 5 follows the entropy method intro-
duced in [25] for compressed sensing and [27] for Pauli mea-
surements. Note, however, that in our case, the measurement
measurements do not form a basis, and are not even bounded.
Our theorem extend the results in [27] (which focuses on Pauli
basis) to general near-isotropic measurements.
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Specifically, the RIP-£,/{, constant can be bounded by

1 m
5 = sup — > (Bi, X)I* — IIX |}
" | X |[p<1,rank(X)<r m; l F
1 m
= sup X, —ZB?Bi—I X (55)
TeM!, XeT,||X||p<I mea
1 m
< sup |Pr| — BB —Z |\ P
_Tef\lil‘ T(mz ll ) '
1 — L
< sup |Pri{—> (BB —EB{B) | Pr|+—,
TE./VIt mz:l
(56)
where

M. := {tangent space w.r.t. M | VM : rank (M) < r}.

(57)

and hence (55) arises since the supremum is taken over all
tangent space 7T associated with rank-r matrices. The last
inequality (56) follows from the near-isotropic assumption
of B; (i.e. (30)).

The first step is to prove that E[J,] < € for some small
constant € > 0. For sufficiently large n, it suffices to prove

that
E.=E| sup <94.
TeMt
(58)

[%il (BB —E[ 33])}7>T

This can be established by a Gaussian process approach as
follows.

Observe that %Z;il (BfB; — E[BiB;]) is a zero-mean
operator, which can be reduced to symmetric operators via the
symmetrization argument (see [53]). Specifically, let B; be an

independent copy of B;. Conditioning on B; we have
1 < 1 < 5
E [;;B?‘Bi — ;Z}B?‘

1= 1=

1 m
=~ > BB —E[B/B;].
i=1

B;| Bi (liifm)i|

Since the function f (X) := SUPT e At P XPr| is convex

in X, applying Jensen’s inequality yields
sup ’PT [li(B;"Bi —E[B;"Bi])} Pr
TeM; S
| 1 <& 55
§E|: sup T(lZB*B ——ilgflgi)PT Bij|-
TeMt e i—1

Undoing conditioning over B; we get

E| sup
TeM!

<E| sup
TeM!

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 7, JULY 2015
1 m
* *k
Pry—> (BB —E[BB]) t Pr
i=1

Pr (% ZB;"Bi — % ZB;‘&)PT }

] (59)

where ¢€;’s are ii.d. symmetric Bernoulli random variables.
Moreover, if we generate a set of i.i.d. random variables
gi ~ N (0, 1), then the conditional expectation obeys

fi,Bij|

= suprepp IPrXPrl,

ZE,PTB BiPr

i=1

<2E| sup
TeM!

l m
El— il & PrB B
[m2|g|ePTB,BPT

i=1

21
- [ ZGIPTB BiPr.

Similarly, by convexity of f (&)

one can obtain
ZE,PTB BiPr }

E| sup
TEM i=1
1 m
E|:E2|gi|€iPTB?BiPT fiaBij| 'i|

|7
= /=E| sup
2 |:TEM‘,
<./ ZIE sup (60)
2 TeM.

Z&PTB BiPr

Putting (59) and (60) together we obtain

E| sup
TeM!

< /27K |: sup

TeM!

Pr [% i (BB —E [B;*Bi])} Pr

[ crn

Zgl 1B: (X)I?

zgzPTB BiPr

i=1

sup
TeML XeT,|IX|lg=1

=«/EE[

:| . (61)

It then boils down to characterizing the supremum of a
Gaussian process.

We now prove the following lemma.

Lemma 9: Suppose that gi ~ N(0,1) are iid. random
variables, and that K < n*. Conditional on B;’s, we have

E| sup |Pr Zng Bi \Pr| |Bi (1 <i<m)
TeM! im1
< Ciu/rKlog>n sup (62)
T:TeM! i=1

Proof: See Appendix 1.
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Combining Lemma 9 with (61) and undoing the condition-
ing on B;’s yield

1 m
E| sup |Pr{—> (BiBi —EB;B){ Pr
TeM; i
C K log? =z
< CisV/rKlog'n ‘E sup PrB:B;Pr
m T:TEM} i=1

C K log?
< CisvrKlogin |\ o1 o
N T:TeM:

for some universal constant C15 > 0, where the last inequality
follows from Jensen’s inequality. Recall the definition of E
in (58), then the above inequality implies

K log3
fi) T
Jm

1 m
— > PrBBPr
" i=1

E < Cis (
or more concretely,

JrKlogin
Jm

as soon as m > (2C5+/rK log> n)z.

