Large-Scale Optimization for Data Science

Subgradient methods

Yuxin Chen

Wharton Statistics \& Data Science, Fall 2023

Outline

- Steepest descent
- Subgradients
- Projected subgradient descent
- Convex and Lipschitz problems
- Strongly convex and Lipschitz problems
- Convex-concave saddle point problems

Nondifferentiable problems

Differentiability of the objective function f is essential for the validity of gradient methods

However, there is no shortage of interesting cases (e.g. ℓ_{1} minimization, nuclear norm minimization) where non-differentiability is present at some points

Generalizing steepest descent?

$$
\operatorname{minimize}_{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text { subject to } \boldsymbol{x} \in \mathcal{C}
$$

- find a search direction \boldsymbol{d}^{t} that minimizes the directional derivative

$$
\boldsymbol{d}^{t} \in \underset{\boldsymbol{d}:\|\boldsymbol{d}\|_{2} \leq 1}{\arg \min } f^{\prime}\left(\boldsymbol{x}^{t} ; \boldsymbol{d}\right)
$$

where $f^{\prime}(\boldsymbol{x} ; \boldsymbol{d}):=\lim _{\alpha \downarrow 0} \frac{f(\boldsymbol{x}+\alpha \boldsymbol{d})-f(\boldsymbol{x})}{\alpha}$

- updates

$$
\boldsymbol{x}^{t+1}=\boldsymbol{x}^{t}+\eta_{t} \boldsymbol{d}^{t}
$$

Issues

- Finding the steepest descent direction (or even finding a descent direction) may involve expensive computation
- Stepsize rules are tricky to choose: for certain popular stepsize rules (like exact line search), steepest descent might converge to non-optimal points

Wolfe's example

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}5\left(9 x_{1}^{2}+16 x_{2}^{2}\right)^{\frac{1}{2}} & \text { if } x_{1}>\left|x_{2}\right| \\ 9 x_{1}+16\left|x_{2}\right| & \text { if } x_{1} \leq\left|x_{2}\right|\end{cases}
$$

- $(0,0)$ is a non-differentiable point
- if one starts from $\boldsymbol{x}^{0}=\left(\frac{16}{9}, 1\right)$ and uses exact line search, then
- $\left\{\boldsymbol{x}^{t}\right\}$ are all differentiable points
- $\boldsymbol{x}^{t} \rightarrow(0,0)$ as $t \rightarrow \infty$

Wolfe's example

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}5\left(9 x_{1}^{2}+16 x_{2}^{2}\right)^{\frac{1}{2}} & \text { if } x_{1}>\left|x_{2}\right| \\ 9 x_{1}+16\left|x_{2}\right| & \text { if } x_{1} \leq\left|x_{2}\right|\end{cases}
$$

- even though it never hits non-differentiable points, steepest descent with exact line search gets stuck around a non-optimal point (i.e. $(0,0))$
- problem: steepest descent directions may undergo large / discontinuous changes when close to convergence limits

(Projected) subgradient method

Practically, a popular choice is "subgradient-based methods"

$$
\begin{equation*}
\boldsymbol{x}^{t+1}=\mathcal{P}_{\mathcal{C}}\left(\boldsymbol{x}^{t}-\eta_{t} \boldsymbol{g}^{t}\right) \tag{4.1}
\end{equation*}
$$

where \boldsymbol{g}^{t} is any subgradient of f at \boldsymbol{x}^{t}

- the focus of this lecture
- caution: this update rule does not necessarily yield reduction w.r.t. the objective values

Subgradients

Subgradients

We say \boldsymbol{g} is a subgradient of f at the point \boldsymbol{x} if

$$
\begin{equation*}
f(\boldsymbol{z}) \geq \underbrace{f(\boldsymbol{x})+\boldsymbol{g}^{\top}(\boldsymbol{z}-\boldsymbol{x})}_{\text {a linear under-estimate of } f}, \quad \forall \boldsymbol{z} \tag{4.2}
\end{equation*}
$$

- the set of all subgradients of f at \boldsymbol{x} is called the subdifferential of f at \boldsymbol{x}, denoted by $\partial f(\boldsymbol{x})$

Example: $f(x)=|x|$

$\partial f(x)= \begin{cases}\{-1\}, & \text { if } x<0 \\ {[-1,1],} & \text { if } x=0 \\ \{1\}, & \text { if } x>0\end{cases}$

Example: a subgradient of norms at $\mathbf{0}$

Let $f(\boldsymbol{x})=\|\boldsymbol{x}\|$ for any norm $\|\cdot\|$, then for any \boldsymbol{g} obeying $\|\boldsymbol{g}\|_{*} \leq 1$,

$$
\boldsymbol{g} \in \partial f(\mathbf{0})
$$

where $\|\cdot\|_{*}$ is the dual norm of $\|\cdot\|$ (i.e. $\|\boldsymbol{x}\|_{*}:=\sup _{\boldsymbol{z}:\|\boldsymbol{z}\| \leq 1}\langle\boldsymbol{z}, \boldsymbol{x}\rangle$)

Proof: To see this, it suffices to prove that

$$
\begin{aligned}
f(\boldsymbol{z}) & \geq f(\mathbf{0})+\langle\boldsymbol{g}, \boldsymbol{z}-\mathbf{0}\rangle, \quad \forall \boldsymbol{z} \\
& \Longleftrightarrow \quad\langle\boldsymbol{g}, \boldsymbol{z}\rangle \leq\|\boldsymbol{z}\|, \quad \forall \boldsymbol{z}
\end{aligned}
$$

This follows from generalized Cauchy-Schwarz, i.e.

$$
\langle\boldsymbol{g}, \boldsymbol{z}\rangle \leq\|\boldsymbol{g}\|_{*}\|\boldsymbol{z}\| \leq\|\boldsymbol{z}\|
$$

