Smoothing for nonsmooth optimization

Yuxin Chen

Wharton Statistics & Data Science, Fall 2023

Outline

- Smoothing
- Smooth approximation
- Algorithm and convergence analysis

Nonsmooth optimization

$$\mathsf{minimize}_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x})$$

where f is convex but not always differentiable

• subgradient methods yield ε -accuracy in

$$O\left(\frac{1}{\varepsilon^2}\right)$$
 iterations

• in contrast, if f is smooth, then accelerated GD yields ε -accuracy in

$$O\left(\frac{1}{\sqrt{\varepsilon}}\right)$$
 iterations

— significantly better than the nonsmooth case

Lower bound

— Nemirovski & Yudin '83

If one only has access to the first-order oracle (which takes as inputs black box model a point x and outputs a subgradient of f at x), then one cannot improve upon $O(\frac{1}{\varepsilon^2})$ in general

Nesterov's smoothing idea

Practically, we rarely meet pure black box models; rather, we know something about the structure of the underlying problems

One possible strategy is:

- 1. approximate the nonsmooth objective by a smooth function
- optimize the smooth approximation instead (using, e.g., Nesterov's accelerated method)

Smooth approximation

Smooth approximation

A convex function f is called (α, β) -smoothable if, for any $\mu > 0$, \exists convex function f_{μ} s.t.

- $f_{\mu}(x) \leq f(x) \leq f_{\mu}(x) + \beta \mu$, $\forall x$ (approximation accuracy)
- ullet f_{μ} is $rac{lpha}{\mu}$ -smooth (smoothness)
 - μ : tradeoff between approximation accuracy and smoothness

Here, f_{μ} is called a $\frac{1}{\mu}$ -smooth approximation of f with parameters (α,β)

Example: ℓ_1 norm

Consider the Huber function

$$h_{\mu}(z) = \begin{cases} z^2/2\mu, & \text{if } |z| \leq \mu \\ |z| - \mu/2, & \text{else} \end{cases}$$

which satisfies

$$h_{\mu}(z) \leq |z| \leq h_{\mu}(z) + \mu/2$$
 and $h_{\mu}(z)$ is $\frac{1}{\mu}$ -smooth

Example: ℓ_1 norm

Therefore, $f_{\mu}(oldsymbol{x}) := \sum_{i=1}^n h_{\mu}(x_i)$ is $\frac{1}{\mu}$ -smooth and obeys

$$f_{\mu}(\boldsymbol{x}) \leq \|\boldsymbol{x}\|_1 \leq f_{\mu}(\boldsymbol{x}) + \frac{n\mu}{2}$$

 $\implies \|\cdot\|_1 \text{ is } (1,n/2)\text{-smoothable}$

Example: ℓ_2 norm

Consider $f_{\mu}(x):=\sqrt{\|x\|_2^2+\mu^2}-\mu$, then for any $\mu>0$ and any $x\in\mathbb{R}^n$,

$$f_{\mu}(x) \le (\|x\|_2 + \mu) - \mu = \|x\|_2$$

 $\|x\|_2 \le \sqrt{\|x\|_2^2 + \mu^2} = f_{\mu}(x) + \mu$

In addition, $f_{\mu}(x)$ is $\frac{1}{\mu}$ -smooth (exercise)

Therefore, $\|\cdot\|_2$ is (1,1)-smoothable

Smoothing

Example: max function

Consider
$$f_{\mu}(x):=\mu\log\left(\sum_{i=1}^n e^{x_i/\mu}\right)-\mu\log n$$
, then $\forall \mu>0$ and $\forall x\in\mathbb{R}^n$,

$$f_{\mu}(\boldsymbol{x}) \leq \mu \log \left(n \max_{i} e^{x_{i}/\mu} \right) - \mu \log n = \max_{i} x_{i}$$
$$\max_{i} x_{i} \leq \mu \log \left(\sum_{i=1}^{n} e^{x_{i}/\mu} \right) = f_{\mu}(\boldsymbol{x}) + \mu \log n$$

In addition, $f_\mu(x)$ is $\frac{1}{\mu}$ -smooth (exercise). Therefore, $\max_{1\leq i\leq n}x_i$ is (1,log n)-smoothable

