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Finite-sum optimization

minimize,cpa F(x) :—ii fi(z) + @
=1

loss for 4th sample ~ regularizer

(@§,y4)
common task in machine learning
e linear regression: f;(x) = (a/ @ —y;)% ¥(x) =0
e logistic regression: f;(x) = log(1 + e_yiaz‘T‘”), P(x) =
o Lasso: fi(x) = 3(a;  — ;)% P(x) = Al

o SVM: f;(x) = max{0,1 — y;a; x}, ¥(x) = 3|z}
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Stochastic gradient descent (SGD)

Algorithm 12.1 Stochastic gradient descent (SGD)
1: fort=1,2,... do
2:  pick iy ~ Unif(1,...,n)
32zl =gzt -V, (2

As we have shown in the last lecture
e large stepsizes poorly suppress variability of stochastic gradients
= SGD with 7; < 1 tends to oscillate around global mins

e choosing 7; =< 1/t mitigates oscillation, but is too conservative
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Recall: SGD theory with fixed stepsizes

t+1 t t
gt =" —ng

e g': an unbiased estimate of F'(x!)
o Ellg"3] < of + gl VE(")]I3
e F(-): p-strongly convex; L-smooth

From the last lecture, we know
2
nLog

EF (') - F(a®) < 75

+ (1 =)' (F(z") — F(z*))
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Recall: SGD theory with fixed stepsizes

e vanilla SGD: gt = Vf;,(z)
2

2 is non-negligible even when ' = x*

o issue: o,

e question: it is possible to design g’ with reduced variability ag?
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A simple idea

Imagine we take some v! with E[v!] = 0 and set
gt = vfu(wt) — '

— so g' is still an unbiased estimate of VF(z!)

question: how to reduce variability (i.e. E[||g?||3] < E[|V fi,(z")|13])?

answer: find some zero-mean v! that is positively correlated with

Vfi(a') (e (v, Vi, (2')) > 0) (why?)
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Reducing variance via gradient aggregation

If the current iterate is not too far away from previous iterates, then
historical gradient info might be useful in producing such a v’ to
reduce variance

main idea of this lecture: aggregate previous gradient info to help
improve the convergence rate
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Stochastic variance reduced gradient (SVRG)



Strongly convex and smooth problems
(no regularization)

minimize,cga F(x) =

e f;: convex and L-smooth
e F: u-strongly convex

e x:= L/u: condition number
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Stochastic variance reduced gradient (SVRG)

— Johnson, Zhang '13

key idea: if we have access to a history point °¢ and VF (z°'¢),

then

Vi (') — Vi, (@) + VF(x°)  with 4 ~ Unif(1,--- ,n)

— 0 if xt ~gold — 0 if xold ~ *

e is an unbiased estimate of VF(x?!)
Id

e converges to 0 if ! ~ x°9 ~ x*
—_————

variability is reduced!
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Stochastic variance reduced gradient (SVRG)

e operate in epochs

e in the sth epoch

o very beginning: take a snapshot x2

compute the batch gradient VF(x°4)

of the current iterate, and

o inner loop: use the snapshot point to help reduce variance

2 =l = {Vfi,(al) = V1, (299) + VF(a2)}

a hybrid approach: the batch gradient is computed only once per
epoch
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SVRG algorithm (Johnson, Zhang '13)

Algorithm 12.2 SVRG for finite-sum optimization

1: for s=1,2,... do

2:

294 « 2 |, and compute VF(x2) // update snapshot

batch gradient
initialize 20 « 20!

for t=0,....m—1 do

each epoch contains m iterations
choose i; uniformly from {1,...,n}, and

zt = al —n{ Vfi(z}) - Vi (x2) + VF ()}

stochastic gradient
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Remark

e constant stepsize 7

e each epoch contains 2m + n gradient computations
o the batch gradient is computed only once every m iterations

o the average per-iteration cost of SVRG is comparable to that of
SGD ifm zn
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Convergence analysis of SVRG

Theorem 12.1

Assume each f; is convex and L-smooth, and F' is u-strongly convex.

