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Abstract

Asynchronous Q-learning aims to learn the optimal action-value function (or Q-
function) of a Markov decision process (MDP), based on a single trajectory of
Markovian samples induced by a behavior policy. Focusing on a γ-discounted
MDP with state space S and action space A, we demonstrate that the `∞-based
sample complexity of classical asynchronous Q-learning — namely, the number of
samples needed to yield an entrywise ε-accurate estimate of the Q-function — is at
most on the order of

1

µmin(1− γ)5ε2
+

tmix

µmin(1− γ)

up to some logarithmic factor, provided that a proper constant learning rate is
adopted. Here, tmix and µmin denote respectively the mixing time and the minimum
state-action occupancy probability of the sample trajectory. The first term of this
bound matches the complexity in the case with independent samples drawn from the
stationary distribution of the trajectory. The second term reflects the expense taken
for the empirical distribution of the Markovian trajectory to reach a steady state,
which is incurred at the very beginning and becomes amortized as the algorithm
runs. Encouragingly, the above bound improves upon the state-of-the-art result by
a factor of at least |S||A|. Further, the scaling on the discount complexity can be
improved by means of variance reduction.

1 Introduction

Model-free algorithms such as Q-learning [46] play a central role in recent breakthroughs of rein-
forcement learning (RL) [32]. In contrast to model-based algorithms that decouple model estimation
and planning, model-free algorithms attempt to directly interact with the environment — in the form
of a policy that selects actions based on perceived states of the environment — from the collected
data samples, without modeling the environment explicitly. Therefore, model-free algorithms are able
to process data in an online fashion and are often memory-efficient. Understanding and improving
the sample efficiency of model-free algorithms lie at the core of recent research activity [19], whose
importance is particularly evident for the class of RL applications in which data collection is costly
and time-consuming (such as clinical trials, online advertisements, and so on).

This paper concentrates on Q-learning — an off-policy model-free algorithm that seeks to learn the
optimal action-value function by observing what happens under a behavior policy. The off-policy
feature makes it appealing in various RL applications where it is infeasible to change the policy under
evaluation on the fly. There are two basic update models in Q-learning. The first one is termed a
synchronous setting, which hypothesizes on the existence of a simulator (or a generative model); at
each time, the simulator generates an independent sample for every state-action pair, and the estimates
are updated simultaneously across all state-action pairs. The second model concerns an asynchronous
setting, where only a single sample trajectory following a behavior policy is accessible; at each time,
the algorithm updates its estimate of a single state-action pair using one state transition from the
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Paper Sample complexity Learning rate

Even-Dar and Mansour (2003) [20] (tcover)
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1−γ

(1−γ)4ε2 linear: 1
t

Even-Dar and Mansour (2003) [20]
( t1+3ω

cover
(1−γ)4ε2

) 1
ω +

(
tcover
1−γ

) 1
1−ω polynomial: 1

tω
, ω ∈ ( 1

2
, 1)

Beck and Srikant (2012) [5] t3cover|S||A|
(1−γ)5ε2 constant: (1−γ)4ε2

|S||A|t2cover

Qu and Wierman (2020) [35] tmix

µ2
min(1−γ)

5ε2
rescaled linear:

1
µmin(1−γ)

t+max{ 1
µmin(1−γ)

,tmix}

This work (Theorem 1) 1
µmin(1−γ)5ε2

+ tmix
µmin(1−γ)

constant: min
{ (1−γ)4ε2

γ2
, 1
tmix

}
This work (Theorem 2) tcover

(1−γ)5ε2 constant: min
{ (1−γ)4ε2

γ2
, 1
}

Table 1: Sample complexity of asynchronous Q-learning to compute an ε-optimal Q-function in the
`∞ norm, where we hide all logarithmic factors. With regards to the Markovian trajectory induced by
the behavior policy, we denote by tcover, tmix, and µmin the cover time, mixing time, and minimum
state-action occupancy probability of the associated stationary distribution, respectively.

trajectory. Obviously, understanding the asynchronous setting is considerably more challenging than
the synchronous model, due to the Markovian (and hence non-i.i.d.) nature of its sampling process.

Focusing on an infinite-horizon Markov decision process (MDP) with state space S and action space
A, this work investigates asynchronous Q-learning on a single Markovian trajectory. We ask a
fundamental question:

How many samples are needed for asynchronous Q-learning to learn the optimal Q-function?