Example: $\max \left\{f_{1}(x), f_{2}(x)\right\}$

$f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}$ where f_{1} and f_{2} are differentiable

$$
\partial f(x)= \begin{cases}\left\{f_{1}^{\prime}(x)\right\}, & \text { if } f_{1}(x)>f_{2}(x) \\ {\left[f_{1}^{\prime}(x), f_{2}^{\prime}(x)\right],} & \text { if } f_{1}(x)=f_{2}(x) \\ \left\{f_{2}^{\prime}(x)\right\}, & \text { if } f_{1}(x)<f_{2}(x)\end{cases}
$$

Basic rules

- scaling: $\partial(\alpha f)=\alpha \partial f$ (for $\alpha>0)$
- summation: $\partial\left(f_{1}+f_{2}\right)=\partial f_{1}+\partial f_{2}$

Example: ℓ_{1} norm

$$
f(\boldsymbol{x})=\|\boldsymbol{x}\|_{1}=\sum_{i=1}^{n} \underbrace{\left|x_{i}\right|}_{=: f_{i}(\boldsymbol{x})}
$$

since

$$
\partial f_{i}(\boldsymbol{x})= \begin{cases}\operatorname{sgn}\left(x_{i}\right) \boldsymbol{e}_{i}, & \text { if } x_{i} \neq 0 \\ {[-1,1] \cdot \boldsymbol{e}_{i},} & \text { if } x_{i}=0\end{cases}
$$

we have

$$
\sum_{i: x_{i} \neq 0} \operatorname{sgn}\left(x_{i}\right) \boldsymbol{e}_{i} \in \partial f(\boldsymbol{x})
$$

Basic rules (cont.)

- affine transformation: if $h(\boldsymbol{x})=f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b})$, then

$$
\partial h(\boldsymbol{x})=\boldsymbol{A}^{\top} \partial f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b})
$$

Example: $\|\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}\|_{1}$

$$
h(\boldsymbol{x})=\|\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}\|_{1}
$$

letting $f(\boldsymbol{x})=\|\boldsymbol{x}\|_{1}$ and $\boldsymbol{A}=\left[\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{m}\right]^{\top}$, we have

$$
\begin{gathered}
\boldsymbol{g}=\sum_{i: \boldsymbol{a}_{i}^{\top} \boldsymbol{x}+b_{i} \neq 0} \operatorname{sgn}\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}+b_{i}\right) \boldsymbol{e}_{i} \in \partial f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}) . \\
\Longrightarrow \quad \boldsymbol{A}^{\top} \boldsymbol{g}=\sum_{i: \boldsymbol{a}_{i}^{\top} \boldsymbol{x}+b_{i} \neq 0} \operatorname{sgn}\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}+b_{i}\right) \boldsymbol{a}_{i} \in \partial h(\boldsymbol{x})
\end{gathered}
$$

Basic rules (cont.)

- chain rule: suppose f is convex, and g is differentiable, nondecreasing, and convex. Let $h=g \circ f$, then

$$
\partial h(\boldsymbol{x})=g^{\prime}(f(\boldsymbol{x})) \partial f(\boldsymbol{x})
$$

- composition: suppose $f(\boldsymbol{x})=h\left(f_{1}(\boldsymbol{x}), \cdots, f_{n}(\boldsymbol{x})\right)$, where f_{i} 's are convex, and h is differentiable, nondecreasing, and convex.

$$
q_{1} \boldsymbol{g}_{1}+\cdots+q_{n} \boldsymbol{g}_{n} \in \partial f(\boldsymbol{x})
$$

Basic rules (cont.)

- pointwise maximum: if $f(\boldsymbol{x})=\max _{1 \leq i \leq k} f_{i}(\boldsymbol{x})$, then

$$
\partial f(\boldsymbol{x})=\underbrace{\operatorname{conv}\left\{\bigcup\left\{\partial f_{i}(\boldsymbol{x}) \mid f_{i}(\boldsymbol{x})=f(\boldsymbol{x})\right\}\right\}}_{\text {convex hull of subdifferentials of all active functions }}
$$

- pointwise supremum: if $f(\boldsymbol{x})=\sup _{\alpha \in \mathcal{F}} f_{\alpha}(\boldsymbol{x})$, then

$$
\partial f(\boldsymbol{x})=\operatorname{closure}\left(\operatorname{conv}\left\{\bigcup\left\{\partial f_{\alpha}(\boldsymbol{x}) \mid f_{\alpha}(\boldsymbol{x})=f(\boldsymbol{x})\right\}\right\}\right)
$$

Example: piece-wise linear functions

$$
f(\boldsymbol{x})=\max _{1 \leq i \leq m}\left\{\boldsymbol{a}_{i}^{\top} \boldsymbol{x}+b_{i}\right\}
$$

pick any \boldsymbol{a}_{j} s.t. $\boldsymbol{a}_{j}^{\top} \boldsymbol{x}+b_{j}=\max _{i}\left\{\boldsymbol{a}_{i}^{\top} \boldsymbol{x}+b_{i}\right\}$, then

$$
\boldsymbol{a}_{j} \in \partial f(\boldsymbol{x})
$$

Example: the ℓ_{∞} norm

$$
f(\boldsymbol{x})=\|\boldsymbol{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

if $\boldsymbol{x} \neq \mathbf{0}$, then pick any x_{j} obeying $\left|x_{j}\right|=\max _{i}\left|x_{i}\right|$ to obtain

$$
\operatorname{sgn}\left(x_{j}\right) \boldsymbol{e}_{j} \in \partial f(\boldsymbol{x})
$$