Choose m large enough s.t. p = /m(l—12L77)m + lzgzn < 1, then

E[F(x2) - F(z)] < p°[F (@) — F(z")]

s

e linear convergence: choosing m 2 L/u = k and constant
stepsizes < 1/L yields 0 < p < 1/2

= O(log %) epochs to attain € accuracy
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Convergence analysis of SVRG

Theorem 12.1

Assume each f; is convex and L-smooth, and F' is u-strongly convex.

Choose m large enough s.t. p = /m(l—12L77)m + lzgzn < 1, then

E[F(x2) - F(z)] < p°[F (@) — F(z")]

s

e total computational cost:

(m+n) logl =< (n+k)logl

—_——— —
# grad computation per epoch if m=<max{n,x}
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Proof of Theorem 12.1

Here, we provide the proof for an alternative version, where in each

epoch,
2 =2 with j ~ Unif(0,--- ,m — 1) (12.1)

rather than j=m

The interested reader is referred to Tan et al. '16 for the proof of the
original version
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Proof of Theorem 12.1

S

Let g! ==V, (xl) — Vf;,(x29) + VF(22) for simplicity. As usual,
conditional on everything prior to ‘!, one has

E[[lai" — 2*|3] = E[|lz} — ng; — ="||3]
= ||&f — a*[|3 — 2n(a} — =*) "E[gl] + 7°E[||gL||3]
< laf — 2*|3 - 2n(al —2*)" VF(2)) +n’E[|g!l3]
since g¢ is an unbiased estimate of VF'(x!)
< &l — a3 — 29(F(a}) — F(x")) + n°E[| g43] (12.2)

by convexity

e key step: control E[||gt||3]
— we'd like to upper bound it via the (relative) objective value
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Proof of Theorem 12.1

main pillar: control E[||g!|3] via ...

Lemma 12.2
Ellgll3] <AL[F(x}) — F(z*) + F(23) — F(a*)]

this means if ! ~ %9 ~ z*, then E[||g%||3] ~ 0 (reduced variance)
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Proof of Theorem 12.1

main pillar: control E[||g!|3] via ...

Lemma 12.2
Ellgll3] <AL[F(x}) — F(z*) + F(23) — F(a*)]

t+1

s 1

this allows one to obtain: conditional on everything prior to @

E[[la — 23] < (12.2)
< Jlak — @[3 — 2n[F () — F(z")]

S

+ALP[F(al) - F(a") + P(@34) - F(a")]

= ||=f — a*[3 — 2n(1 — 2Ln)[F(}) - F(z*)]
+ 4L [F (229 — F(z*)] (12.3)

S
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Proof of Theorem 12.1 (cont.)

Taking expectation w.r.t. all history, we have

20(1 — 2Ln)mE[F(x2,) — F(z")]

Con( 2Ly S E[F(z!) — F(z")] by (12.1)
t=0
<E[lam, — @3] + 2001 — 2Ln) 3 E[F(a!) - F(z*)]

<E[||zY,, — 3] + 4Lmn?[F(x2?) — F(z*)] (apply (12.3) recursively)

=E[||lz - @*|3] + 4LmiE[F(22¢) — F(z*)]
< %E[F(w;"d) — F(z*)] + ALmn*E[F(229) — F(z*)] (strong convexity)
= (2 +4Lm?) BF(294) - F(a")]
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Proof of Theorem 12.1 (cont.)

Consequently,

E[F(xdf,) — F(x*)]
EANE 4Lm772

< _ Bk

— 2n(1 —2Ln)m

- (un(l —12L77)m 1 ELQZU>E[F (@) = F(27)]

=p

[F(x2) — F(a")]

S

Applying this bound recursively establishes the theorem.
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Proof of Lemma 12.2

E[||V fi,(x}) = V fi, (@) + VF(x2)|3]
=E[|Vfi,(2}) = Vi, (&%) — (Vfi, (x2¢) = Vi, (x") = VF(@))][3]
<2E[|Vf;,(2h) = Vfi, (x)]3] + 2E[||Vf;, (229) = Vf;,(z*) — VF(229)[3]
= 2E[||V fi, (a}) — V i, (z*)]3]