Despite a considerable amount of prior work exploring this algorithm (ranging from the classical
work [24, 43] to the very recent paper [35]), it remains unclear whether existing sample complexity
analysis of asynchronous Q-learning is tight. As we shall elucidate momentarily, there exists a
large gap — at least as large as |S||A|— between the state-of-the-art sample complexity bound for
asynchronous Q-learning [35] and the one derived for the synchronous counterpart [44]. This raises a
natural desire to examine whether there is any bottleneck intrinsic to the asynchronous setting that
significantly limits its performance.

Our contributions. This paper develops a refined analysis framework that sharpens our understand-
ing about the sample efficiency of classical asynchronous Q-learning on a single sample trajectory.
Setting the stage, consider an infinite-horizon MDP with state space S , action spaceA, and a discount
factor γ ∈ (0, 1). What we have access to is a sample trajectory of the MDP induced by a stationary
behavior policy. In contrast to the synchronous setting with i.i.d. samples, we single out two parame-
ters intrinsic to the Markovian sample trajectory: (i) the mixing time tmix, which characterizes how
fast the trajectory disentangle itself from the initial state; (ii) the smallest state-action occupancy
probability µmin of the stationary distribution of the trajectory, which captures how frequent each
state-action pair has been at least visited.

With these parameters in place, our findings unveil that: the sample complexity required for asyn-
chronous Q-learning to yield an ε-optimal Q-function estimate – in a strong `∞ sense – is at most1

Õ
( 1

µmin(1− γ)5ε2
+

tmix

µmin(1− γ)

)
. (1)

The first component of (1) is consistent with the sample complexity derived for the setting with
independent samples drawn from the stationary distribution of the trajectory [44]. In comparison, the
second term of (1) — which is unaffected by the accuracy level ε — is intrinsic to the Markovian
nature of the trajectory; in essence, this term reflects the cost taken for the empirical distribution of
the sample trajectory to converge to a steady state, and becomes amortized as the algorithm runs. In
other words, the behavior of asynchronous Q-learning would resemble what happens in the setting
with independent samples, as long as the algorithm has been run for reasonably long.

1Let X :=
(
|S|, |A|, 1

1−γ ,
1
ε

)
. The notation f(X ) = O(g(X )) means there exists a universal constant

C1 > 0 such that f ≤ C1g. The notation Õ(·) is defined analogously except that it hides any logarithmic factor.
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Furthermore, we leverage the idea of variance reduction to improve the scaling with the discount
complexity 1

1−γ . We demonstrate that a variance-reduced variant of asynchronous Q-learning attains
ε-accuracy using at most

Õ
( 1

µmin(1− γ)3 min{1, ε2}
+

tmix

µmin(1− γ)

)
(2)

samples, matching the complexity of its synchronous counterpart if ε ≤ min
{

1, 1
(1−γ)

√
tmix

}
[45].

Moreover, by taking the action space to be a singleton set, the above results immediately lead to
`∞-based sample complexity for temporal difference (TD) learning [41] on Markovian samples; the
interested reader is referred to [? ] for more details.

Due to the space limits, the proofs of all theorems are deferred to the full version [? ].

Comparisons with past work. A large fraction of the classical literature focused on asymptotic
convergence analysis of asynchronous Q-learning (e.g. [24, 42, 43]); these results, however, did not
lead to non-asymptotic sample complexity bounds. The state-of-the-art sample complexity analysis
was due to the recent work [35], which derived a sample complexity bound Õ

(
tmix

µ2
min(1−γ)5ε2

)
. Given

the obvious lower bound 1/µmin ≥ |S||A|, our result (1) improves upon that of [35] by a factor
at least on the order of |S||A|min

{
tmix,

1
(1−γ)4ε2

}
. In addition, we note that several prior work

[5, 20] developed sample complexity bounds in terms of the cover time tcover of the sample trajectory,
namely, the time taken for the trajectory to visit all state-action pairs at least once. Our analysis
framework readily yields another sample complexity bound Õ

(
tcover

(1−γ)5ε2
)
, which strengthens the

existing bounds by a factor of at least t2cover|S||A| ≥ |S|3|A|3. See Table 1 for detailed comparisons.