Example: the maximum eigenvalue

$$
f(\boldsymbol{x})=\lambda_{\max }\left(x_{1} \boldsymbol{A}_{1}+\cdots+x_{n} \boldsymbol{A}_{n}\right)
$$

where $\boldsymbol{A}_{1}, \cdots, \boldsymbol{A}_{n}$ are real symmetric matrices

Rewrite

$$
f(\boldsymbol{x})=\sup _{\boldsymbol{y}:\|\boldsymbol{y}\|_{2}=1} \boldsymbol{y}^{\top}\left(x_{1} \boldsymbol{A}_{1}+\cdots+x_{n} \boldsymbol{A}_{n}\right) \boldsymbol{y}
$$

as the supremum of some affine functions of \boldsymbol{x}. Therefore, taking \boldsymbol{y} as the leading eigenvector of $x_{1} \boldsymbol{A}_{1}+\cdots+x_{n} \boldsymbol{A}_{n}$, we have

$$
\left[\boldsymbol{y}^{\top} \boldsymbol{A}_{1} \boldsymbol{y}, \cdots, \boldsymbol{y}^{\top} \boldsymbol{A}_{n} \boldsymbol{y}\right]^{\top} \in \partial f(\boldsymbol{x})
$$

Example: the nuclear norm

Let $\boldsymbol{X} \in \mathbb{R}^{m \times n}$ with SVD $\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$ and

$$
f(\boldsymbol{X})=\sum_{i=1}^{\min \{n, m\}} \sigma_{i}(\boldsymbol{X})
$$

where $\sigma_{i}(\boldsymbol{x})$ is the i th largest singular value of \boldsymbol{X}
Rewrite

$$
f(\boldsymbol{X})=\sup _{\text {orthonormal } \boldsymbol{A}, \boldsymbol{B}}\left\langle\boldsymbol{A} \boldsymbol{B}^{\top}, \boldsymbol{X}\right\rangle:=\sup _{\text {orthonormal } \boldsymbol{A}, \boldsymbol{B}} f_{\boldsymbol{A}, \boldsymbol{B}}(\boldsymbol{X})
$$

Recognizing that $f_{\boldsymbol{A}, \boldsymbol{B}}(\boldsymbol{X})$ is maximized by $\boldsymbol{A}=\boldsymbol{U}$ and $\boldsymbol{B}=\boldsymbol{V}$ and that $\nabla f_{\boldsymbol{A}, \boldsymbol{B}}(\boldsymbol{X})=\boldsymbol{A} \boldsymbol{B}^{\top}$, we have

$$
\boldsymbol{U} \boldsymbol{V}^{\top} \in \partial f(\boldsymbol{X})
$$

Negative subgradients are not necessarily descent directions

Example: $f(\boldsymbol{x})=\left|x_{1}\right|+3\left|x_{2}\right|$

at $\boldsymbol{x}=(1,0)$:

- $\boldsymbol{g}_{1}=(1,0) \in \partial f(\boldsymbol{x})$, and $-\boldsymbol{g}_{1}$ is a descent direction
- $\boldsymbol{g}_{2}=(1,3) \in \partial f(\boldsymbol{x})$, but $-\boldsymbol{g}_{2}$ is not a descent direction

Reason: lack of continuity - one can change directions significantly without violating the validity of subgradients

Negative subgradient is not necessarily descent direction

Since $f\left(\boldsymbol{x}^{t}\right)$ is not necessarily monotone, we will keep track of the best point

$$
f^{\text {best }, t}:=\min _{1 \leq i \leq t} f\left(\boldsymbol{x}^{i}\right)
$$

We also denote by $f^{\text {opt }}:=\min _{\boldsymbol{x}} f(\boldsymbol{x})$ the optimal objective value

Convex and Lipschitz problems

Clearly, we cannot analyze all nonsmooth functions. A nice (and widely encountered) class to start with is Lipschitz functions, i.e. the set of all f obeying

$$
|f(\boldsymbol{x})-f(\boldsymbol{z})| \leq L_{f}\|\boldsymbol{x}-\boldsymbol{z}\|_{2} \quad \forall \boldsymbol{x} \text { and } \boldsymbol{z}
$$

Fundamental inequality for projected subgradient methods

We'd like to optimize $\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}$, but don't have access to \boldsymbol{x}^{*}
Key idea (majorization-minimization): find another function that majorizes $\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}$, and optimize the majorizing function

Lemma 4.1

Projected subgradient update rule (4.1) obeys

$$
\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2} \leq \underbrace{\underbrace{\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}}_{\text {fixed }}-2 \eta_{t}\left(f\left(\boldsymbol{x}^{t}\right)-f^{\mathrm{\circ pt}}\right)+\eta_{t}^{2}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}}_{\text {majorizing function }}
$$

Proof of Lemma 4.1

$$
\begin{aligned}
\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2} & =\left\|\mathcal{P}_{\mathcal{C}}\left(\boldsymbol{x}^{t}-\eta_{t} \boldsymbol{g}^{t}\right)-\mathcal{P}_{\mathcal{C}}\left(\boldsymbol{x}^{*}\right)\right\|_{2}^{2} \\
& \leq\left\|\boldsymbol{x}^{t}-\eta_{t} \boldsymbol{g}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2} \quad \text { (nonexpansiveness of projection) } \\
& =\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-2 \eta_{t}\left\langle\boldsymbol{x}^{t}-\boldsymbol{x}^{*}, \boldsymbol{g}^{t}\right\rangle+\eta_{t}^{2}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2} \\
& \leq\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-2 \eta_{t}\left(f\left(\boldsymbol{x}^{t}\right)-f\left(\boldsymbol{x}^{*}\right)\right)+\eta_{t}^{2}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}
\end{aligned}
$$

where the last line uses the subgradient inequality

$$
f\left(\boldsymbol{x}^{*}\right)-f\left(\boldsymbol{x}^{t}\right) \geq\left\langle\boldsymbol{x}^{*}-\boldsymbol{x}^{t}, \boldsymbol{g}^{t}\right\rangle
$$

