Large-Scale Optimization for Data Science

Quasi-Newton methods

Yuxin Chen

Wharton Statistics & Data Science, Fall 2023

Newton's method

- quadratic convergence: attains ε accuracy within $O(\log\log\frac{1}{\varepsilon})$ iterations
- ullet typically requires storing and inverting Hessian $abla^2 f(oldsymbol{x}) \in \mathbb{R}^{n imes n}$
- a single iteration may last forever; prohibitive storage requirement

Quasi-Newton methods

key idea: approximate the Hessian matrix using only gradient information

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta_t \underbrace{\boldsymbol{H}_t}_{\text{surrogate of } (\nabla^2 f(\boldsymbol{x}^t))^{-1}} \nabla f(\boldsymbol{x}^t)$$

challenges: how to find a good approximation $m{H}_t \succ m{0}$ of $\left(
abla^2 f(m{x}^t)
ight)^{-1}$

- using only gradient information
- using limited memory
- achieving super-linear convergence

Criterion for choosing H_t

Consider the following approximate quadratic model of $f(\cdot)$:

$$f_t(\boldsymbol{x}) := f(\boldsymbol{x}^{t+1}) + \langle \nabla f(\boldsymbol{x}^{t+1}), \boldsymbol{x} - \boldsymbol{x}^{t+1} \rangle + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}^{t+1})^{\top} \boldsymbol{H}_{t+1}^{-1} (\boldsymbol{x} - \boldsymbol{x}^{t+1})$$

which satisfies

$$\nabla f_t(\boldsymbol{x}) = \nabla f(\boldsymbol{x}^{t+1}) + \boldsymbol{H}_{t+1}^{-1}(\boldsymbol{x} - \boldsymbol{x}^{t+1})$$

One reasonable criterion: gradient matching for the latest two iterates:

$$\nabla f_t(\boldsymbol{x}^t) = \nabla f(\boldsymbol{x}^t) \tag{13.1a}$$

$$\nabla f_t(\boldsymbol{x}^{t+1}) = \nabla f(\boldsymbol{x}^{t+1}) \tag{13.1b}$$

Secant equation

(13.1b) holds automatically. To satisfy (13.1a), one requires

$$\nabla f(\boldsymbol{x}^{t+1}) + \boldsymbol{H}_{t+1}^{-1}(\boldsymbol{x}^{t} - \boldsymbol{x}^{t+1}) = \nabla f(\boldsymbol{x}^{t})$$

$$\iff \underbrace{\boldsymbol{H}_{t+1}^{-1}(\boldsymbol{x}^{t+1} - \boldsymbol{x}^{t}) = \nabla f(\boldsymbol{x}^{t+1}) - \nabla f(\boldsymbol{x}^{t})}_{\text{secant equation}}$$

• the secant equation requires that $m{H}_{t+1}^{-1}$ maps the displacement $m{x}^{t+1} - m{x}^t$ into the change of gradients $\nabla f(m{x}^{t+1}) - \nabla f(m{x}^t)$

Secant equation

$$H_{t+1}\underbrace{\left(\nabla f(\boldsymbol{x}^{t+1}) - \nabla f(\boldsymbol{x}^{t})\right)}_{=:\boldsymbol{y}_{t}} = \underbrace{\boldsymbol{x}^{t+1} - \boldsymbol{x}^{t}}_{=:\boldsymbol{s}_{t}}$$
(13.2)

ullet only possible when $oldsymbol{s}_t^{ op} oldsymbol{y}_t > 0$, since

$$\boldsymbol{s}_t^{\top} \boldsymbol{y}_t = \boldsymbol{y}_t^{\top} \boldsymbol{H}_{t+1} \boldsymbol{y}_t > 0$$

- admit an infinite number of solutions, since the degrees of freedom $O(n^2)$ in choosing $\boldsymbol{H}_{t+1}^{-1}$ far exceeds the number of constraints n in (13.2)
- which H_{t+1}^{-1} shall we choose?