2 Models and background

This paper studies an infinite-horizon MDP with discounted rewards, as represented by a quintuple
M = (S,A, P, r, γ). Here, S and A denote respectively the (finite) state space and action space,
whereas γ ∈ (0, 1) indicates the discount factor. We use P : S × A → ∆(S) to represent the
probability transition kernel of the MDP, where for each state-action pair (s, a) ∈ S ×A, P (s′ | s, a)
denotes the probability of transiting to state s′ from state s when action a is executed. The reward
function is represented by r : S ×A → [0, 1], such that r(s, a) denotes the immediate reward from
state s when action a is taken; for simplicity, we assume throughout that all rewards lie within [0, 1].
We focus on the tabular setting which, despite its basic form, is not yet well understood.

Q-function and the Bellman operator. An action selection rule is termed a policy and represented
by a mapping π : S → ∆(A), which maps a state to a distribution over the set of actions. A policy is
said to be stationary if it is time-invariant. We denote by {st, at, rt}∞t=0 a sample trajectory, where st
(resp. at) denotes the state (resp. the action taken), and rt = r(st, at) denotes the reward received at
time t. It is assumed throughout that the rewards are deterministic and depend solely upon the current
state-action pair. We denote by V π : S → R the value function of a policy π, namely,

∀s ∈ S : V π(s) := E

[ ∞∑
t=0

γtr(st, at)
∣∣ s0 = s

]
,

which is the expected discounted cumulative reward received when (i) the initial state is s0 = s, (ii)
the actions are taken based on the policy π (namely, at ∼ π(st) for all t ≥ 0) and the trajectory is
generated based on the transition kernel (namely, st+1 ∼ P (·|st, at)). It can be easily verified that
0 ≤ V π(s) ≤ 1

1−γ for any π. The action-value function (also Q-function) Qπ : S × A → R of a
policy π is defined by

∀(s, a) ∈ S ×A : Qπ(s, a) := E

[ ∞∑
t=0

γtr(st, at)
∣∣ s0 = s, a0 = a

]
,

where the actions are taken according to the policy π except the initial action (i.e. at ∼ π(st) for all
t ≥ 1). As is well-known, there exists an optimal policy — denoted by π? — that simultaneously
maximizes V π(s) and Qπ(s, a) uniformly over all state-action pairs (s, a) ∈ (S × A). Here and
throughout, we shall denote by V ? := V π

?

and Q? := Qπ
?

the optimal value function and the
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optimal Q-function, respectively. In addition, the Bellman operator T , which is a mapping from
R|S|×|A| to itself, is defined such that the (s, a)-th entry of T (Q) is given by

T (Q)(s, a) := r(s, a) + γEs′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)
]
.

It is well known that the optimal Q-function Q? is the unique fixed point of the Bellman operator.

Sample trajectory and behavior policy. Imagine we have access to a sample trajectory
{st, at, rt}∞t=0 generated by the MDP M under a given stationary policy πb — called a behav-
ior policy. The behavior policy is deployed to help one learn the “behavior” of the MDP under
consideration, which often differs from the optimal policy being sought. Given the stationarity of πb,
the sample trajectory can be viewed as a sample path of a time-homogeneous Markov chain over all
state-action pairs. Throughout this paper, we impose the following assumption [34].
Assumption 1. The Markov chain induced by the stationary behavior policy πb is uniformly ergodic.

There are several properties concerning the behavior policy and its resulting Markov chain that play a
crucial role in learning the optimal Q-function. Specifically, denote by µπb

the stationary distribution
(over all state-action pairs) of the aforementioned behavior Markov chain, and define

µmin := min
(s,a)∈S×A

µπb
(s, a). (3)

Intuitively, µmin reflects an information bottleneck — the smaller µmin is, the more samples are
needed in order to ensure all state-action pairs are visited sufficiently many times. In addition, we
define the associated mixing time of the chain as

tmix := min
{
t
∣∣∣ max

(s0,a0)∈S×A
dTV

(
P t(·|s0, a0), µπb

)
≤ 1

4

}
, (4)

where P t(·|s0, a0) denotes the distribution of (st, at) conditional on the initial state-action pair
(s0, a0), and dTV(µ, ν) stands for the total variation distance between two distributions µ and ν [34].
In words, the mixing time tmix captures how fast the sample trajectory decorrelates from its initial
state. Moreover, we define the cover time associated with this Markov chain as follows

tcover := min
{
t | min

(s0,a0)∈S×A
P
(
Bt|s0, a0

)
≥ 1

2

}
, (5)

where Bt denotes the event such that all (s, a) ∈ S ×A have been visited at least once between time
0 and time t, and P

(
Bt|s0, a0

)
denotes the probability of Bt conditional on the initial state (s0, a0).