Basic rules: addition

- ullet $f_{\mu,1}$ is a $rac{1}{\mu}$ -smooth approximation of f_1 with parameters $(lpha_1,eta_1)$
- ullet $f_{\mu,2}$ is a $rac{1}{\mu}$ -smooth approximation of f_2 with parameters $(lpha_2,eta_2)$

 $\implies \lambda_1 f_{\mu,1} + \lambda_2 f_{\mu,2} \ (\lambda_1,\lambda_2>0) \text{ is a } \frac{1}{\mu}\text{-smooth approximation of } \lambda_1 f_1 + \lambda_2 f_2 \text{ with parameters } (\lambda_1 \alpha_1 + \lambda_2 \alpha_2, \lambda_1 \beta_1 + \lambda_2 \beta_2)$

Basic rules: affine transformation

- h_{μ} is a $\frac{1}{\mu}$ -smooth approximation of h with parameters (α,β)
- $f(\boldsymbol{x}) := h(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b})$

 $\implies h_{\mu}({\pmb A}{\pmb x}+{\pmb b})$ is a $\frac{1}{\mu}$ -smooth approximation of f with parameters $(\alpha\|{\pmb A}\|^2,\beta)$

Example: $\|Ax + b\|_2$

Recall that $\sqrt{\|x\|_2^2 + \mu^2} - \mu$ is a $\frac{1}{\mu}$ -smooth approximation of $\|x\|_2$ with parameters (1,1)

One can use the basic rule to show that

$$f_{\mu}(x) = \sqrt{\|Ax + b\|_{2}^{2} + \mu^{2}} - \mu$$

is a $\frac{1}{\mu}\text{-smooth approximation of }\|\boldsymbol{A}\boldsymbol{x}+\boldsymbol{b}\|_2$ with parameters $(\|\boldsymbol{A}\|^2,1)$

Example: |x|

Rewrite $|x| = \max\{x, -x\}$, or equivalently,

$$|x| = \max \{Ax\}$$
 with $A = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Recall that $\mu\log\left(e^{x_1/\mu}+e^{x_2/\mu}\right)-\mu\log 2$ is a $\frac{1}{\mu}$ -smooth approximation of $\max\{x_1,x_2\}$ with parameters $(1,\log 2)$

One can then invoke the basic rule to show that

$$f_{\mu}(x) := \mu \log \left(e^{x/\mu} + e^{-x/\mu} \right) - \mu \log 2$$

is $\frac{1}{\mu}\text{-smooth approximation of }|x|$ with parameters $(\|{\pmb A}\|^2,\log 2)=(2,\log 2)$

Smoothing via the Moreau envelope

The Moreau envelope (or Moreau-Yosida regularization) of a convex function f with parameter $\mu>0$ is defined as

$$M_{\mu f}(\boldsymbol{x}) := \inf_{\boldsymbol{z}} \left\{ f(\boldsymbol{z}) + \frac{1}{2\mu} \|\boldsymbol{x} - \boldsymbol{z}\|_2^2 \right\}$$

- ullet $M_{\mu f}$ is a smoothed or regularized form of f
- \bullet minimizers of f= minimizers of M_f
 - \implies minimizing f and minimizing M_f are equivalent

Connection with the proximal operator

• $\operatorname{prox}_f(\boldsymbol{x})$ is the unique point that achieves the infimum that defines M_f , i.e.

$$M_f(\boldsymbol{x}) = f\big(\mathsf{prox}_f(\boldsymbol{x})\big) + \frac{1}{2}\|\boldsymbol{x} - \mathsf{prox}_f(\boldsymbol{x})\|_2^2$$

 \bullet M_f is continuously differentiable with gradients (homework)

$$abla M_{\mu f}(oldsymbol{x}) = rac{1}{\mu} oldsymbol{x} - \mathsf{prox}_{\mu f}(oldsymbol{x}) ig)$$

This means

$$\underbrace{ \text{prox}_{\mu f}(x) = x - \mu \nabla M_{\mu f}(x)}_{\text{prox}_{\mu f}(x) \text{ is the gradient step for minimizing } M_{\mu f}$$