Polyak's stepsize rule

The majorizing function in (4.3) suggests a stepsize (Polyak '87)

$$
\begin{equation*}
\eta_{t}=\frac{f\left(\boldsymbol{x}^{t}\right)-f^{\circ \mathrm{opt}}}{\left\|\boldsymbol{g}_{t}\right\|_{2}^{2}} \tag{4.4}
\end{equation*}
$$

which leads to error reduction

$$
\begin{equation*}
\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2} \leq\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\frac{\left(f\left(\boldsymbol{x}^{t}\right)-f\left(\boldsymbol{x}^{*}\right)\right)^{2}}{\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}} \tag{4.5}
\end{equation*}
$$

- useful if $f^{\text {opt }}$ is known
- the estimation error is monotonically decreasing with Polyak's stepsize

Example: projection onto intersection of convex sets

Let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be closed convex sets and suppose $\mathcal{C}_{1} \cap \mathcal{C}_{2} \neq \emptyset$

$$
\text { find } \quad x \in \mathcal{C}_{1} \cap \mathcal{C}_{2}
$$

\Uparrow
$\operatorname{minimize}_{\boldsymbol{x}} \quad \max \left\{\operatorname{dist}_{\mathcal{C}_{1}}(\boldsymbol{x}), \operatorname{dist}_{\mathcal{C}_{2}}(\boldsymbol{x})\right\}$
where $\operatorname{dist}_{\mathcal{C}}(\boldsymbol{x}):=\min _{\boldsymbol{z} \in \mathcal{C}}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}$

Example: projection onto intersection of convex sets

For this problem, the subgradient method with Polyak's stepsize rule is equivalent to alternating projection

$$
\boldsymbol{x}^{t+1}=\mathcal{P}_{\mathcal{C}_{1}}\left(\boldsymbol{x}^{t}\right), \quad \boldsymbol{x}^{t+2}=\mathcal{P}_{\mathcal{C}_{2}}\left(\boldsymbol{x}^{t+1}\right)
$$

Example: projection onto intersection of convex sets

Proof: Use the subgradient rule for pointwise max functions to get

$$
\boldsymbol{g}^{t} \in \partial \operatorname{dist}_{\mathcal{C}_{i}}\left(\boldsymbol{x}^{t}\right)
$$

where $i=\arg \max _{j=1,2} \operatorname{dist}_{\mathcal{C}_{j}}\left(\boldsymbol{x}^{t}\right)$

If $\operatorname{dist}_{\mathcal{C}_{i}}\left(\boldsymbol{x}^{t}\right) \neq 0$, then one has

$$
\boldsymbol{g}^{t}=\nabla \operatorname{dist}_{\mathcal{C}_{i}}\left(\boldsymbol{x}^{t}\right)=\frac{\boldsymbol{x}^{t}-\mathcal{P}_{\mathcal{C}_{i}}\left(\boldsymbol{x}^{t}\right)}{\operatorname{dist}_{C_{i}}\left(\boldsymbol{x}^{t}\right)}
$$

which follows since $\nabla\left(\frac{1}{2} \operatorname{dist}_{\mathcal{C}_{i}}^{2}\left(\boldsymbol{x}^{t}\right)\right)=\boldsymbol{x}^{t}-\mathcal{P}_{\mathcal{C}_{i}}\left(\boldsymbol{x}^{t}\right)$ (homework) and $\nabla\left(\frac{1}{2} \operatorname{dist}_{\mathcal{C}_{i}}^{2}\left(\boldsymbol{x}^{t}\right)\right)=\operatorname{dist}_{\mathcal{C}_{i}}\left(\boldsymbol{x}^{t}\right) \cdot \nabla \operatorname{dist}_{\mathcal{C}_{i}}\left(\boldsymbol{x}^{t}\right)$

Example: projection onto intersection of convex sets

Proof (cont.): Adopting Polya's stepsize rule and recognizing that $\left\|\boldsymbol{g}^{t}\right\|_{2}=1$, we arrive at

$$
\begin{aligned}
\boldsymbol{x}^{t+1} & =\boldsymbol{x}^{t}-\eta_{t} \boldsymbol{g}^{t}=\boldsymbol{x}^{t}-\underbrace{\frac{\operatorname{dist}_{\mathcal{C}_{i}}\left(\boldsymbol{x}^{t}\right)}{\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}}}_{=\eta_{t}} \frac{\boldsymbol{x}^{t}-\mathcal{P}_{\mathcal{C}_{i}}\left(\boldsymbol{x}^{t}\right)}{\operatorname{dist}_{C_{i}}\left(\boldsymbol{x}^{t}\right)} \\
& =\mathcal{P}_{\mathcal{C}_{i}}\left(\boldsymbol{x}^{t}\right)
\end{aligned}
$$

where $i=\arg \max _{j=1,2} \operatorname{dist}_{\mathcal{C}_{j}}\left(\boldsymbol{x}^{t}\right)$

Convergence rate with Polyak's stepsize

Theorem 4.2 (Convergence of projected subgradient method with Polyak's stepsize)

Suppose f is convex and L_{f}-Lipschitz continuous. Then the projected subgradient method (4.1) with Polyak's stepsize rule obeys

$$
f^{\text {best }, t}-f^{\text {opt }} \leq \frac{L_{f}\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}}{\sqrt{t+1}}
$$

- sublinear convergence rate $O(1 / \sqrt{t})$

Proof of Theorem 4.2

We have seen from (4.5) that

$$
\begin{aligned}
\left(f\left(\boldsymbol{x}^{t}\right)-f\left(\boldsymbol{x}^{*}\right)\right)^{2} & \leq\left\{\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}\right\}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2} \\
& \leq\left\{\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}\right\} L_{f}^{2}
\end{aligned}
$$

Applying it recursively for all iterations (from 0th to t th) and summing them up yield

$$
\begin{gathered}
\sum_{k=0}^{t}\left(f\left(\boldsymbol{x}^{k}\right)-f\left(\boldsymbol{x}^{*}\right)\right)^{2} \leq\left\{\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}\right\} L_{f}^{2} \\
\Longrightarrow \quad(t+1)\left(f^{\text {best }, t}-f^{\text {opt }}\right)^{2} \leq\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2} L_{f}^{2}
\end{gathered}
$$

which concludes the proof

Other stepsize choices?