Goal. Given a single sample trajectory {st, at, rt}∞t=0 generated by the behavior policy πb, we aim
to compute/approximate the optimal Q-function Q? in an `∞ sense. The current paper focuses on
characterizing, in a non-asymptotic manner, the sample efficiency of classical Q-learning and its
variance-reduced variant.

3 Asynchronous Q-learning on a single trajectory
Algorithm. The Q-learning algorithm [46] is arguably one of the most famous off-policy algorithms
aimed at learning the optimal Q-function. Given the Markovian trajectory {st, at, rt}∞t=0 generated
by the behavior policy πb, the asynchronous Q-learning algorithm maintains a Q-function estimate
Qt : S ×A → R at each time t and adopts the following iterative update rule

Qt(st−1, at−1) = (1− ηt)Qt−1(st−1, at−1) + ηtTt(Qt−1)(st−1, at−1)

Qt(s, a) = Qt−1(s, a), ∀(s, a) 6= (st−1, at−1)
(6)

for any t ≥ 0, whereas ηt denotes the learning rate or the step size. Here Tt denotes the empirical
Bellman operator w.r.t. the t-th sample, that is,

Tt(Q)(st−1, at−1) := r(st−1, at−1) + γ max
a′∈A

Q(st, a
′). (7)

It is worth emphasizing that at each time t, only a single entry — the one corresponding to the
sampled state-action pair (st−1, at−1) — is updated, with all remaining entries unaltered. While
the estimate Q0 can be initialized to arbitrary values, we shall set Q0(s, a) = 0 for all (s, a) unless
otherwise noted. The corresponding value function estimate Vt : S → R at time t is thus given by

∀s ∈ S : Vt(s) := max
a∈A

Qt(s, a). (8)

The complete algorithm is described in Algorithm 1.

4



Algorithm 1: Asynchronous Q-learning
1 input parameters: learning rates {ηt}, number of iterations T .
2 initialization: Q0 = 0.
3 for t = 1, 2, · · · , T do
4 Draw action at−1 ∼ πb(st−1) and next state st ∼ P (·|st−1, at−1).
5 Update Qt according to (6).

Theoretical guarantees for asynchronous Q-learning. We are in a position to present our main
theory regarding the non-asymptotic sample complexity of asynchronous Q-learning, for which the
key parameters µmin and tmix defined respectively in (3) and (4) play a vital role. The proof of this
result is deferred to the full version [? ].
Theorem 1 (Asynchronous Q-learning). For the asynchronous Q-learning algorithm detailed in
Algorithm 1, there exist some universal constants c0, c1 > 0 such that for any 0 < δ < 1 and
0 < ε ≤ 1

1−γ , one has

∀(s, a) ∈ S ×A : |QT (s, a)−Q?(s, a)| ≤ ε

with probability at least 1− δ, provided the iteration number T and the learning rates ηt ≡ η obey

T ≥ c0
µmin

{
1

(1− γ)5ε2
+

tmix

1− γ

}
log
( |S||A|T

δ

)
log
( 1

(1− γ)2ε

)
, (9a)

η =
c1

log
( |S||A|T

δ

) min

{
(1− γ)4ε2

γ2
,

1

tmix

}
. (9b)

Theorem 1 delivers a finite-sample/finite-time analysis of asynchronous Q-learning, given that a fixed
learning rate is adopted and chosen appropriately. The `∞-based sample complexity required for
Algorithm 1 to attain ε accuracy is at most

Õ
( 1

µmin(1− γ)5ε2
+

tmix

µmin(1− γ)

)
. (10)

A few implications are in order.

Dependency on the minimum state-action occupancy probability µmin. Our sample complexity
bound (10) scales linearly in 1/µmin, which is in general unimprovable. Consider, for instance, the
ideal scenario where state-action occupancy is nearly uniform across all state-action pairs, in which
case 1/µmin is on the order of |S||A|. In such a “near-uniform” case, the sample complexity scales
linearly with |S||A|, and this dependency matches the known minimax lower bound [3] derived for
the setting with independent samples. In comparison, [35, Theorem 7] depends at least quadratically
on 1/µmin, which is at least |S||A| times larger than our result (10).