Properties of the Moreau envelope

$$M_{\mu f}(\boldsymbol{x}) := \inf_{\boldsymbol{z}} \left\{ f(\boldsymbol{z}) + \frac{1}{2\mu} \|\boldsymbol{x} - \boldsymbol{z}\|_2^2 \right\}$$

- $M_{\mu f}$ is convex (homework)
- $M_{\mu f}$ is $\frac{1}{\mu}$ -smooth (homework)
- If f is L_f -Lipschitz, then $M_{\mu f}$ is a $\frac{1}{\mu}$ -smooth approximation of f with parameters $(1,L_f^2/2)$

Proof of smoothability

To begin with,

$$M_{\mu f}(x) \le f(x) + \frac{1}{2\mu} ||x - x||_2^2 = f(x)$$

In addition, let $g_x \in \partial f(x)$, which obeys $\|g_x\|_2 \leq L_f$. Hence,

$$egin{aligned} M_{\mu f}(oldsymbol{x}) - f(oldsymbol{x}) &= \inf_{oldsymbol{z}} \left\{ f(oldsymbol{z}) - f(oldsymbol{x}) + rac{1}{2\mu} \|oldsymbol{z} - oldsymbol{x}\|_2^2
ight\} \ &\geq \inf_{oldsymbol{z}} \left\{ \langle oldsymbol{g}_{oldsymbol{x}}, oldsymbol{z} - oldsymbol{x}
angle + rac{1}{2\mu} \|oldsymbol{z} - oldsymbol{x}\|_2^2
ight\} \ &= -rac{\mu}{2} \|oldsymbol{g}_{oldsymbol{x}}\|_2^2 \geq -rac{L_f^2}{2} \mu \end{aligned}$$

These together with the smoothness condition of M_f demonstrate that M_f is a $\frac{1}{\mu}$ -smooth approximation of f with parameters $(1,L_f^2/2)$

Smoothing via conjugation

Suppose $f=g^*$, namely,

$$f(\boldsymbol{x}) = \sup_{\boldsymbol{z}} \left\{ \langle \boldsymbol{z}, \boldsymbol{x} \rangle - g(\boldsymbol{z}) \right\}$$

One can build a smooth approximation of f by adding a strongly convex component to its dual, namely,

$$f_{\mu}(\boldsymbol{x}) = \sup_{\boldsymbol{z}} \left\{ \langle \boldsymbol{z}, \boldsymbol{x} \rangle - g(\boldsymbol{z}) - \mu d(\boldsymbol{z}) \right\} = (g + \mu d)^* (\boldsymbol{x})$$

for some 1-strongly convex and continuous function $d \ge 0$ (called proximity function)

Smoothing via conjugation

2 properties:

- ullet $g + \mu d$ is μ -strongly convex $\implies f_{\mu}$ is $\frac{1}{\mu}$ -smooth
- $f_{\mu}(x) \leq f(x) \leq f_{\mu}(x) + \mu D$ with $D := \sup_{x} d(x)$

$$\implies f_{\mu}$$
 is a $\frac{1}{\mu}$ -smooth approximation of f with parameters $(1,D)$

Example: |x|

Recall that

$$|x| = \sup_{|z| \le 1} zx$$

If we take $d(z)=\frac{1}{2}z^2$, then smoothing via conjugation gives

$$f_{\mu}(x) = \sup_{|z| \le 1} \left\{ zx - \frac{\mu}{2} z^2 \right\} = \begin{cases} x^2/2\mu, & |x| \le \mu \\ |x| - \mu/2, & \text{else} \end{cases}$$

which is exactly the Huber function

Example: |x|

Another way of conjugation:

$$|x| = \sup_{z_1, z_2 \ge 0, z_1 + z_2 = 1} (z_1 - z_2)x$$

If we take $d(z)=z_1\log z_1+z_2\log z_2+\log 2$, then smoothing via conjugation gives

$$f_{\mu}(x) = \mu \log \left(\cosh(x/\mu) \right)$$

where $\cosh x = \frac{e^x + e^{-x}}{2}$

Example: norm

Consider $\|x\|=\sup_{\|z\|_*\leq 1}\langle z,x\rangle$, then smoothing via conjugation gives

$$f_{\mu}(\boldsymbol{x}) = \sup_{\|\boldsymbol{z}\|_{*} \leq 1} \left\{ \langle \boldsymbol{z}, \boldsymbol{x} \rangle - \mu d(\boldsymbol{z}) \right\}$$