Unfortunately, Polyak's stepsize rule requires knowledge of $f^{\text {opt }}$, which is often unknown a priori

We might often need simpler rules for setting stepsizes

Convex and Lipschitz problems

Theorem 4.3 (Subgradient methods for convex and Lipschitz functions)

Suppose f is convex and L_{f}-Lipschitz continuous. Then the projected subgradient update rule (4.1) obeys

$$
f^{\text {best }, t}-f^{\text {opt }} \leq \frac{\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}+L_{f}^{2} \sum_{i=0}^{t} \eta_{i}^{2}}{2 \sum_{i=0}^{t} \eta_{i}}
$$

Implications: stepsize rules

- Constant step size $\eta_{t} \equiv \eta$:

$$
\lim _{t \rightarrow \infty} f^{\text {best }, t} \leq \frac{L_{f}^{2} \eta}{2}
$$

i.e. may converge to non-optimal points

- Diminishing step size obeying $\sum_{t} \eta_{t}^{2}<\infty$ and $\sum_{t} \eta_{t} \rightarrow \infty$:

$$
\lim _{t \rightarrow \infty} f^{\text {best }, t}=0
$$

i.e. converges to optimal points

Implications: stepsize rule

- Optimal choice? $\eta_{t}=\frac{1}{\sqrt{t}}$:

$$
f^{\text {best }, t}-f^{\text {opt }} \lesssim \frac{\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}+L_{f}^{2} \log t}{\sqrt{t}}
$$

i.e. attains ε-accuracy within about $O\left(1 / \varepsilon^{2}\right)$ iterations (ignoring the log factor)

Proof of Theorem 4.5

Applying Lemma 4.1 recursively gives

$$
\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2} \leq\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}-2 \sum_{i=0}^{t} \eta_{i}\left(f\left(\boldsymbol{x}^{i}\right)-f^{\mathrm{opt}}\right)+\sum_{i=0}^{t} \eta_{i}^{2}\left\|\boldsymbol{g}^{i}\right\|_{2}^{2}
$$

Rearranging terms, we are left with

$$
\begin{aligned}
2 \sum_{i=0}^{t} \eta_{i}\left(f\left(\boldsymbol{x}^{i}\right)-f^{\circ \mathrm{opt}}\right) & \leq\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}+\sum_{i=0}^{t} \eta_{i}^{2}\left\|\boldsymbol{g}^{i}\right\|_{2}^{2} \\
& \leq\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}+L_{f}^{2} \sum_{i=0}^{t} \eta_{i}^{2}
\end{aligned}
$$

$\Longrightarrow f^{\text {best }, t}-f^{\text {opt }} \leq \frac{\sum_{i=0}^{t} \eta_{i}\left(f\left(\boldsymbol{x}^{i}\right)-f^{\text {opt }}\right)}{\sum_{i=0}^{t} \eta_{i}} \leq \frac{\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}+L_{f}^{2} \sum_{i=0}^{t} \eta_{i}^{2}}{2 \sum_{i=0}^{t} \eta_{i}}$

Strongly convex and Lipschitz problems

If f is strongly convex, then the convergence guarantees can be improved to $O(1 / t)$, as long as the stepsize dimishes at $O(1 / t)$

Theorem 4.4 (Subgradient methods for strongly convex and Lipschitz functions)

Let f be μ-strongly convex and L_{f}-Lipschitz continuous over \mathcal{C}. If $\eta_{t} \equiv \eta=\frac{2}{\mu(t+1)}$, then

$$
f^{\mathrm{best}, t}-f^{\mathrm{opt}} \leq \frac{2 L_{f}^{2}}{\mu} \cdot \frac{1}{t+1}
$$

- requires prior knowledge on strong convexity parameter μ though

Proof of Theorem 4.4

When f is μ-strongly convex, we can improve Lemma 4.1 to (exercise)

$$
\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2} \leq\left(1-\mu \eta_{t}\right)\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-2 \eta_{t}\left(f\left(\boldsymbol{x}^{t}\right)-f^{\mathrm{opt}}\right)+\eta_{t}^{2}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}
$$

$\Longrightarrow f\left(\boldsymbol{x}^{t}\right)-f^{\mathrm{opt}} \leq \frac{1-\mu \eta_{t}}{2 \eta_{t}}\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\frac{1}{2 \eta_{t}}\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}+\frac{\eta_{t}}{2}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}$
Since $\eta_{t}=2 /(\mu(t+1))$, we have
$f\left(\boldsymbol{x}^{t}\right)-f^{\mathrm{opt}} \leq \frac{\mu(t-1)}{4}\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\frac{\mu(t+1)}{4}\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}+\frac{1}{\mu(t+1)}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}$
and hence
$t\left(f\left(\boldsymbol{x}^{t}\right)-f^{\mathrm{opt}}\right) \leq \frac{\mu t(t-1)}{4}\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\frac{\mu t(t+1)}{4}\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}+\frac{1}{\mu}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}$

Proof of Theorem 4.4 (cont.)