Dependency on the discount complexity 1
1−γ . The sample size bound (10) scales as 1

(1−γ)5ε2 ,
which coincides with both [9, 44] (for the synchronous setting) and [5, 35] (for the asynchronous
setting) with either a rescaled linear learning rate or a constant learning rate. This turns out to be the
sharpest scaling known to date for the classical form of Q-learning.

Dependency on the mixing time tmix. The second additive term of our sample complexity (10)
depends linearly on the mixing time tmix and is (almost) independent of the target accuracy ε. The
influence of this mixing term is a consequence of the expense taken for the Markovian trajectory
to reach a steady state, which is a one-time cost that can be amortized over later iterations if the
algorithm is run for reasonably long. Put another way, if the behavior chain mixes not too slowly with
respect to ε (in the sense that tmix ≤ 1

(1−γ)4ε2 ), then the algorithm behaves as if the samples were
independently drawn from the stationary distribution of the trajectory. In comparison, the influences
of tmix and 1

(1−γ)5ε2 in [35] (cf. Table 1) are multiplicative regardless of the value of ε, thus resulting
in a much higher sample complexity.

Schedule of learning rates. An interesting aspect of our analysis lies in the adoption of a time-
invariant learning rate, under which the `∞ error decays linearly — down to some error floor whose
value is dictated by the learning rate. Therefore, a desired statistical accuracy can be achieved by
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properly setting the learning rate based on the target accuracy level ε and then determining the sample
complexity accordingly. In comparison, classical analyses typically adopted a (rescaled) linear or a
polynomial learning rule [20, 35]. While the work [5] studied Q-learning with a constant learning
rate, their bounds were conservative and fell short of revealing the optimal scaling. Further, we note
that adopting time-invariant learning rates is not the only option that enables the advertised sample
complexity; as we shall elucidate shortly, one can also adopt carefully designed diminishing learning
rates to achieve the same performance guarantees.

Sample complexity based on the cover time. In addition, our analysis framework immediately
leads to another sample complexity guarantee stated in terms of the cover time tcover (cf. (5)), which
facilitates comparisons with several past work [5, 20].
Theorem 2. For the asynchronous Q-learning algorithm detailed in Algorithm 1, there exist some
universal constants c0, c1 > 0 such that for any 0 < δ < 1 and 0 < ε ≤ 1

1−γ , one has

∀(s, a) ∈ S ×A : |QT (s, a)−Q?(s, a)| ≤ ε
with probability at least 1− δ, provided the iteration number T and the learning rates ηt ≡ η obey

T ≥ c0tcover
(1− γ)5ε2

log2
( |S||A|T

δ

)
log
( 1

(1− γ)2ε

)
, (11a)

η =
c1

log
( |S||A|T

δ

) min

{
(1− γ)4ε2

γ2
, 1

}
. (11b)

In a nutshell, this theorem tells us that the `∞-based sample complexity of classical asynchronous Q-
learning is bounded above by Õ

(
tcover

(1−γ)5ε2
)
, which scales linearly with the cover time. This improves

upon the prior result [20] (resp. [5]) by an order of at least t3.29cover ≥ |S|3.29|A|3.29 (resp. t2cover|S||A| ≥
|S|3|A|3). See Table 1 for detailed comparisons. We also make note of some connections between
tcover and tmix/µmin to help compare Theorems 1-2: (1) in general, tcover = Õ(tmix/µmin) for
uniformly ergodic chains; (2) one can find some cases where tmix/µmin = Õ(tcover). See [? ,
Appendix B] for more discussions.

Adaptive and data-driven learning rates. The careful reader might remark that the learning rates
recommended in (9b) depend on the mixing time tmix — a parameter that might be either a priori
unknown or difficult to estimate. Fortunately, it is feasible to adopt a more adaptive learning rate
schedule which does not rely on prior knowledge of tmix and which is still capable of achieving the
performance advertised in Theorem 1.

In order to describe our new learning rate schedule, we need to keep track of the following quantities
for all (s, a) ∈ S ×A:

• Kt(s, a): the number of times that the sample trajectory visits (s, a) during the first t
iterations.