Algorithm and convergence analysis

Algorithm

$$\label{eq:force_force} \mathsf{minimize}_{\boldsymbol{x}} \quad F(\boldsymbol{x}) = f(\boldsymbol{x}) + h(\boldsymbol{x})$$

- f is convex and (α, β) -smoothable
- ullet h is convex but may not be differentiable

Algorithm

Build f_{μ} — $\frac{1}{\mu}$ -smooth approximation of f with parameters (α,β)

$$egin{aligned} & oldsymbol{x}^{t+1} = \mathsf{prox}_{\eta_t h} ig(oldsymbol{y}^t - \eta_t
abla oldsymbol{f_{\mu}}(oldsymbol{y}^t) ig) \ & oldsymbol{y}^{t+1} = oldsymbol{x}^{t+1} + rac{ heta_t - 1}{ heta_{t+1}} (oldsymbol{x}^{t+1} - oldsymbol{x}^t) \end{aligned}$$

where
$$m{y}^0 = m{x}^0$$
, $heta_0 = 1$ and $heta_{t+1} = rac{1+\sqrt{1+4 heta_t^2}}{2}$

Convergence

Theorem 8.1 (informal)

Take $\mu = \frac{\varepsilon}{2\beta}$. Then one has $F(\boldsymbol{x}^t) - F^{\mathsf{opt}} \leq \varepsilon$ for any

$$t \gtrsim \frac{\sqrt{\alpha\beta}}{\varepsilon}$$

• iteration complexity: $O(1/\varepsilon)$, which improves upon that of subgradient methods $O(1/\varepsilon^2)$

Proof sketch

- convergence rate for smooth problem: to attain $\frac{\varepsilon}{2}$ -accuracy for minimizing $F_{\mu}(\boldsymbol{x}) := f_{\mu}(\boldsymbol{x}) + h(\boldsymbol{x})$, one needs $O\left(\sqrt{\frac{\alpha}{\mu}} \cdot \frac{1}{\sqrt{\varepsilon}}\right)$ iterations
- \bullet approximation error: set $\beta\mu=\frac{\varepsilon}{2}$ to ensure $|f(x)-f_{\mu}(x)|\leq\frac{\varepsilon}{2}$
- $\bullet \ \ \text{since} \ F(\boldsymbol{x}^t) F(\boldsymbol{x}^{\text{opt}}) \leq \underbrace{\left|f(\boldsymbol{x}^t) f_{\mu}(\boldsymbol{x}^t)\right|}_{\leq \varepsilon/2} + \underbrace{\left(F_{\mu}(\boldsymbol{x}^t) F_{\mu}^{\text{opt}}\right)}_{\leq \varepsilon/2},$ the iteration complexity is

the iteration complexity is

$$O\left(\sqrt{\frac{\alpha}{\mu}} \cdot \frac{1}{\sqrt{\varepsilon}}\right) = O\left(\sqrt{\frac{\alpha\beta}{\varepsilon}} \cdot \frac{1}{\sqrt{\varepsilon}}\right) = O\left(\frac{\sqrt{\alpha\beta}}{\varepsilon}\right)$$

Reference

- "Smooth minimization of non-smooth functions," Y. Nesterov, Mathematical programming, 2005.
- "First-order methods in optimization," A. Beck, Vol. 25, SIAM, 2017.
- "Optimization methods for large-scale systems, EE236C lecture notes,"
 L. Vandenberghe, UCLA.
- "Mathematical optimization, MATH301 lecture notes," E. Candes, Stanford.
- "Smoothing and first order methods: A unified framework," A. Beck, M. Teboulle, SIAM Journal on Optimization, 2012.
- "Problem complexity and method efficiency in optimization,"
 A. Nemirovski, D. Yudin, Wiley, 1983.