Now that we have established that E[J,] can be a small
constant if m > 4C125rK 2log6 n, it remains to show that ¢,
sharply concentrates around Eg,. To this end, consider the
Banach space Y of operators H : R"*" —» R"*" equipped
with the norm

Elo] = E <2Cis <1 (63)

Hllx := sup [IPrHPrll.

TeM!

Let ¢;’s be i.i.d. symmetric Bernoulli variables, then the
symmetrization trick (see [53]) yields

1 m

— > BB, - E[B;Bi] }

m <
i=1 T
|
— Z EiBi Bi
m
i=1 T

E[
1 m
> BB ~E[B]5]

<x|
i=1

<2E

>

T

and

|

> B - (55
"o

]
fp[ Y>4

1 & u
gl 3]
=

where B; is an independent copy of B;. Note that &;B;B;’s
are i.i.d. zero-mean random operators.

T

> 515 - [55]
"o

1

1 m

~> (B?‘Bi - sz?i)

i=1
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In addition, for any 1 <i < m, we know that

|88 = mas [PrE;BPy|

= max  [(Bi,Pr (X))’
TeM X [g=1
< max Bl Pr (X < K.
TeM,IX[g=1
[25, Th. 3.10] asserts that there is a universal constant Cip > 0
such that
1 < 1 < 2K2r
P['Zzlng;kBl > 8qE Zzlng;kBl + . [+t
1= e 1= e

2
< (ﬁ) +2exp | — . ! 3
a 2569 (B [| 7 XiLi €5 Bi ] ])

If we take ¢ = 2Cp2, I = Cpzlogn and t = Cp

JIognE [H % D 6B B; HT], then for sufficiently large C3

and Cy4, there exists an absolute constant Cpy > 0 such that

if m > CyorK?1log” n, then for any small positive constant o
2

we have

1

— > BB

m <

i=1 T
with probability exceeding 1 —n™~.
Now that we have ensured a small RIP-{>/{> constant,

repeating the argument as in [44] and [49] implies

1 m
< Ci54/lognE |:H — ZeiB?‘B,-
he " i=1

<0

~ €
1% =Xl < Co—= (64)
m

N

for all ¥ of rank at most r. This concludes the proof.

APPENDIX C
PROOF OF LEMMA 1

We first introduce a few mathematical notations before
proceeding to the proof. Let the singular value decom-
position of a rank-r matrix X be ¥ = U AVT, then
the tangent space 7 at the point X is defined as T :=
(UM + M2V | M| € R™", M> € R™"}. We denote by
‘Pr and Pz the orthogonal projection onto 7" and its orthog-
onal complement, respectively. For notational simplicity, we
denote Hr := Pr(H) and Hy1 := H — Pr (H) for any
matrices H € R"*". The proof is inspired by the techniques
introduced for operators satisfying RIP-£>/¢> [44], [49].

Write ¥ := X, + X., where X, represents the best
rank-r approximation of X. Denote by T the tangent space
with respect to X,. Suppose that the solution to (7) is given
by % = X+ H for some matrix H. The optimality of ) yields

0> X+ Hl,—IZ].
> 12+ Hlly — I1Zcll — 121l
> | =+ Hro|, = 1Hrll — 120, — 211 2]l
= el + | Hre|, = 1Hrlls — 1Z1l — 2 1 el
which leads to

|Hpo ||, < I1H7l, +2 1 Zcll, (65)
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We then divide Hy. into M = % orthogonal matrices
H,, H,, ---, H) satisfying the following: (i) the largest
singular value of H;; does not exceed the smallest non-zero
singular value of H;, and (ii)

M
.= > lIH;l,
i=1

and rank (H;) = Kj for 1 < i < M — 1. Along with the
bound (65), this yields that

ZanF_J_ZnHZ 1||*_¢—||HTLH

i>2 i>2

|H .| (66)

< \/—_ (IHH7 Il + 212l -

Since the feasibility constraint requires [|.A(X) — y|l; < €1,
we have |ACEDI1 = [A(®) =yl + [A(£) - y] = 2a,