Summing over all iterations before t, we get

$$
\begin{aligned}
& \sum_{k=0}^{t} k\left(f\left(\boldsymbol{x}^{k}\right)-f^{\mathrm{opt}}\right) \leq 0-\frac{\mu t(t+1)}{4}\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}+\frac{1}{\mu} \sum_{k=0}^{t}\left\|\boldsymbol{g}^{k}\right\|_{2}^{2} \\
& \leq \frac{t}{\mu} L_{f}^{2} \\
& \Longrightarrow f^{\text {best }, k}-f^{\mathrm{opt}} \leq \frac{L_{f}^{2}}{\mu} \frac{t}{\sum_{k=0}^{t} k} \leq \frac{2 L_{f}^{2}}{\mu} \frac{1}{t+1}
\end{aligned}
$$

Summary: subgradient methods

	stepsize rule	convergence rate	iteration complexity
convex \& Lipschitz problems	$\eta_{t} \asymp \frac{1}{\sqrt{t}}$	$O\left(\frac{1}{\sqrt{t}}\right)$	$O\left(\frac{1}{\varepsilon^{2}}\right)$
 Lipschitz problems	$\eta_{t} \asymp \frac{1}{t}$	$O\left(\frac{1}{t}\right)$	$O\left(\frac{1}{\varepsilon}\right)$

Convex-concave saddle point problems

Convex-concave saddle point problems

$$
\operatorname{minimize}_{\boldsymbol{x} \in \mathcal{X}} \max _{\boldsymbol{y} \in \mathcal{Y}} f(\boldsymbol{x}, \boldsymbol{y})
$$

- $f(\boldsymbol{x}, \boldsymbol{y})$: convex in \boldsymbol{x} and concave in \boldsymbol{y}
- \mathcal{X}, \mathcal{Y} : bounded closed convex sets
- arises in game theory, robust optimization, generative adversarial network (GAN), multi-agent reinforcement learning (MARL) ...
- under mild conditions, it is equivalent to its dual formulation

$$
\underset{\boldsymbol{y} \in \mathcal{Y}}{\operatorname{maximize}} \min _{x \in \mathcal{X}} f(\boldsymbol{x}, \boldsymbol{y})
$$

Saddle points

Optimal point $\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)$ obeys

$$
f\left(\boldsymbol{x}^{*}, \boldsymbol{y}\right) \leq f\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right) \leq f\left(\boldsymbol{x}, \boldsymbol{y}^{*}\right), \quad \forall \boldsymbol{x} \in \mathcal{X}, \boldsymbol{y} \in \mathcal{Y}
$$

Projected subgradient method

A natural strategy is to apply the subgradient-based approach

$$
\begin{align*}
{\left[\begin{array}{l}
\boldsymbol{x}^{t+1} \\
\boldsymbol{y}^{t+1}
\end{array}\right] } & =\mathcal{P}_{\mathcal{X} \times \mathcal{Y}}\left(\left[\begin{array}{c}
\boldsymbol{x}^{t} \\
\boldsymbol{y}^{t}
\end{array}\right]-\eta_{t}\left[\begin{array}{c}
\boldsymbol{g}_{x}^{t} \\
-\boldsymbol{g}_{y}^{t}
\end{array}\right]\right) \tag{4.6}\\
& =\text { projection }\left(\left[\begin{array}{c}
\text { subgrad descent on } \boldsymbol{x}^{t} \\
\text { subgrad ascent on } \boldsymbol{y}^{t}
\end{array}\right]\right)
\end{align*}
$$

where $\boldsymbol{g}_{x}^{t} \in \partial_{\boldsymbol{x}} f\left(\boldsymbol{x}^{t}, \boldsymbol{y}^{t}\right)$ and $-\boldsymbol{g}_{y}^{t} \in \partial_{\boldsymbol{y}}\left(-f\left(\boldsymbol{x}^{t}, \boldsymbol{y}^{t}\right)\right)$

Performance metric

One way to measure the quality of the solution is via the following error metric (think of it as a certain "duality gap")

$$
\begin{aligned}
\varepsilon(\boldsymbol{x}, \boldsymbol{y}) & :=\left[\max _{\widetilde{\boldsymbol{y}} \in \mathcal{Y}} f(\boldsymbol{x}, \widetilde{\boldsymbol{y}})-f^{\mathrm{opt}}\right]+\left[f^{\mathrm{opt}}-\min _{\widetilde{\boldsymbol{x}} \in \mathcal{X}} f(\widetilde{\boldsymbol{x}}, \boldsymbol{y})\right] \\
& =\max _{\widetilde{\boldsymbol{y}} \in \mathcal{Y}} f(\boldsymbol{x}, \widetilde{\boldsymbol{y}})-\min _{\widetilde{\boldsymbol{x}} \in \mathcal{X}} f(\widetilde{\boldsymbol{x}}, \boldsymbol{y})
\end{aligned}
$$

where $f^{\text {opt }}:=f\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)$ with $\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)$ the optimal solution

Convex-concave and Lipschitz problems

Theorem 4.5 (Subgradient methods for saddle point problems)