In addition, we maintain an estimate µ̂min,t of µmin, computed recursively as follows

µ̂min,t =


1

|S||A| , mins,aKt(s, a) = 0;

µ̂min,t−1,
1
2 <

mins,aKt(s,a)/t
µ̂min,t−1

< 2;

mins,aKt(s, a)/t, otherwise.
(12)

With the above quantities in place, we propose the following learning rate schedule:

ηt = min
{

1, cη exp
(⌊

log
log t

µ̂min,t(1− γ)γ2t

⌋)}
, (13)

where cη > 0 is some proper constant, and bxc denotes the nearest integer less than or equal to x.
If µ̂min,t forms a reliable estimate of µmin, then one can view (13) as a sort of “piecewise constant
approximation” of the rescaled linear stepsizes cη log t

µmin(1−γ)γ2t . Clearly, such learning rates are fully
data-driven and do no rely on any prior knowledge about the Markov chain (like tmix and µmin) or the
target accuracy ε.
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Algorithm 2: Asynchronous variance-reduced Q-learning
1 input parameters: number of epochs M , epoch length tepoch, recentering length N ,

learning rate η.
2 initialization: set Qepoch

0 ← 0.
3 for each epoch m = 1, · · · ,M do

/* Call Algorithm 3. */
4 Qepoch

m = VR-Q-RUN-EPOCH(Qepoch
m−1 , N, tepoch) .

Encouragingly, our theoretical framework can be extended without difficulty to accommodate this
adaptive learning rate choice. Specifically, for the Q-function estimates

Q̂t =

{
Qt, if ηt+1 6= ηt,

Q̂t−1, otherwise,
(14)

we have the following theoretical guarantees.

Theorem 3. Consider asynchronous Q-learning with learning rates (13). There is some sufficiently
large universal constant C > 0 such that: for any 0 < δ < 1 and 0 < ε ≤ 1

1−γ , one has

∀(s, a) ∈ S ×A :
∣∣Q̂T (s, a)−Q?(s, a)

∣∣ ≤ ε (15)

with probability at least 1− δ, provided that

T ≥ C max
{ 1

µmin(1− γ)5ε2
,

tmix

µmin(1− γ)

}
log
( |S||A|T

δ

)
log
( T

(1− γ)2ε

)
. (16)

4 Extension: asynchronous variance-reduced Q-learning

As pointed out in prior literature, the classical form of Q-learning (6) often suffers from sub-optimal
dependence on the discount complexity 1

1−γ . For instance, in the synchronous setting, the minimax
lower bound is proportional to 1

(1−γ)3 (see, [3]), while the sharpest known upper bound for vanilla
Q-learning scales as 1

(1−γ)5 ; see detailed discussions in [44]. To remedy this issue, recent work
proposed to leverage the idea of variance reduction to develop accelerated RL algorithms in the
synchronous setting [37, 45], as inspired by the seminal SVRG algorithm [26]. These prior results,
however, focused on the synchronous setting with independent samples. In this section, we adapt this
idea to asynchronous Q-learning and characterize its sample efficiency.

Algorithm. In order to accelerate the convergence, it is instrumental to reduce the variability of the
empirical Bellman operator Tt employed in the update rule (6) of classical Q-learning. This can be
achieved via the following means. Simply put, assuming we have access to (i) a reference Q-function
estimate, denoted by Q, and (ii) an estimate of T (Q), denoted by T̃ (Q), the variance-reduced
Q-learning update rule is given by

Qt(st−1, at−1) = (1− ηt)Qt−1(st−1, at−1) + ηt

(
Tt(Qt−1)− Tt(Q) + T̃ (Q)

)
(st−1, at−1),

Qt(s, a) = Qt−1(s, a), ∀(s, a) 6= (st−1, at−1),
(17)

where Tt denotes the empirical Bellman operator at time t (cf. (7)). The empirical estimate T̃ (Q) can
be computed using a set of samples; more specifically, by drawing N consecutive sample transitions
{(si, ai, si+1)}0≤i<N from the observed trajectory, we compute

T̃ (Q)(s, a) = r(s, a) +
γ
∑N−1
i=0 1{(si, ai) = (s, a)}maxa′ Q(si+1, a

′)∑N−1
i=0 1{(si, ai) = (s, a)}

. (18)

Compared with the classical form (6), the original update term Tt(Qt−1) has been replaced by
Tt(Qt−1)− Tt(Q) + T̃ (Q), in the hope of achieving reduced variance as long as Q (which serves as
a proxy to Q?) is chosen properly.