(67)

and then followmg from the deﬁmtlon B; = Ay;i_| — Ay; that
2€
IIB(H)H] < - ||-A(H)||l < P
yielding
261 1
— > —[IBH)I;
m m
1 1
> — |B(Hr + Hy)lly — > — IB(H))I
m i~ m
> (1= 0B, ) 1Hr + Hille — (14+38) > I Hille
i>2
(1—0%_ x)
> # (1H7llg + | H i llp)
(1 + 5“")
—-——— (|H + 2| X

By reorganizing the terms and using the fact that || H7|, <
2r||Hr |, one can derive

ub /
(=) (1+08) V2 IHr|
V2 v Ki r
b 1 ub
=)y, 2ER) 2
V2 VR T
(68)
_‘;gi-f—l(l _

1
The bound (68) allows us to see that if

(1+a0) /%

then one has

V2

> f1 > 0 for some absolute constant f,

(1 +5‘;}’1)
VK1

On the other hand, (67) allows us to bound

> IH;|IF <

i>2

I Zcll (69)

IHrlg+ Hillp < —-
B

(IHH7 s + 211 Zcll4)

J_

2
5,/ IIHTIIF+FIIE clle (70)
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Putting the above computation together establishes

| Hlp < | Hrlle + 1 Hille + > 1 Hile

i>2

2r 2
<11 — H H — X
_( +"K1)(” Tl + | 1||F)+m|| ells

C Xl €1
( *C) 7K +E m

for some positive universal constants C1, C and Cs.

APPENDIX D
PROOF OF LEMMA 2

For an index set Q, let Pq as the orthogonal projec-
tion onto the index set Q. We denote Hqg as the matrix
supported on Hqo = Pq(H) and Hqi as the projection
onto the complement support set Q1. Write ¥ =% +H,
and ¥ = Xgq, + Xqoc, where Qo denotes the support of the
k largest entries of X. The feasibility constraint yields

261
B = - [A®) - Az <
The trlangle inequality of {1 norm gives
IZ = Zlh < I1Z = Zqylh + 1 Zaglh
Decompose H Q5 into a collection of M, matrices Hg,,
Hg,, ... HQMZ, where ”Hg[ ”0 =Ky foralll <i < M,
Hg, consists of the Ky largest entries of H Q5 H g, consists

of the K, largest entries of H (q,uq,), and so on. A similar
argument as in [46] implies

1
ZHHQHF_J_ZH ol = Z=IHaglh. (7D

i>2 i>1
The optimality of b3 yields

Xl = 12+ Hll1 = X, + Hllt — [ Zggllt

= 1 Za,llt + 1Hggllt — 1 Hay It — [1Zqcll,
which gives
[Haellt < 1 Ha,ll1 +2[1Zqe 1

Combining the above bound and (71) leads to
> IHg,F < f(||HQO||1 +21Zaclh)

i>2

< J_ (VEIHay lIF +21Z0c11). (72)
It then follows that
2 1
=L B,
m m
1 1
> —|B(Hay + Hay)[, — — > |B(Ha,) |,
i>2
>

(1_)}/13-1(2) HHQO"‘HQIHF <1+V )ZHHQ HF

i>2

b
- (1 - yk+K2)

V2

ub
_ L\/Kifz) (VE[Hay s +21Za 1)

(HHQO HF + ”HQl ”F)
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Reorganizing the above equation yields

(1 - VIE’HQ) (1 + y}?;) vk

H
7 Nie 1H o lIF
A=) 2(1+72) 261
——=lHqllr = ——F—— [Zacl; + —.
V2 NI m
Recalling Assumption (26), one has
H H (+7i2) x 1
< | ¢ —
[Hollr + | Ql||F_’B2 NS I Q||1+m
This along with (72) gives
C Yo C
|Hllp < (—1 +c3) 2ol | G2
P2 vVKy  pam

for some universal constants C{, C, and Cs3, as claimed.

APPENDIX E
PROOF OF LEMMA 3

Before proceeding to the proof, we introduce a few nota-
tions for convenience of presentation. Let X := xx ',
Xo = xgxg—2 and X. := X — Xq, where xg denotes the best

k-term approximation of x. We set u := —L—xq, and hence
xall,

the tangent space T with respect to X and its orthogonal
complement T are characterized by

T := {uzT +zu' |z € R”},
7L .= {(1 —uuT)M(I—uuT) M c R"X”}.

