Dual and primal-dual methods

Yuxin Chen

Wharton Statistics \& Data Science, Fall 2023

Outline

- Dual proximal gradient method
- Primal-dual proximal gradient method

Dual proximal gradient method

Constrained convex optimization

$$
\begin{array}{ll}
\operatorname{minimize}_{\boldsymbol{x}} & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}+\boldsymbol{b} \in \mathcal{C}
\end{array}
$$

where f is convex, and \mathcal{C} is convex set

- projection onto such a feasible set could sometimes be highly nontrivial (even when projection onto \mathcal{C} is easy)

Constrained convex optimization

More generally, consider

$$
\operatorname{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x})+h(\boldsymbol{A} \boldsymbol{x})
$$

where f and h are convex

- computing the proximal operator w.r.t. $\widetilde{h}(\boldsymbol{x}):=h(\boldsymbol{A} \boldsymbol{x})$ could be difficult (even when prox $_{h}$ is inexpensive)

A possible route: dual formulation

$$
\begin{array}{rl}
\operatorname{minimize}_{\boldsymbol{x}} & f(\boldsymbol{x})+h(\boldsymbol{A} \boldsymbol{x}) \\
& \hat{y} \text { add auxiliary variable } \boldsymbol{z} \\
\text { minimize }_{\boldsymbol{x}, \boldsymbol{z}} & f(\boldsymbol{x})+h(\boldsymbol{z}) \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{z}
\end{array}
$$

dual formulation:

$$
\text { maximize }_{\boldsymbol{\lambda}} \min _{\boldsymbol{x}, \boldsymbol{z}} \underbrace{f(\boldsymbol{x})+h(\boldsymbol{z})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}-\boldsymbol{z}\rangle}_{=: \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\lambda}) \text { (Lagrangian) }}
$$

A possible route: dual formulation

$$
\operatorname{maximize}_{\boldsymbol{\lambda}} \min _{\boldsymbol{x}, \boldsymbol{z}} f(\boldsymbol{x})+h(\boldsymbol{z})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}-\boldsymbol{z}\rangle
$$

\mathbb{I} decouple \boldsymbol{x} and \boldsymbol{z}
$\operatorname{maximize}_{\boldsymbol{\lambda}} \min _{\boldsymbol{x}}\left\{\left\langle\boldsymbol{A}^{\top} \boldsymbol{\lambda}, \boldsymbol{x}\right\rangle+f(\boldsymbol{x})\right\}+\min _{\boldsymbol{z}}\{h(\boldsymbol{z})-\langle\boldsymbol{\lambda}, \boldsymbol{z}\rangle\}$

$$
\begin{gathered}
\mathfrak{\imath} \\
\text { maximize }_{\boldsymbol{\lambda}}-f^{*}\left(-\boldsymbol{A}^{\top} \boldsymbol{\lambda}\right)-h^{*}(\boldsymbol{\lambda})
\end{gathered}
$$

where $f^{*}\left(\right.$ resp. $\left.h^{*}\right)$ is the Fenchel conjugate of f (resp. h)

Primal vs. dual problems

$$
\begin{array}{rll}
(\text { primal }) & \text { minimize }_{\boldsymbol{x}} & f(\boldsymbol{x})+h(\boldsymbol{A} \boldsymbol{x}) \\
(\text { dual }) & \text { minimize }_{\boldsymbol{\lambda}} & f^{*}\left(-\boldsymbol{A}^{\top} \boldsymbol{\lambda}\right)+h^{*}(\boldsymbol{\lambda})
\end{array}
$$

Dual formulation is useful if

- the proximal operator w.r.t. h is cheap (then we can use the Moreau decomposition $\left.\operatorname{prox}_{h^{*}}(\boldsymbol{x})=\boldsymbol{x}-\operatorname{prox}_{h}(\boldsymbol{x})\right)$
- f^{*} is smooth (or if f is strongly convex)

Dual proximal gradient methods

Apply proximal gradient methods to the dual problem:
Algorithm 9.1 Dual proximal gradient algorithm
1: for $t=0,1, \cdots$ do
2: $\quad \boldsymbol{\lambda}^{t+1}=\operatorname{prox}_{\eta_{t} h^{*}}\left(\boldsymbol{\lambda}^{t}+\eta_{t} \boldsymbol{A} \nabla f^{*}\left(-\boldsymbol{A}^{\top} \boldsymbol{\lambda}^{t}\right)\right)$

- let $Q(\boldsymbol{\lambda}):=-f^{*}\left(-\boldsymbol{A}^{\top} \boldsymbol{\lambda}\right)-h^{*}(\boldsymbol{\lambda})$ and $Q^{\mathrm{opt}}=\max _{\boldsymbol{\lambda}} Q(\boldsymbol{\lambda})$, then

$$
\begin{equation*}
Q^{\mathrm{opt}}-Q\left(\boldsymbol{\lambda}^{t}\right) \lesssim \frac{1}{t} \tag{9.1}
\end{equation*}
$$