Suppose f is convex in \boldsymbol{x} and concave in \boldsymbol{y}, and is L_{f}-Lipschitz continuous over $\mathcal{X} \times \mathcal{Y}$. Let $D_{\mathcal{X}}\left(\right.$ resp. $\left.D_{\mathcal{Y}}\right)$ be the diameter of \mathcal{X} (resp. Y). Then the projected subgradient method (4.6) obeys

$$
\varepsilon\left(\widehat{\boldsymbol{x}}^{t}, \widehat{\boldsymbol{y}}^{t}\right) \leq \frac{D_{\mathcal{X}}^{2}+D_{\mathcal{Y}}^{2}+L_{f}^{2} \sum_{\tau=0}^{t} \eta_{\tau}^{2}}{2 \sum_{\tau=0}^{t} \eta_{\tau}}
$$

where $\widehat{\boldsymbol{x}}^{t}=\frac{\sum_{\tau=0}^{t} \eta_{\tau} \boldsymbol{x}^{\tau}}{\sum_{\tau=0}^{t} \eta_{\tau}}$ and $\widehat{\boldsymbol{y}}^{t}=\frac{\sum_{\tau=0}^{t} \eta_{\tau} \boldsymbol{y}^{\tau}}{\sum_{\tau=0}^{t} \eta_{\tau}}$

- similar to our theory for convex problems
- suggests varying stepsize $\eta_{t} \asymp 1 / \sqrt{t}$

Iterate averaging

Notably, it is crucial to output the weighted average ($\widehat{\boldsymbol{x}}^{t}, \widehat{\boldsymbol{y}}^{t}$) of the iterates of the subgradient methods

In fact, the original iterates $\left(\boldsymbol{x}^{t}, \boldsymbol{y}^{t}\right)$ might not converge

Example (bilinear game): $f(x, y)=x y$

- When $\eta_{t} \rightarrow 0$ (continuous limit), $\left(x^{t}, y^{t}\right)$ exhibits cycling behavior around $\left(x^{*}, y^{*}\right)=(0,0)$ without converging to it

Proof of Theorem 4.5

By the convexity-concavity of f,

$$
\begin{array}{ll}
f\left(\boldsymbol{x}^{t}, \boldsymbol{y}^{t}\right)-f\left(\boldsymbol{x}, \boldsymbol{y}^{t}\right) \leq\left\langle\boldsymbol{g}_{x}^{t}, \boldsymbol{x}^{t}-\boldsymbol{x}\right\rangle, & \boldsymbol{x} \in \mathcal{X} \\
f\left(\boldsymbol{x}^{t}, \boldsymbol{y}\right)-f\left(\boldsymbol{x}^{t}, \boldsymbol{y}^{t}\right) \leq\left\langle\boldsymbol{g}_{y}^{t}, \boldsymbol{y}-\boldsymbol{y}^{t}\right\rangle, & \boldsymbol{y} \in \mathcal{Y}
\end{array}
$$

Adding these two inequalities yields

$$
f\left(\boldsymbol{x}^{t}, \boldsymbol{y}\right)-f\left(\boldsymbol{x}, \boldsymbol{y}^{t}\right) \leq\left\langle\boldsymbol{g}_{x}^{t}, \boldsymbol{x}^{t}-\boldsymbol{x}\right\rangle-\left\langle\boldsymbol{g}_{y}^{t}, \boldsymbol{y}^{t}-\boldsymbol{y}\right\rangle, \quad \boldsymbol{x} \in \mathcal{X}, \boldsymbol{y} \in \mathcal{Y}
$$

Therefore, invoking Jensen's inequality gives

$$
\begin{align*}
\varepsilon\left(\widehat{\boldsymbol{x}}^{t}, \widehat{\boldsymbol{y}}^{t}\right) & =\max _{\boldsymbol{y} \in \mathcal{Y}} f\left(\widehat{\boldsymbol{x}}^{t}, \boldsymbol{y}\right)-\min _{\boldsymbol{x} \in \mathcal{X}} f\left(\boldsymbol{x}, \widehat{\boldsymbol{y}}^{t}\right) \\
& \leq \frac{1}{\sum_{\tau=0}^{t} \eta_{\tau}}\left\{\max _{\boldsymbol{y} \in \mathcal{Y}} \sum_{\tau=0}^{t} \eta_{\tau} f\left(\boldsymbol{x}^{\tau}, \boldsymbol{y}\right)-\min _{\boldsymbol{x} \in \mathcal{X}} \sum_{\tau=0}^{t} \eta_{\tau} f\left(\boldsymbol{x}, \boldsymbol{y}^{\tau}\right)\right\} \\
& \leq \frac{1}{\sum_{\tau=0}^{t} \eta_{\tau}} \max _{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{y} \in \mathcal{Y}} \sum_{\tau=0}^{t} \eta_{\tau}\left\{\left\langle\boldsymbol{g}_{x}^{\tau}, \boldsymbol{x}^{\tau}-\boldsymbol{x}\right\rangle-\left\langle\boldsymbol{g}_{y}^{\tau}, \boldsymbol{y}^{\tau}-\boldsymbol{y}\right\rangle\right\} \tag{4.7}
\end{align*}
$$

Proof of Theorem 4.5 (cont.)

It then suffices to control the RHS of (4.7) as follows:
Lemma 4.6

$$
\begin{aligned}
& \max _{\boldsymbol{x} \in \mathcal{Y}, \boldsymbol{y} \in \mathcal{Y}} \sum_{\tau=0}^{t} \eta_{\tau}\left\{\left\langle\boldsymbol{g}_{x}^{\tau}, \boldsymbol{x}^{\tau}-\boldsymbol{x}\right\rangle-\left\langle\boldsymbol{g}_{y}^{\tau}, \boldsymbol{y}^{\tau}-\boldsymbol{y}\right\rangle\right\} \\
& \leq \frac{D_{\mathcal{X}}^{2}+D_{\mathcal{Y}}^{2}+L_{f}^{2} \sum_{\tau=0}^{t} \eta_{\tau}^{2}}{2}
\end{aligned}
$$