We adopt the notations introduced in [24] as follows: let Q
denote the support of Xq, and decompose the entire matrix
space into the direct sum of 3 subspaces as

TNQ) @ (Tl n Q) @ (QL). (73)

In fact, one can verify that
TNQ= {uzT +zu’ | zge = 0},

and that both the column and row spaces of T+ N Q can
be spanned by a set of k — 1 orthonormal vectors that are
supported on Q and orthogonal to u. As pointed out by [24],
T and Q are compatible in the sense that

PrPa =PaPr = Prna- (74)

In the following, we will use 515 and 5;’3 to represent
5}3“ and 5,‘(‘}’& / for brevity, whenever the value of k is clear
from the context.

Suppose that X = xxT 4 H is the solution to (16). Then
for any W € T+ and Y e Q' satisfying |[W| < 1 and
Y loo < 1, the matrix uu' 4+ W + Asign (u) sign (u) " + Y
forms a subgradient of the function ||-||,+ 2 ||-]|; at point Xgq.
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If we pick W and Y such that ¥ = sgn (Hg1) and (W, H) =

|H71ngll,. then
0> X+ HI,+A1X+Hll; — X, — 41X, (75)
> [ Xa+ Hll, — Xl + 41X+ Hll} — Al Xclly
— [ Xalls = 1 Xcll — 21 Xall; — A1 Xclly (76)
> <uuT + W, H> + <isign (u) sign (w) " + Y, H>
=21 Xelle — 2411 Xclly (77)

= <uuT, HT> + A <73T (sign (u) sign (u)T) , HT>
+2 <PTL (sign (u) sign (u)T) , HTL>
+ [Hrnal, + 4 [ Har ][ = 21Xcll =241 Xely

> <uuT +APr (sign (u) sign (u)T) , ng> +|H7ina H*
+i |Hou |, — 2 1Xcll, — 241 Xelly 4 (78)

where (75) follows from the optimality of X, (76) follows
from the definitions of Xq and X and the triangle inequal-
ity, (77) follows from the definition of subgradient. Finally,
(78) follows from the following two facts:

(i) Hy. > 0, a consequence of the feasibility constraint
of (16). This further gives

<PTJ_ (sign (u) sign (u)T) , HT¢>
= <sign (u)sign (w) ", HTJ_>
= sign (u) " Hpuisign (u) > 0.

(ii) It follows from (74) and the fact sign (u) sign (#) " € Q
that

<PT (sign (u) sign (u)T) , HT>
= <73mg (Sign (u) sign (u)T) , HTmQ> .

Since any matrix in 7 has rank at most 2, one can bound

H Pr (sign (u) sign (u)T> ’ <2 HPT (sign (u) sign (u)T) Hi

*

(79)

<4 HuuTsign () sign (w) " Hi (80)
2

= 41{u, sign @) [u - sign @) |

= 4 |(u, sign (u))|* |Isign () ||

< 4k el lsign @) 12, < 4k ] < = (81)

1 = 759>
22
where (80) follows from the definition of P7 that

HPT (sign (u) sign (u)T> H;
= ‘uuTSign(u)Sign(u)T+(I—uuT)sign(u)sign(u)TuuTH;
= |uusign (w) sign (u) " H;

+ H (I - uuT) sign (w) sign ()" ””THi

2 2
< |lwusign () sign () " HF + Hsign (u)sign ()" uu'" HF

2
=2 HuuTSign (u) sign (u) " HF ,
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and (81) arises from the assumption on A. Combining (81) Set K, = {%—I, and hence % < A. Recalling
with (78) yields H=Hrno+ Hyping + Hqt, one can proceed as follows
HHTLNQH*"‘AHHQLnl é_lllB(H)lll
< —(uu", Hroa) — 2 (Pr (sien@sign @) Hroa) ™ 1 P
+211Xcll, + 22 1Xelly z ;HB(H”‘Q*HTLm*H )‘1
= ‘uTHTmQu‘ + 2 HPT (sign (u) sign (u)T) H IHrnall My @) @)
: SN LICEPNTES W L CHa]
+2[1 Xclly + 2211 Xclly i M !
< 3Hrnall + 21 Xclls +24 I Xcll1 » (82) >