Primal representation of dual proximal gradient methods

Algorithm 9.1 admits a more explicit primal representation
Algorithm 9.2 Dual proximal gradient algorithm (primal representation)

$$
\begin{aligned}
& \text { 1: for } t=0,1, \cdots \text { do } \\
& \text { 2: } \quad \boldsymbol{x}^{t}=\arg \min _{\boldsymbol{x}}\left\{f(\boldsymbol{x})+\left\langle\boldsymbol{A}^{\top} \boldsymbol{\lambda}^{t}, \boldsymbol{x}\right\rangle\right\} \\
& \text { 3: } \quad \boldsymbol{\lambda}^{t+1}=\boldsymbol{\lambda}^{t}+\eta_{t} \boldsymbol{A} \boldsymbol{x}^{t}-\eta_{t} \mathrm{prox}_{\eta_{t}^{-1} h}\left(\eta_{t}^{-1} \boldsymbol{\lambda}^{t}+\boldsymbol{A} \boldsymbol{x}^{t}\right)
\end{aligned}
$$

- $\left\{\boldsymbol{x}^{t}\right\}$ is a primal sequence, which is nonetheless not always feasible

Justification of the primal representation

By definition of \boldsymbol{x}^{t},

$$
-\boldsymbol{A}^{\top} \boldsymbol{\lambda}^{t} \in \partial f\left(\boldsymbol{x}^{t}\right)
$$

This together with the conjugate subgradient theorem and the smoothness of f^{*} yields

$$
\boldsymbol{x}^{t}=\nabla f^{*}\left(-\boldsymbol{A}^{\top} \boldsymbol{\lambda}^{t}\right)
$$

Therefore, the dual proximal gradient update rule can be rewritten as

$$
\begin{equation*}
\boldsymbol{\lambda}^{t+1}=\operatorname{prox}_{\eta_{t} h^{*}}\left(\boldsymbol{\lambda}^{t}+\eta_{t} \boldsymbol{A} \boldsymbol{x}^{t}\right) \tag{9.2}
\end{equation*}
$$

Justification of primal representation (cont.)

Moreover, from the extended Moreau decomposition, we know

$$
\begin{gathered}
\operatorname{prox}_{\eta_{t} h^{*}}\left(\boldsymbol{\lambda}^{t}+\eta_{t} \boldsymbol{A} \boldsymbol{x}^{t}\right)=\boldsymbol{\lambda}^{t}+\eta_{t} \boldsymbol{A} \boldsymbol{x}^{t}-\eta_{t} \operatorname{prox}_{\eta_{t}^{-1} h}\left(\eta_{t}^{-1} \boldsymbol{\lambda}^{t}+\boldsymbol{A} \boldsymbol{x}^{t}\right) \\
\Longrightarrow \quad \boldsymbol{\lambda}^{t+1}=\boldsymbol{\lambda}^{t}+\eta_{t} \boldsymbol{A} \boldsymbol{x}^{t}-\eta_{t} \operatorname{prox}_{\eta_{t}^{-1} h}\left(\eta_{t}^{-1} \boldsymbol{\lambda}^{t}+\boldsymbol{A} \boldsymbol{x}^{t}\right)
\end{gathered}
$$

Accuracy of the primal sequence

One can control the primal accuracy via the dual accuracy:

Lemma 9.1

Let $\boldsymbol{x}_{\boldsymbol{\lambda}}:=\arg \min _{\boldsymbol{x}}\left\{f(\boldsymbol{x})+\left\langle\boldsymbol{A}^{\top} \boldsymbol{\lambda}, \boldsymbol{x}\right\rangle\right\}$. Suppose f is μ-strongly convex. Then

$$
\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{\boldsymbol{\lambda}}\right\|_{2}^{2} \leq \frac{2\left(Q^{\mathrm{opt}}-Q(\boldsymbol{\lambda})\right)}{\mu}
$$

- consequence: $\left\|\boldsymbol{x}^{*}-\boldsymbol{x}^{t}\right\|_{2}^{2} \lesssim 1 / t \quad$ (using (9.1))

Proof of Lemma 9.1

Recall that Lagrangian is given by

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\lambda}):=\underbrace{f(\boldsymbol{x})+\left\langle\boldsymbol{A}^{\top} \boldsymbol{\lambda}, \boldsymbol{x}\right\rangle}_{=: \widetilde{f}(\boldsymbol{x}, \boldsymbol{\lambda})}+\underbrace{h(\boldsymbol{z})-\langle\boldsymbol{\lambda}, \boldsymbol{z}\rangle}_{=: \widetilde{h}(\boldsymbol{z}, \boldsymbol{\lambda})}
$$