7



Algorithm 3: function Q = VR-Q-RUN-EPOCH(Q,N, tepoch)

1 Draw N new consecutive samples from the sample trajectory; compute T̃ (Q) with (18).
2 Set s0 ← current state, and Q0 ← Q.
3 for t = 1, 2, · · · , tepoch do
4 Draw action at−1 ∼ πb(st−1) and next state st ∼ P (·|st−1, at−1).
5 Update Qt according to (17).
6 return: Q← Qtepoch .

For convenience of presentation, we introduce the following notation

Q = VR-Q-RUN-EPOCH(Q,N, tepoch ) (19)

to represent the above-mentioned update rule, which starts with a reference point Q and operates
upon a total number of N + tepoch consecutive sample transitions. The first N samples are employed
to construct T̃ (Q) via (18), with the remaining samples employed in tepoch iterative updates (17); see
Algorithm 3. To achieve the desired acceleration, the proxy Q needs to be periodically updated so as
to better approximate the truth Q? and hence reduce the bias. It is thus natural to run the algorithm
in a multi-epoch manner. Specifically, we divide the samples into contiguous subsets called epochs,
each containing tepoch iterations and using N + tepoch samples. We then proceed as follows

Qepoch
m = VR-Q-RUN-EPOCH(Qepoch

m−1 , N, tepoch ), m = 1, . . . ,M, (20)

where M is the total number of epochs, and Qepoch
m denotes the output of the m-th epoch. The whole

procedure is summarized in Algorithm 2. Clearly, the total number of samples used in this algorithm
is given by M(N + tepoch). We remark that the idea of performing variance reduction in RL is
certainly not new, and has been explored in a number of recent work [16, 29, 37, 38, 45, 50].

Theoretical guarantees for variance-reduced Q-learning. We develop a non-asymptotic sample
complexity bound for asynchronous variance-reduced Q-learning on a single trajectory. Before
presenting our theoretical guarantees, there are several algorithmic parameters that we shall specify;
for given target levels (ε, δ), choose

ηt ≡ η =
c0

log
( |S||A|tepoch

δ

) min

{
(1− γ)2

γ2
,

1

tmix

}
, (21a)

N ≥ c1
µmin

( 1

(1− γ)3 min{1, ε2}
+ tmix

)
log
( |S||A|tepoch

δ

)
, (21b)

tepoch ≥
c2
µmin

( 1

(1− γ)3
+

tmix

1− γ

)
log
( 1

(1− γ)2ε

)
log
( |S||A|tepoch

δ

)
, (21c)

where c0 > 0 is some sufficiently small constant, c1, c2 > 0 are some sufficiently large constants,
and we recall the definitions of µmin and tmix in (3) and (4), respectively. Note that the learning rate
(21a) chosen here could be larger than the choice (9b) for the classical form by a factor of O

(
1

(1−γ)2
)

(which happens if tmix is not too large), allowing the algorithm to progress more aggressively.

Theorem 4 (Asynchronous variance-reduced Q-learning). Let Qepoch
M be the output of Algorithm 2

with parameters chosen according to (21). There exists some constant c3 > 0 such that for any
0 < δ < 1 and 0 < ε ≤ 1

1−γ , one has

∀(s, a) ∈ S ×A : |Qepoch
M (s, a)−Q?(s, a)| ≤ ε

with probability at least 1− δ, provided that the total number of epochs exceeds

M ≥ c3 log
1

ε(1− γ)2
. (22)

In view of Theorem 4, the `∞-based sample complexity for variance-reduced Q-learning to yield ε
accuracy — which is characterized by M(N + tepoch) — can be as low as

Õ
( 1

µmin(1− γ)3 min{1, ε2}
+

tmix

µmin(1− γ)

)
. (23)
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Except for the second term that depends on the mixing time, the first term matches [45] derived for
the synchronous settings with independent samples. In the range ε ∈ (0,min{1, 1

(1−γ)
√
tmix
}], the

sample complexity reduce to Õ
(

1
µmin(1−γ)3ε2

)
; the scaling 1

(1−γ)3 matches the minimax lower bound
derived in [3] for the synchronous setting.