+ 2R [||V fi, (229) = Vi, (") = E[V fi, (229) = V £, (27)]|I3]

since E[V f;, (x*)]=V F(x*)=0

<2E[|[Vfi,(2}) = Vi, () 3] + 2E[|V fi, (22) = V fi, (2")]13]
<AL[F(x!) — F(z*) + F(a29) — F(z*)]

where the last inequality would hold if we could justify

- Z IV fi(@) — Vi(a")|:

P<ar [F(x) — F(z")] (12.4)

relies on both smoothness and convexity of f;
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Proof of Lemma 12.2 (cont.)

To establish (12.4), observe from smoothness and convexity of f; that

1 * * *
57 IVfi(@) = Vi@ iy < fil@) - fil@) = Vi) (@ - 2)

an equivalent characterization of L-smoothness

Summing over all ¢ and recognizing that VF(x*) = 0 yield

%ZHW@( — Vfi(@")|]2 < nF(z) - nF(z*) - n(VF(a*) (z - z*)
=nF(x) — nF(z")

as claimed
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Numerical example: logistic regression
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— Johnson, Zhang '13
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Comparisons with GD and SGD

SVRG GD SGD
comp. cost | (n+ k) log% nKk log% ’%2 (practically often £)
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Proximal extension

minimize, cga =Y fi(m) + ¢ (x)

e f;: convex and L-smooth

e F: u-strongly convex

k:= L/u: condition number

1. potentially non-smooth
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Proximal extension (Xiao, Zhang'14)

Algorithm 12.3 Prox-SVRG for finite-sum optimization
1: fors=1,2,...do

2. x9d « 2™, and compute VF(x2) // update snapshot
———
batch gradient
3. initialize 20 + 29
for t=0,....m—1 do
each epoch contains m iterations
5: choose i; uniformly from {1,...,n}, and

ot = prox,,, (@l —n{ Vi, (a}) — Vi, (229) + VF(a5)})

stochastic gradient
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Stochastic recursive gradient algorithm
(SARAH)



Nonconvex and smooth problems

minimize, cpd F(x)= %Zfl (x)

e f;: L-smooth, potentially nonconvex
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Recursive stochastic gradient estimates

— Nguyen, Liu, Scheinberg, Takac'l7

key idea: recursive / adaptive updates of gradient estimates

stochastic

9'=Vfi(a) = Vfi (') +g"" (12.5)

e

comparison to SVRG (use a fixed snapshot point for the entire
epoch)

(SVRG) g' = Vfi,(a') — Vi, (z°) + VF(z*)
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Restarting gradient estimate every epoch

For many (e.g. strongly convex) problems, recursive gradient estimate
g' may decay fast (variance |; bias (relative to VF(z')) 1)

e g’ may quickly deviate from the target gradient VF(z?!)

e progress stalls as g* cannot guarantee sufficient descent

solution: reset g’ every few iterations to calibrate with the true
batch gradient
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Bias of gradient estimates

Unlike SVRG, g' is NOT an unbiased estimate of VF(z?!)

E[g' | everything prior to '] = VF(z') ~VF(z'™) +¢'*
£0

But if we average out all randomness, we have (exercise!)

E[g'] = E[VF(z')]
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StochAstic Recursive grAdient algoritHm

Algorithm 12.4 SARAH (Nguyen et al. '17)

1: fors=1,2,...,5do

2. 20+ 2™ and compute g¥ = VF(z!) // restart g anew
—_—

batch gradient

3 @y =al—ngy

4. fort=1,...,mdo

5: choose i; uniformly from {1,...,n}

6: 92 - vflt (xg) - vfiz(wgil) + gﬁfl
stochastic gradient

T @ =l g
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Convergence analysis of SARAH (nonconvex)

Theorem 12.3 (Nguyen et al.’19)

Suppose each fZ is L-smooth. Then SARAH with n < Lf obeys

2 *
m+1 ;;}E“VF } W[F(fcg)—ﬂﬂ@)]

e iteration complexity for finding e-approximate stationary point
(ie. IVF(@)]2 < 2):