For any $\boldsymbol{\lambda}$, define $\boldsymbol{x}_{\boldsymbol{\lambda}}:=\arg \min _{\boldsymbol{x}} \widetilde{f}(\boldsymbol{x}, \boldsymbol{\lambda})$ and $\boldsymbol{z}_{\boldsymbol{\lambda}}:=\arg \min _{\boldsymbol{z}} \widetilde{h}(\boldsymbol{z}, \boldsymbol{\lambda})$ (non-rigorous). Then by strong convexity,

$$
\mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{z}^{*}, \boldsymbol{\lambda}\right)-\mathcal{L}\left(\boldsymbol{x}_{\boldsymbol{\lambda}}, \boldsymbol{z}_{\boldsymbol{\lambda}}, \boldsymbol{\lambda}\right) \geq \widetilde{f}\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}\right)-\widetilde{f}\left(\boldsymbol{x}_{\boldsymbol{\lambda}}, \boldsymbol{\lambda}\right) \geq \frac{1}{2} \mu\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{\boldsymbol{\lambda}}\right\|_{2}^{2}
$$

In addition, since $\boldsymbol{A} \boldsymbol{x}^{*}=\boldsymbol{z}^{*}$, one has

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{z}^{*}, \boldsymbol{\lambda}\right) & =f\left(\boldsymbol{x}^{*}\right)+h\left(\boldsymbol{z}^{*}\right)+\left\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{z}^{*}\right\rangle=f\left(\boldsymbol{x}^{*}\right)+h\left(\boldsymbol{A} \boldsymbol{x}^{*}\right) \\
& =F^{\mathrm{opt}} \stackrel{\text { duality }}{=} Q^{\mathrm{opt}}
\end{aligned}
$$

This combined with $\mathcal{L}\left(\boldsymbol{x}_{\boldsymbol{\lambda}}, \boldsymbol{z}_{\boldsymbol{\lambda}}, \boldsymbol{\lambda}\right)=Q(\boldsymbol{\lambda})$ gives

$$
Q^{\mathrm{opt}}-Q(\boldsymbol{\lambda}) \geq \frac{1}{2} \mu\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{\boldsymbol{\lambda}}\right\|_{2}^{2}
$$

as claimed

Accelerated dual proximal gradient methods

One can apply FISTA to dual problem to improve convergence:
Algorithm 9.3 Accelerated dual proximal gradient algorithm
1: for $t=0,1, \cdots$ do
2: $\quad \boldsymbol{\lambda}^{t+1}=\operatorname{prox}_{\eta_{t} h^{*}}\left(\boldsymbol{w}^{t}+\eta_{t} \boldsymbol{A} \nabla f^{*}\left(-\boldsymbol{A}^{\top} \boldsymbol{w}^{t}\right)\right)$
3: $\quad \theta_{t+1}=\frac{1+\sqrt{1+4 \theta_{t}^{2}}}{2}$
4: $\quad \boldsymbol{w}^{t+1}=\boldsymbol{\lambda}^{t+1}+\frac{\theta_{t}-1}{\theta_{t+1}}\left(\boldsymbol{\lambda}^{t+1}-\boldsymbol{\lambda}^{t}\right)$

- apply FISTA theory and Lemma 9.1 to get

$$
Q^{\mathrm{opt}}-Q\left(\boldsymbol{\lambda}^{t}\right) \lesssim \frac{1}{t^{2}} \quad \text { and } \quad\left\|\boldsymbol{x}^{*}-\boldsymbol{x}^{t}\right\|_{2}^{2} \lesssim \frac{1}{t^{2}}
$$

Primal representation of accelerated dual proximal gradient methods

Algorithm 9.3 admits more explicit primal representation
$\overline{\text { Algorithm 9.4 Accelerated dual proximal gradient algorithm (primal }}$ representation)
1: for $t=0,1, \cdots$ do
2: $\quad \boldsymbol{x}^{t}=\arg \min _{\boldsymbol{x}} f(\boldsymbol{x})+\left\langle\boldsymbol{A}^{\top} \boldsymbol{w}^{t}, \boldsymbol{x}\right\rangle$
3: $\quad \boldsymbol{\lambda}^{t+1}=\boldsymbol{w}^{t}+\eta_{t} \boldsymbol{A} \boldsymbol{x}^{t}-\eta_{t} \operatorname{prox}_{\eta_{t}^{-1} h}\left(\eta_{t}^{-1} \boldsymbol{w}^{t}+\boldsymbol{A} \boldsymbol{x}^{t}\right)$
4: $\quad \theta_{t+1}=\frac{1+\sqrt{1+4 \theta_{t}^{2}}}{2}$
5: $\quad \boldsymbol{w}^{t+1}=\boldsymbol{\lambda}^{t+1}+\frac{\theta_{t}-1}{\theta_{t+1}}\left(\boldsymbol{\lambda}^{t+1}-\boldsymbol{\lambda}^{t}\right)$

