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Newton’s method
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e quadratic convergence: attains ¢ accuracy within O(loglog %)

iterations
e typically requires storing and inverting Hessian V2 f(x) € R"*"
e a single iteration may last forever; prohibitive storage requirement
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Quasi-Newton methods

key idea: approximate the Hessian matrix using only gradient
information

t+1 t
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surrogate of (V2 f(xt))—1

challenges: 1how to find a good approximation H; >~ 0 of
(V2f(a"))
e using only gradient information

e using limited memory

e achieving super-linear convergence
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Criterion for choosing H;

Consider the following approximate quadratic model of f(-):

fi(z) = f(a:”l)—i—(Vf(th),m—wt+1>+%(a:—wt“)THtjrll(w—:ctH)

which satisfies

Vf(x) = Vi) + H Y (z — =)

One reasonable criterion: gradient matching for the latest two
iterates:

Vfi(xh) = V() (13.1a)
Vi(xt) = Vit (13.1b)
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Secant equation

V() t

xr
(13.1b) holds automatically. To satisfy (13.1a), one requires
Vi) + HZ (2 — 271 = V(')

= Hg @@ -a') = Vi@E") - Vi@

secant equation

e the secant equation requires that Htjrll maps the displacement
x!*1 — x into the change of gradients V f(z!T!) — V f(x!)
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Secant equation

Hy (V™) - Vi) =2 — 2! (13.2)
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e only possible when s, y; > 0, since
s{ Yyt =y Hrpayr >0

e admit an infinite number of solutions, since the degrees of
freedom O(n?) in choosing H ! far exceeds the number of
constraints n in (13.2)

e which Htjrll shall we choose?
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

Broyden, Fletcher, Goldfarb, Shanno
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Closeness to H;

In addition to the secant equation, choose Hy; sufficiently close to
Ht:

minimizer || H — Hy||
subject to H =H"
Hyt = 8¢

for some norm || - ||

e exploit past information regarding H;

e choosing different norms || - || results in different quasi-Newton
methods
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Choice of norm in BFGS

Choosing | M|| := |WY2MW/2||p for any weight matrix W
obeying Ws; = y,;, we get

minimizegr HW1/2(H — Ht)Wl/zﬂF
subjectto H=H"
Hy, = s

This admits a closed-form expression

Hy=(I- ptsty;)Ht (I - ptytstT) + p,gs,gstT (13.3)

BFGS update rule; Hy1>0 if H;>0

: |
with p; = o
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An alternative interpretation

H, . is also the solution to

minimizegr (Hy, H™') —logdet (HLH ') —n

KL divergence between N'(0,H 1) and N'(0,H, ")

subject to Hy; = s¢

e minimizing some sort of KL divergence subject to the secant
equation constraints
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BFGS methods

Algorithm 13.1 BFGS
1: fort=0,1,--- do
2.zt =gt —nH,Vf(z') (line search to determine ;)

32 Hy = (I —pesiy VHy(I — pryes|) + peses; . where s; =
ot — gy, = Vf(x™) - V() and p = <

vy st

e each iteration costs O(n?) (in addition to computing gradients)
e no need to solve linear systems or invert matrices

e no magic formula for initialization; possible choices: approximate
inverse Hessian at 2°, or identity matrix
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Rank-2 update on H;!

From the Sherman-Morrison-Woodbury formula
(A+UVT) '=A 71— A WUI+VTAU) 'VTAL, we can
show that the BFGS rule is equivalent to

1
stTHt_lst

rank-2 update

Htjrll = Ht_l - Ht_IStStTHt_l + PtytytT
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Local superlinear convergence

Theorem 13.1 (informal)

Suppose f is strongly convex and has Lipschitz-continuous Hessian.
Under mild conditions, BFGS achieves

e jteration complexity: larger than Newton methods but smaller
than gradient methods

e asymptotic result: holds when t — oo
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Key observation

The BFGS update rule achieves

V) @ - e

l_,
e ot ==,

Implications

e even though H; ' may not converge to V2f(x*), it becomes an
increasingly more accurate approximation of V2 f(x*) along the
search direction x!*! — z!

e asymptotically, z/™! — z! ~ —(VQf(a:t))AVf(a:t)

Newton search direction
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Numerical example

— EE236C lecture notes

N
minimizegegn €' @ — Zlog (b; — a; x)
i=1

Newton BFGS
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Limited-memory quasi-Newton methods

Hessian matrices are usually dense. For large-scale problems, even
storing the (inverse) Hessian matrices is prohibitive

Instead of storing full Hessian approximations, one may want to
maintain more parsimonious approximation of the Hessians, using
only a few vectors
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Limited-memory BFGS (L-BFGS)

Hy =V, H\V, + pisys]  with V, = I — pyyis/

BFGS update rule

key idea: maintain a modified version of H; implicitly by storing m
(e.g. 20) most recent vector pairs (s¢, Y)
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Limited-memory BFGS (L-BFGS)

L-BFGS maintains
Hi =Vl VL HyVim: Vi
+pe-mVily Vi st ms ! Viemir - Vi

T T T

+pt-mr1Vi1 - Vimi908t-mi18 ma1 Viema1 - Vi1
T

+ A P—18t-1841

e can be computed recursively
e initialization HtL,o may vary from iteration to iteration

e only needs to store {(8;, ¥i) }t—m<i<t
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