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

Closeness to H_t

In addition to the secant equation, choose $m{H}_{t+1}$ sufficiently close to $m{H}_t$:

minimize
$$_{m{H}} \quad \|m{H} - m{H}_t\|$$
 subject to $\mbox{m{H}} = m{H}^ op$ $\mbox{m{H}} m{y}_t = m{s}_t$

for some norm $\|\cdot\|$

- ullet exploit past information regarding $oldsymbol{H}_t$
- \bullet choosing different norms $\|\cdot\|$ results in different quasi-Newton methods

Choice of norm in BFGS

Choosing $\|M\|:=\|W^{1/2}MW^{1/2}\|_{\mathrm{F}}$ for any weight matrix W obeying $Ws_t=y_t$, we get

minimize
$$_{m{H}} \quad \left\| m{W}^{1/2} (m{H} - m{H}_t) m{W}^{1/2}
ight\|_{ ext{F}}$$
 subject to $m{H} = m{H}^ op$ $m{H} m{y}_t = m{s}_t$

This admits a closed-form expression

$$\underbrace{\boldsymbol{H}_{t+1} = (\boldsymbol{I} - \rho_t \boldsymbol{s}_t \boldsymbol{y}_t^{\top}) \boldsymbol{H}_t (\boldsymbol{I} - \rho_t \boldsymbol{y}_t \boldsymbol{s}_t^{\top}) + \rho_t \boldsymbol{s}_t \boldsymbol{s}_t^{\top}}_{\text{BFGS update rule;}} \boldsymbol{H}_{t+1} \succeq \boldsymbol{0} \text{ if } \boldsymbol{H}_t \succeq \boldsymbol{0}}$$
(13.3)

with
$$ho_t = rac{1}{oldsymbol{y}_t^ op oldsymbol{s}_t}$$

An alternative interpretation

 $oldsymbol{H}_{t+1}$ is also the solution to

$$\begin{array}{c} \mathsf{minimize}_{\boldsymbol{H}} \quad \underbrace{\langle \boldsymbol{H}_t, \boldsymbol{H}^{-1} \rangle - \log \det \left(\boldsymbol{H}_t \boldsymbol{H}^{-1}\right) - n}_{\mathsf{KL} \; \mathsf{divergence} \; \mathsf{between} \; \mathcal{N}(\mathbf{0}, \boldsymbol{H}^{-1}) \; \mathsf{and} \; \mathcal{N}(\mathbf{0}, \boldsymbol{H}_t^{-1})} \\ \mathsf{subject} \; \mathsf{to} \quad \boldsymbol{H} \boldsymbol{y}_t = \boldsymbol{s}_t \end{array}$$

• minimizing some sort of KL divergence subject to the secant equation constraints

BFGS methods

Algorithm 13.1 BFGS

- 1: **for** $t = 0, 1, \cdots$ **do**
- 2: $m{x}^{t+1} = m{x}^t \eta_t m{H}_t
 abla f(m{x}^t)$ (line search to determine η_t)
- 3: $m{H}_{t+1} = (m{I}
 ho_t m{s}_t m{y}_t^{ op}) m{H}_t (m{I}
 ho_t m{y}_t m{s}_t^{ op}) +
 ho_t m{s}_t m{s}_t^{ op}$, where $m{s}_t = m{x}^{t+1} m{x}^t$, $m{y}_t =
 abla f(m{x}^{t+1})
 abla f(m{x}^t)$, and $\rho_t = \frac{1}{m{y}_t^{ op} m{s}_t}$
 - each iteration costs $O(n^2)$ (in addition to computing gradients)
 - no need to solve linear systems or invert matrices
 - no magic formula for initialization; possible choices: approximate inverse Hessian at $m{x}^0$, or identity matrix

Rank-2 update on H_t^{-1}

From the Sherman-Morrison-Woodbury formula $(A+UV^\top)^{-1}=A^{-1}-A^{-1}U(I+V^\top A^{-1}U)^{-1}V^\top A^{-1}$, we can show that the BFGS rule is equivalent to

$$\underline{\boldsymbol{H}_{t+1}^{-1} = \boldsymbol{H}_{t}^{-1} - \frac{1}{\boldsymbol{s}_{t}^{\top} \boldsymbol{H}_{t}^{-1} \boldsymbol{s}_{t}} \boldsymbol{H}_{t}^{-1} \boldsymbol{s}_{t} \boldsymbol{s}_{t}^{\top} \boldsymbol{H}_{t}^{-1} + \rho_{t} \boldsymbol{y}_{t} \boldsymbol{y}_{t}^{\top}}_{\text{rank-2 update}}$$

Local superlinear convergence

Theorem 13.1 (informal)