1 1
( 521(1 2Kz) H HTQQ + H(Tiﬂﬂ + H£21 F

where (82) results from |u|l, = 1 and (81). ( b b
+ o i) [ H (140 ) 18
Divide Hying into My = % orthogonal matrices K1. X2 [#renall. _ K1.K2 [Ho-,
o VK VK
H(lemg’ H(Tzimg, .. H(Tﬁillr:Q T+NQ satisfying the follow- ! M 2
ing properties: (i) the largest singular value of Hgfrl])g does Z ( 521(1 2Kz) HHT”Q TH ot
not exceed the smallest non-zero singular value of H (Tll A (1 + 5‘1‘<b1 Kz)
and (ii) - (1 Hrinal, +4 [ Ha,)
v Ki
M
. 51
H;. — HH(Z) H , ( 2K, 2K2) 1)
[H720al, ; Q|| > A (||HTmQ||F+HHTLmQH + H )
rank (H{), o) =K1 (1=i<M-D. (1+38 1)
- (el + 4 Hae,)

. . . 2 g2
In the meantime, divide Hq1 into M, = ’7%—‘ orthogonal

matrices HV  H® This taken collectively with (82) gives

, H (MZ) e Q' of non-overlapping

Qb Folr
support such that (i) the largest entry magnitude of H @+ 2 (1 + (Sl[l<b )
1,K2 2€
does not exceed the magnitude of the smallest non-zero entry ———= (I Xl + A1 Xc) + —
of HY, , and (ii) VK
b
) =Ky (I<i<M—1 Y Rl VOETS ( oK Kz)
= <1 < — . = —
=r=th=h V3 VK

This decomposmon gives rise to the following bound

Moo (1#7cale + | B o] +]HG
> [# 7ol z FH

1.)-

<L |Hping|,, Therefore, if we know that

- VK
. . . . 175121)’(17219 (1+5u’(bl Kz)
which combined with the RIP-£,/¢; property of B yields 7 N s> 0
: > By >
5ub —
M M oKk Ky
‘_HB(Hm )| <2(1+6K1 ) |10, Zma"[ 7k ’1]
TiNQ = m TLNQ| g
i=2 i=2 for some absolute constant f3, then
(1 +%), Kz) )
B R ST PN Y P
1 1
and, similarly, < 5 (1%l 2 01Xely + Z) . (85)
M, 1 ‘ M, (1 + oub ¥ K ) ) On the other hand, we know from (83) and (84) that
8], = 2 g
—m ot 1__2 m Qg M 0 M,
i= i= i
. ZHHmH 2|
(1 Ik K) i= i
<> | Hg|,. 84
VK 1 g HY,
. . = lb z B(H7inq + z B
The above argument relies on our construction scheme that — 0y 1

@) ( @) ) H @) H
rank(H < Kj, su H C Q, and H <
(Hy o) < Ki PP {Hrina 0 (1 +5K1 Kz) HHTLQQH* (1 + 0 ) [Har,
K>, and hence all of H < +

®
rinq and HQL (@ = 1) belong = o m
to My k., ks ( 51{1 Kz) VK ( 51{1 Kz) VK>
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6l[l<b1 Ky
= (#7100l + 2 [Har )

( 55?1 ) VI
l+(5K1 K>
(1) VKO

IA

GllHrnall +2 1 Xclls + 22 1 Xcll1)

(86)

where (86) is a consequence of (83) and (84), and the last
inequality arises from (82). This together with (85) completes
the proof.

APPENDIX F
PROOF OF LEMMA 4

Simple calculation yields that

E[A; (Ai, X)] =2X + (1 + ”4_3)&()() 1. (87)

When w4 = 3, one can see that
1
E[B; (Bi, X)] = ZE[(AZFI — Azj) (Azi—1 — Azi, X)]
= X. (83)
When u4 # 3, consider the linear combination

B =aA| +bA) + cAj,

where we aim to find the coefficients a, b and ¢ that makes
B isotropic. If we further require

E[Bl=a+b+c= (89)

n
then one can compute
E[B (B, X)] :2(a2+b2+c2)X
+ [(1 + MT_3) (®+02+2)
+2(ab+bc+ac):| tr (X) -1
Our goal is thus to determine a, b and c that satisfy
—_3) (a2+b2+c2) 42 (ab + be + ac) = 0,

(1+”4

which combined with (89) gives

-3 2
'M'—(az—f-b2+c2)+€—=0. (90)
n n
If we set a = 1, then (90) reduces to
2 2
Huas —3 2 € €
—(1+b ——1-b — =0
n (+ +(ﬁ ))+n
€ 1 e \?
> +bl1——)+=-(1-—
+( ﬁ)+2( ﬁ)
+1+ <
2(ua—3)
Solving this quadratic equation yields
(- 8)E | (1-g)-vE
b= g L= g G
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where
2 2 2
€ 1 € 1 €
A=1——) -4 =(1-— i
( ﬁ) (2( ﬁ) +2+2(#4—3))
€\2 2¢2
:—(1——) - .
n Ha —3
Note that A > 0 when €2 > 1.5 |3 — p4|. Also, b and ¢
satisfy
2
14+02 4= —. (92)
3— 4