L
0] ( f) (setting m < n,n < ﬁ)
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Convergence analysis of SARAH (nonconvex)

Theorem 12.3 (Nguyen et al.’19)

Suppose each fZ is L-smooth. Then SARAH with n < Lf obeys

2 *
m+1 ;;}E“VF } W[F(fcg)—ﬂﬂ@)]

e also derived by Fang et al.'18 (for a SARAH-like algorithm
“Spider”) and improved by Wang et al. '19 (for “SpiderBoost™)
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Proof of Theorem 12.3

Theorem 12.3 follows immediately from the following claim on the
total objective improvement in one epoch (why?)

m

— INCE[|VF(ah)]2] (12.6)

t=0

E[F(z]")] <E[F(x))]

— S

1\3\3

We will then focus on estalibshing (12.6)
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Proof of Theorem 12.3 (cont.)

To establish (12.6), recall that the smoothness assumption gives
E[F(«i™")] <E[F(z!)] - nE[VF(z!)Tg!] + ZLE[||gL]2]  (12.7)

Since g! is not an unbiased estimate of VF(x%), we first decouple

2E[VF(2!) gl = E[|VF@)];] +E[lgl],]- E[|VF@!) - gl],]
%,_/ ———
desired gradient estimate variance squared bias of gradient estimate

Substitution into (12.7) with straightforward algebra gives
E[F(a{™)] < E[F(2)] - $E[|VF(@!);] + $E[|VF(!) — o]
2

— (342 E[llgtl3]
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Proof of Theorem 12.3 (cont.)

Sum over t =0,...,m to arrive at
E[F(e;"")] <E[F()) ”Zto [IvF@)]f;)
77 m
+{>,E HIVF ~gllE -0 - L) B}

>1/2
The proof of (12.6) is thus complete if we can justify
Lemma 12.4
Ifn < \ﬁ then (for fixed 1, the epoch length m cannot be too large)

S E[IVEE) -gls] <53 E[llet)l]
_Usllz)

squared bias of gradient estimate variance

e informally, this says the accumulated squared bias of gradient estimates
(w.r.t. batch gradients) can be controlled by the accumulated variance
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Proof of Lemma 12.4

Key step:
Lemma 12.5

E[|VF(l) - gt <> E[lla* — g5 )]

e convert the bias of gradient estimates to the differences of
consecutive gradient estimates (a consequence of the smoothness
and the recursive formula of gt)
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Proof of Lemma 12.4 (cont.)

From Lemma 12.5, it suffices to connect {||g! — gi 1|2} with {||g]|2}:

o smoothness

Vfi(@L) = Vi (@]
=L gt

2 (12.5)

t t—1 20|t t—112
lgs — g5, L2||lzg — 27

Invoking Lemma 12.5 then gives

E[|IVF@) - gl3] <30 E[llef - ok 3] < P2y E[leE ]

Summing over t = 0,--- ,m, we obtain

S E[[VE@) - g2 <rrm 3 E]|g]

. . : 1
which establishes Lemma 12.4 if n < Tvm
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Proof of Lemma 12.5

Since this lemma only concerns a single epoch, we shall drop the dependency
on s for simplicity. Let F contain all info up to * and g*~!, then

E[|vrE®) - g"ll, 1 7]
= B[|VE@ -t + (VR - VEE) — (o" - )1 A
= |VEE") —g" [, + |[VE@E") - vEE" Y|, +E]le" — o, | ]
+2(VF(@"") - g" " VF(") - VF(=z"))
_ 2<VF(mk O gk—l’E[gk g ]_-kD
- 2<VF(wk) - VF(wkfl),E[gk —g" J:k]>
e 2 B e [ O R 11 PR (PN
Since VF(z°) = g". Sum over k =1,...,t to obtain

E||vFG") - o] = Y E[lo" - o" 3] - 2 lIvFEh) - vt
k=1

k=1

<0; done!
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Stochastic dual coordinate ascent (SDCA)