This lemma together with (4.7) immediately establishes Theorem 4.5

Proof of Lemma 4.6

For any $\boldsymbol{x} \in \mathcal{X}$ we have

$$
\begin{aligned}
&\left\|\boldsymbol{x}^{\tau+1}-\boldsymbol{x}\right\|_{2}^{2}=\left\|\mathcal{P}_{\mathcal{X}}\left(\boldsymbol{x}^{\tau}-\eta_{\tau} \boldsymbol{g}_{x}^{\tau}\right)-\mathcal{P} \mathcal{X}(\boldsymbol{x})\right\|_{2}^{2} \\
& \leq\left\|\boldsymbol{x}^{\tau}-\eta_{\tau} \boldsymbol{g}_{x}^{\tau}-\boldsymbol{x}\right\|_{2}^{2} \quad \text { (convexity of } \mathcal{X} \text {) } \\
&=\left\|\boldsymbol{x}^{\tau}-\boldsymbol{x}\right\|_{2}^{2}-2 \eta_{\tau}\left\langle\boldsymbol{x}^{\tau}-\boldsymbol{x}, \boldsymbol{g}_{x}^{\tau}\right\rangle+\eta_{\tau}^{2}\left\|\boldsymbol{g}_{x}^{\tau}\right\|_{2}^{2} \\
& \Longrightarrow \quad 2 \eta_{\tau}\left\langle\boldsymbol{x}^{\tau}-\boldsymbol{x}, \boldsymbol{g}_{x}^{\tau}\right\rangle \leq\left\|\boldsymbol{x}^{\tau}-\boldsymbol{x}\right\|_{2}^{2}-\left\|\boldsymbol{x}^{\tau+1}-\boldsymbol{x}\right\|_{2}^{2}+\eta_{\tau}^{2}\left\|\boldsymbol{g}_{x}^{\tau}\right\|_{2}^{2}
\end{aligned}
$$

Similarly, for any $\boldsymbol{y} \in \mathcal{Y}$ one has

$$
-2 \eta_{\tau}\left\langle\boldsymbol{y}^{\tau}-\boldsymbol{y}, \boldsymbol{g}_{y}^{\tau}\right\rangle \leq\left\|\boldsymbol{y}^{\tau}-\boldsymbol{y}\right\|_{2}^{2}-\left\|\boldsymbol{y}^{\tau+1}-\boldsymbol{y}\right\|_{2}^{2}+\eta_{\tau}^{2}\left\|\boldsymbol{g}_{y}^{\tau}\right\|_{2}^{2}
$$

Combining these two inequalities and using Lipschitz continuity yield

$$
\begin{aligned}
& 2 \eta_{\tau}\left\langle\boldsymbol{g}_{x}^{\tau}, \boldsymbol{x}^{\tau}-\boldsymbol{x}\right\rangle-2 \eta_{\tau}\left\langle\boldsymbol{g}_{y}^{\tau}, \boldsymbol{y}^{\tau}-\boldsymbol{y}\right\rangle \\
& \quad \leq\left\|\boldsymbol{x}^{\tau}-\boldsymbol{x}\right\|_{2}^{2}+\left\|\boldsymbol{y}^{\tau}-\boldsymbol{y}\right\|_{2}^{2}-\left\|\boldsymbol{x}^{\tau+1}-\boldsymbol{x}\right\|_{2}^{2}-\left\|\boldsymbol{y}^{\tau+1}-\boldsymbol{y}\right\|_{2}^{2}+\eta_{\tau}^{2} L_{f}^{2}
\end{aligned}
$$

Proof of Lemma 4.6 (cont.)

Summing up these inequalities over $\tau=0, \cdots, t$ gives

$$
\begin{aligned}
& 2 \sum_{\tau=0}^{t}\left\{\eta_{\tau}\left\langle\boldsymbol{g}_{x}^{\tau}, \boldsymbol{x}^{\tau}-\boldsymbol{x}\right\rangle-\eta_{\tau}\left\langle\boldsymbol{g}_{y}^{\tau}, \boldsymbol{y}^{\tau}-\boldsymbol{y}\right\rangle\right\} \\
& \leq\left\|\boldsymbol{x}^{0}-\boldsymbol{x}\right\|_{2}^{2}+\left\|\boldsymbol{y}^{0}-\boldsymbol{y}\right\|_{2}^{2}-\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}\right\|_{2}^{2}-\left\|\boldsymbol{y}^{t+1}-\boldsymbol{y}\right\|_{2}^{2}+L_{f}^{2} \sum_{\tau=0}^{t} \eta_{\tau}^{2} \\
& \leq\left\|\boldsymbol{x}^{0}-\boldsymbol{x}\right\|_{2}^{2}+\left\|\boldsymbol{y}^{0}-\boldsymbol{y}\right\|_{2}^{2}+L_{f}^{2} \sum_{\tau=0}^{t} \eta_{\tau}^{2} \\
& \leq D_{\mathcal{X}}^{2}+D_{\mathcal{Y}}^{2}+L_{f}^{2} \sum_{\tau=0}^{t} \eta_{\tau}^{2}
\end{aligned}
$$

as claimed
Remark: this lemma does NOT rely on the convexity-concavity of $f(\cdot, \cdot)$

Reference

- "Convex optimization, EE364B lecture notes," S. Boyd, Stanford.
- "Convex optimization and algorithms," D. Bertsekas, 2015.
- "First-order methods in optimization," A. Beck, Vol. 25, SIAM, 2017.
- "Convex optimization: algorithms and complexity," S. Bubeck, Foundations and trends in machine learning, 2015.
- "Optimization methods for large-scale systems, EE236C lecture notes," L. Vandenberghe, UCLA.
- "Introduction to optimization," B. Polyak, Optimization Software, 1987.
- "Robust stochastic approximation approach to stochastic programming," A. Nemirovski, A. Juditsky, G. Lan, A. Shapiro, SIAM Journal on optimization, 2009.