By choosing a = ,/ 3;;“, = ba, and y = ca, we derive

the form of B; as introduced in (39), which satisfies

E[B; (Bi, X)] =X

Finally, we remark that for any norm |-|| ,. This can be
easily bounded as follows

IBilln =

13 4
= L (U4 bl + lel)_ max (14,1l

<f\/| u4| (14562 +¢2) max [A;ll, (93)
i:1<i<m

= /3 max ||A;l,. (94)

i:1<i<m

This concludes the proof.

APPENDIX G
PROOF OF LEMMA 5

Let M represent the symmetric Toeplitz matrix as follows

M= [M\i—ll]lfz‘,lsrz =T (ZZT) ’

and since each descending diagonal of a Toeplitz matrix
is constant, the entry My is given by the average of the
corresponding diagonal, i.e.

1

n
P Z 2121k, 0<k <n.

I=k+1

M =

Apparently,one has E[Mp] =1 and E[M;] =0 <k < n).

The harmonic structure of the Toeplitz matrix M motivates
us to embed it into a circulant matrix Cps. Specifically,
a (2n — 1) x (2n — 1) circulant matrix

co 1 Con—2
Con—2 €0 €l c2
Cy =
C1 Cc oo Co

is constructed such that

M;,
Ci =
My, 1,

Since M is a submatrix of Cyy, it suffices to bound the
spectral norm of Cjys. Define w; := exp( 27” , then the

if0<i <n;

ifn<i<2n-2.




4056

corresponding eigenvalues of Cys are given by
2n—2

Ai ._chw —Mo—}-ZM]a) + ZMQ,Z - 160

2mil
= M0+22Mlcos(2 i ),

—1
=1 "

fori =0,1,---,2n — 2, which satisfies E1; = EMy = 1.
This leads to an upper bound as follows

M| <|C < Ail . 95
M| < ICul < 05?%%(72' il 95)
Note that 4; is a quadratic form in {z1, 22, - - - , 2, }. Define

the symmetric coefficient matrix G such that for any
l<a,p<n,

W _ 1 2ri || . _
G“’ﬁ_n—lllcos(2n—l , ifa—p=1,

which satisfies

Ai = E[Mo] + z G(l) (ZaZﬁ —E [ZaZﬁ])

1<a,f<n

=1+ z G(l) Z(xZﬁ —-E [ZaZﬁ]) .

1<a,f<n

When z are drawn from a sub-Gaussian measure, Lemma 7
asserts that there exists an absolute constant cjg > 0 such that

2
t t
P{|A; — 1| >t} <ex —ciomin{ ———, ———
l P 16O 1692

(96)

holds for any ¢ > 0. ' _ _
It remains to compute IG® |k and |GY]|. Since G is a
symmetric Toeplitz matrix, we have

1GD|Z = z Gup|” < zzn — <2logn. (97)
a,f=1
It then follows that
IGDY < 16V < /21logn. (98)

Substituting these two bounds into (96) immediately yields
that there exists a constant c¢j2 > 0 such that

Ji<cnlogin, 1<i<2n-2 (99)

holds with probability exceeding 1 — —5. This taken collec-

tively with (95) concludes the proof.

APPENDIX H
PROOF OF LEMMA 6

For technical convenience, we introduce another collection

of events
Vi<i<m: F;:={|Billg <20nlogn}.

Since the restriction of B; to Toeplitz matrices is isotropic
and TBIB;7 > 0, we have 7 = E[TB/BT] =
E [TB?‘B,‘TIE] >E [TB?(BI'TIEQF’-], which yields
[E[TB BT~ T| < |[E[TBB:T10s] - 7).
(100)
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Thus, it is sufficient to evaluate |E[7B!Bilenr]—T]|.
To this end, we adopt an argument of similar spirit as
[52, Appendix B]. Write

) [Tg;kgifum] +E [TB;"B,-TlEch’_c] )
and, consequently,

|E[TB;BiT1enr ] —T|

- HE[TB;"B,-TIECUF’_C] (
< [E[T8! BTk | + |B[TB;B: 15| (101
which allows us to bound HE[TB*B TlFmEc]| and