Suppose f is strongly convex and has Lipschitz-continuous Hessian. Under mild conditions, BFGS achieves

$$\lim_{t \to \infty} \frac{\| \boldsymbol{x}^{t+1} - \boldsymbol{x}^* \|_2}{\| \boldsymbol{x}^t - \boldsymbol{x}^* \|_2} = 0$$

- *iteration complexity:* larger than Newton methods but smaller than gradient methods
- asymptotic result: holds when $t \to \infty$

Key observation

The BFGS update rule achieves

$$\lim_{t \to \infty} \frac{\left\| \left(\boldsymbol{H}_t^{-1} - \nabla^2 f(\boldsymbol{x}^*) \right) \left(\boldsymbol{x}^{t+1} - \boldsymbol{x}^t \right) \right\|_2}{\left\| \boldsymbol{x}^{t+1} - \boldsymbol{x}^t \right\|_2} = 0$$

Implications

• even though ${\pmb H}_t^{-1}$ may not converge to $\nabla^2 f({\pmb x}^*)$, it becomes an increasingly more accurate approximation of $\nabla^2 f({\pmb x}^*)$ along the search direction ${\pmb x}^{t+1} - {\pmb x}^t$

ullet asymptotically, $m{x}^{t+1} - m{x}^t pprox \underbrace{-ig(
abla^2 f(m{x}^t)ig)^{-1}
abla f(m{x}^t)}_{m{Newton search direction}}$

Numerical example

- EE236C lecture notes

$$\mathsf{minimize}_{m{x} \in \mathbb{R}^n} \quad m{c}^{ op} m{x} - \sum_{i=1}^N \log \left(b_i - m{a}_i^{ op} m{x}
ight)$$

n = 100, N = 500

150

Limited-memory quasi-Newton methods

Hessian matrices are usually dense. For large-scale problems, even storing the (inverse) Hessian matrices is prohibitive

Instead of storing full Hessian approximations, one may want to maintain more parsimonious approximation of the Hessians, using only a few vectors

Limited-memory BFGS (L-BFGS)

$$oxed{H_{t+1} = oldsymbol{V}_t^ op oldsymbol{H}_t oldsymbol{V}_t +
ho_t oldsymbol{s}_t oldsymbol{s}_t^ op} \quad ext{with } oldsymbol{V}_t = oldsymbol{I} -
ho_t oldsymbol{y}_t oldsymbol{s}_t^ op oxed{ ext{BFGS update rule}}$$

key idea: maintain a modified version of ${\pmb H}_t$ implicitly by storing m (e.g. 20) most recent vector pairs $({\pmb s}_t, {\pmb y}_t)$

Limited-memory BFGS (L-BFGS)

L-BFGS maintains

$$\begin{split} \boldsymbol{H}_{t}^{\mathsf{L}} &= \boldsymbol{V}_{t-1}^{\top} \cdots \boldsymbol{V}_{t-m}^{\top} \boldsymbol{H}_{t,0}^{\mathsf{L}} \boldsymbol{V}_{t-m} \cdots \boldsymbol{V}_{t-1} \\ &+ \rho_{t-m} \boldsymbol{V}_{t-1}^{\top} \cdots \boldsymbol{V}_{t-m+1}^{\top} \boldsymbol{s}_{t-m} \boldsymbol{s}_{t-m}^{\top} \boldsymbol{V}_{t-m+1} \cdots \boldsymbol{V}_{t-1} \\ &+ \rho_{t-m+1} \boldsymbol{V}_{t-1}^{\top} \cdots \boldsymbol{V}_{t-m+2}^{\top} \boldsymbol{s}_{t-m+1} \boldsymbol{s}_{t-m+1}^{\top} \boldsymbol{V}_{t-m+1} \cdots \boldsymbol{V}_{t-1} \\ &+ \cdots + \rho_{t-1} \boldsymbol{s}_{t-1} \boldsymbol{s}_{t-1}^{\top} \end{split}$$

- can be computed recursively
- ullet initialization $H_{t,0}^{\mathsf{L}}$ may vary from iteration to iteration
- ullet only needs to store $\{(oldsymbol{s}_i, oldsymbol{y}_i)\}_{t-m \leq i < t}$

Reference

- "Numerical optimization, J. Nocedal, S. Wright, 2000.
- "Optimization methods for large-scale systems, EE236C lecture notes,"
 L. Vandenberghe, UCLA.
- "Optimization methods for large-scale machine learning," L. Bottou et al., arXiv, 2016.
- "Convex optimization, EE364B lecture notes," S. Boyd, Stanford.