— a dual perspective



A class of finite-sum optimization

n

1
minimizeycpa  F(2) =~ > fi(2) + gHmH% (12.8)
=1

e f;: convex and L-smooth
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Dual formulation

The dual problem of (12.8)

2
1< pll 1 &
. D _ 2 R\ il . 12.9
maximize,, (v) n; fi(—v;) 5 /m;'/z ; (12.9)
e a primal-dual relation

1 n

z(v)=—)> v 12.10

3w (12.10)
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Derivation of the dual formulation

Variance reduction

u
min Zﬂ +Llel

mm Zf, z;) |wH2 st. z,=x
z,{z:} ;

n

. H > 1
max min  — » fi(z)+ Szl + = Vi, 2i =%
nax min n; (z3) + Slll2 n;( )

Lagrangian

n

1 & 1
max min ﬁg—fﬂ—ui) + Sl = = > (i)

i=1

conjugate: f*(v):=max,{(v,z)—fi(z)}

n
P INRAR ED I

2

~——

optimal m:ﬁ Zi v; 1oa3



Randomized coordinate ascent on dual problem

— Shalev-Shwartz, Zhang '13

e randomized coordinate ascent: at each iteration, randomly
pick one dual (block) coordinate v;, of (12.9) to optimize

e maintain the primal-dual relation (12.10)

= —> v (12.11)
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Stochastic dual coordinate ascent (SDCA)

Algorithm 12.5 SDCA for finite-sum optimization

1:

initialize

0_ 1 n 0

2. fort=0,1,... do

3:
4:
5

// choose a random coordinate to optimize
choose i; uniformly from {1,...,n}

Al argmgx—lfit( — v, — A) = §|z" + ;%nAH

n it

2
2

find the optimal step with all {v/}};.;;, fixed
e i+ A=) (1<i<n)

Vi

update only the it coordinate
el gt LAt
un

// based on (12.11)

Variance reduction
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A variant of SDCA without duality

SDCA might not be applicable if the conjugate functions are difficult
to evaluate

This calls for a dual-free version of SDCA
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A variant of SDCA without duality

— S. Shalev-Shwartz '16

Algorithm 12.6 SDCA without duality

1: initialize 2" = - 7 1Y
un 1

2. fort=0,1,... do
3:  // choose a random coordinate to optimize

4:  choose i; uniformly from {1,...,n}
5. Al —nun(Vfi, (z') + )
6: vt w4 A{i =i} (1<i<n)
update only the ig}’ coordinate
. t+1 t, 1 At
.ozt e+ DA // based on (12.11)
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A variant of SDCA without duality

A little intuition

e the optimality condition requires (check!)
vi = Vi), Vi (12.12)
e with a modified update rule, one has

vt (1-— mm)l/ft +nun(— Vfi, (a:t))

Tt

cvx combination of current dual iterate and gradient component

— when it converges, it will satisfy (12.12)
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SDCA as SGD

The SDCA (without duality) update rule reads:

et =at —n(Vfi(z) + )
—_——
=g

It is straightforward to verify that g’ is an unbiased gradient estimate

Elg'] =E[Vfi,(z")] +E[v},] = % zn: Vfi(xh) + % zn: vl = VF(x")
=1 =1
=paxt
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SDCA as variance-reducedSGD

The SDCA (without duality) update rule reads:

et =z — (Vi (2') +v,)
—_——

=gt

The variance of ||g’||2 goes to 0 as we converge to the optimizer
Ellg'|3] = E[llvj, — v, + v}, + V fi,(z")]}3]
< 2E[|lv;, —v;ll5] + 2 E[llv, + Vi (2")]I3]
—_———

— 0 as t—o0 < |lwt—w*||3 (Shalev-Shwartz'16)
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Convergence guarantees of SDCA

Theorem 12.6 (informal, Shalev-Shwartz '16)

Assume each f; is convex and L-smooth, and set n = ﬁ;m Then it
takes SDCA (without duality) O((n + %) log 1) iterations to yield
accuracy

e the same computational complexity as SVRG

e storage complexity: O(nd) (needs to store {v; }1<i<n)
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