H]E [TB B; Tch]

First, it follows from the identity H’TB*B ’TH = ||’T(B,)||F
and the definition of the event F; that

‘ separately.

|E[7B;BiT1Fnec]| < (20nlogn)*P (E€) < nl—z (102)

Second, applying the tail inequality on the quadratic form
(see [59, Proposition 1.1]) yields

P(Idillp 2 ca0 (n+2vmr +21)) <e™. (103)
Thus, for any ¢ > (20nlogn)?, one has
t
P(HA,-HF > \g) < eVt (104)

for some absolute constant c¢3; > 0. Recall that ||B;||g <
V3max {|[A3i2llg, | A3i—1llg , | A3illg}, which indicates

t
P(IBilE=1) <P (nAail I3 = g)
2 t
+P (1432l = 5

P (1453 > 5

illg = 3

t

=3P\ IAillr = /3

< 3emavi = g(@).
A similar approach as introduced in [52, Appendix B] gives

HE[TB;*BiTlF;:]H < E[||Bi||%1F;:] }

g (t)dr
(201 logn)?
00

< (20nlogn)* g ((20” log ”)2) + /

< (20mn logn)zg ((ZOn logn)z) +/ ldt
(20n 1ogn)2l
cis
n2
for some absolute constant c;5 > 0. This taken collectively
with (100), (101) and (102) yields

(105)

|E[TBBT1E] - T| < |[E[TB;BiT1knr] - T| < 615

for some absolute constant ¢;5 > 0.
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APPENDIX I
PROOF OF LEMMA 9

Dudley’s inequality [60, Th. 11.17] allows us to bound the
supremum of the Gaussian process as follows

m

E sup D &ilBi (X)) | B (1 <i<m)
TeM!, XeT,|X|g=1 =1
< 24/ logZ N (DZ,,d ), u) du, (106)
0

where Dr2 = {X||X||g=1,rank (X) < 2r}. Here,
N(Z,d(-,-),u) denotes the smallest number of balls
of radius u centered in points of Z needed to cover the set Z,
under the pseudo metric d (-, -) defined as follows

m

> (1B (X)) -

i=1
For any (X, Y) that satisfy || X || = |Y|l[g = 1, rank (X) <r
and rank (Y) < r, the pseudo metric satisfies

d(X,Y):= 1B (V)[?)°.

d(X,Y) < (lmax 1B (X — Y)|2)Z|B (X +Y)?

i=1

<V2 Z'B (X +1Bi (NP max |B; (X — )|
i=1

< > BB | (X) > BB | (Y)

i=1 i=1
N2 max 1B; (X = Y)|

il<i<

<22 sup ZPTB;"B,-PT max [(B;, X —Y)|,
T:TeMi| ||icT il=izm

where the last inequality relies on the observation that
I Xlg = 11Y]F=1.
If we introduce the quantity

m
R:= sup > PrBiBiPr (107)
T:-TeM! i=1
and define another pseudo metric ||-||z as
IXllg:= max [(B;, X)|, (108)
i:1<i<m

then d (X,Y) < 2V2R ||X — Y|, which allows us to bound
o
/ log? N (D3, (), u) du
0
o) i 5
< / log? N (Dzr,2x/§R ||‘||B,14) du

o0
= 1 2N s 5

/ og (\F 2 s 4Rf)
o0

1 zN D
/O og ( e ||B,4Rf)

o0 1
4Rﬁ/ log? N (Dl, s, u) du.
0

IA

A

(109)
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Here, D! and D! stand for

D! := (X | IX|, <1, rank (X) <r},
D' = (X |IX|, <1},

and we have exploited the containment

1
Epgr C D) S D
Hence it suffices to bound

o
Byi=4RVF [ logh N (D' Ils )
0

It remains to bound the covering number (or metric entropy)
of the nuclear-norm ball D!. Repeating the well-known pro-
cedure as in [61, p. 1113] yields

o0
/ \/logN (DY, Illg, u)du < CioK (logn)** /logm
0

< CnkK log3 n

for some constants Cyg, C11 > 0. This taken collectively with
(106) and (109) gives that conditioning on B;’s, one has

Pr Zg,BB Pr

i=1

B (1 <i<m)

E| sup '
TeMt

< CurKlogn | sup (110)

T:T EM} i=1

PrB:BPr|.

for some absolute constant Ci4 > 0.
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