5 Related work
The Q-learning algorithm and its variants. The Q-learning algorithm, originally proposed in
[47], has been analyzed in the asymptotic regime by [7, 24, 42, 43] since more than two decades
ago. Additionally, finite-time performance of Q-learning and its variants have been analyzed by
[5, 9, 20, 28, 35, 44, 48] in the tabular setting, by [6, 8, 10, 17, 18, 21, 49, 52] in the context of function
approximations, and by [36] with nonparametric regression. In addition, [2, 14, 22, 37, 40, 45] studied
modified Q-learning algorithms that might potentially improve sample complexities and accelerate
convergence.

Finite-sample `∞ guarantees for Q-learning. We now expand on non-asymptotic `∞ guarantees
available in prior literature, which are the most relevant to the current work. An interesting aspect
that we shall highlight is the importance of learning rates. For instance, when a linear learning rate
(i.e. ηt = 1/t) is adopted, the sample complexity results derived in past work [20, 42] exhibit an
exponential blow-up in 1

1−γ , which is clearly undesirable. In the synchronous setting, [5, 9, 20, 44]
studied the finite-sample complexity of Q-learning under various learning rate rules; the best sample
complexity known to date is Õ

( |S||A|
(1−γ)5ε2

)
, achieved via either a rescaled linear learning rate [9, 44]

or a constant learning rate [9]. When it comes to asynchronous Q-learning (in its classical form),
our work provides the first analysis that achieves linear scaling with 1/µmin or tcover; see Table 1 for
detailed comparisons. Going beyond classical Q-learning, the speedy Q-learning algorithm provably
achieves a sample complexity of Õ

(
tcover

(1−γ)4ε2
)

[2] in the asynchronous setting, whose update rule
takes twice the storage of classical Q-learning. In comparison, our analysis of the variance-reduced
Q-learning algorithm achieves a sample complexity of Õ

(
1

µmin(1−γ)3ε2 + tmix

µmin(1−γ)
)

when ε < 1.

Finite-sample guarantees for model-free algorithms. Convergence of several model-free RL
algorithms has been studied recently in the presence of Markovian data, including but not limited to
TD learning and its variants [6, 11, 12, 15, 23, 27, 30, 39, 50, 51], Q-learning [10, 49], and SARSA
[53]. However, these recent papers typically focused on the (weighted) `2 error rather than the `∞
risk, where the latter is often more relevant in the context of RL. In addition, [29, 33] investigated the
`∞ bounds of (variance-reduced) TD learning, although they did not account for Markovian noise.

Finite-sample guarantees for model-based algorithms. Another contrasting approach for learn-
ing the optimal Q-function is the class of model-based algorithms, which has been shown to enjoy
minimax-optimal sample complexity Õ

( |S||A|
(1−γ)3ε2

)
in the synchronous setting [1, 3, 31]. It is worth

emphasizing that the minimax optimality of model-based approach has been shown to hold for the
entire ε-range; in comparison, the sample optimality of the model-free approach has only been shown
for a smaller range of accuracy level ε in the synchronous setting.

6 Discussion

This work develops a sharper finite-sample analysis of the classical asynchronous Q-learning al-
gorithm, highlighting and refining its dependency on intrinsic features of the Markovian trajectory
induced by the behavior policy. Our sample complexity bound strengthens the state-of-the-art result
by an order of at least |S||A|. A variance-reduced variant of asynchronous Q-learning is also analyzed,
exhibiting improved scaling with the discount complexity 1

1−γ .

Our findings and the analysis framework developed herein suggest a couple of directions for future
investigation. For instance, our improved sample complexity of asynchronous Q-learning has a
dependence of 1

(1−γ)5 on the discount complexity, which is inferior to its model-based counterpart.
In the synchronous setting, [44] demonstrated an empirical lower bound 1

(1−γ)4 for Q-learning. It
would be important to determine the exact scaling in this regard. In addition, it would be interesting
to see whether the techniques developed herein can be exploited towards understanding model-free
algorithms with more sophisticated exploration schemes [4, 13, 25].

9



Broader Impact

This work is a theoretical contribution to characterize the sample complexity of asynchronous
Q-learning. The insights from the proposed algorithm can potentially be leveraged in various
reinforcement learning tasks in the future.
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