Primal-dual proximal gradient method

Nonsmooth optimization

$$
\operatorname{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x})+h(\boldsymbol{A} \boldsymbol{x})
$$

where f and h are closed and convex

- both f and h might be non-smooth
- both f and h might have inexpensive proximal operators

Primal-dual approaches?

$$
\operatorname{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x})+h(\boldsymbol{A} \boldsymbol{x})
$$

So far we have discussed proximal methods (resp. dual proximal methods), which essentially updates only primal (resp. dual) variables

Question: can we update both primal and dual variables simultaneously and take advantage of both prox_{f} and prox $_{h}$?

A saddle-point formulation

To this end, we first derive a saddle-point formulation that includes both primal and dual variables

$$
\begin{gathered}
\operatorname{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x})+h(\boldsymbol{A} \boldsymbol{x}) \\
\Uparrow \text { add an auxiliary variable } \boldsymbol{z} \\
\text { minimize }_{\boldsymbol{x}, \boldsymbol{z}} \quad f(\boldsymbol{x})+h(\boldsymbol{z}) \text { subject to } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{z} \\
\hat{\Downarrow} \\
\text { maximize }_{\boldsymbol{\lambda}} \min _{\boldsymbol{x}, \boldsymbol{z}} f(\boldsymbol{x})+h(\boldsymbol{z})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}-\boldsymbol{z}\rangle \\
\mathbb{\Downarrow} \\
\operatorname{maximize}_{\boldsymbol{\lambda}} \min _{\boldsymbol{x}} f(\boldsymbol{x})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}\rangle-h^{*}(\boldsymbol{\lambda}) \\
\hat{\mathbb{}}
\end{gathered}
$$

$\operatorname{minimize}_{\boldsymbol{x}} \max _{\boldsymbol{\lambda}} f(\boldsymbol{x})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}\rangle-h^{*}(\boldsymbol{\lambda})$ (saddle-point problem)

A saddle-point formulation

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{x}} \max _{\boldsymbol{\lambda}} f(\boldsymbol{x})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}\rangle-h^{*}(\boldsymbol{\lambda}) \tag{9.3}
\end{equation*}
$$

- one can then consider updating the primal variable \boldsymbol{x} and the dual variable $\boldsymbol{\lambda}$ simultaneously
- we'll first examine the optimality condition for (9.3), which in turn gives ideas about how to jointly update primal and dual variables

Optimality condition

$$
\operatorname{minimize}_{\boldsymbol{x}} \max _{\boldsymbol{\lambda}} f(\boldsymbol{x})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}\rangle-h^{*}(\boldsymbol{\lambda})
$$

optimality condition:

$$
\begin{gather*}
\begin{cases}\mathbf{0} \in & \partial f(\boldsymbol{x})+\boldsymbol{A}^{\top} \boldsymbol{\lambda} \\
\mathbf{0} \in & -\boldsymbol{A} \boldsymbol{x}+\partial h^{*}(\boldsymbol{\lambda})\end{cases} \\
\mathbf{0} \in\left[\begin{array}{cc}
\boldsymbol{A}^{\top} \\
-\boldsymbol{A}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{\lambda}
\end{array}\right]+\left[\begin{array}{c}
\partial f(\boldsymbol{x}) \\
\partial h^{*}(\boldsymbol{\lambda})
\end{array}\right]=: \mathcal{F}(\boldsymbol{x}, \boldsymbol{\lambda}) \tag{9.4}
\end{gather*}
$$

key idea: iteratively update $(\boldsymbol{x}, \boldsymbol{\lambda})$ to reach a point obeying $\mathbf{0} \in \mathcal{F}(\boldsymbol{x}, \boldsymbol{\lambda})$

How to solve $0 \in \mathcal{F}(x)$ in general?

In general, finding solution to
called "monotone inclusion problem" if \mathcal{F} is maximal monotone

$$
\Longleftrightarrow \quad \boldsymbol{x} \in(\mathcal{I}+\mathcal{F})(\boldsymbol{x})
$$

is equivalent to finding fixed points of $\underbrace{(\mathcal{I}+\eta \mathcal{F})^{-1}}_{\text {resolvent of } \mathcal{F}}$, i.e. solutions to

$$
\boldsymbol{x}=(\mathcal{I}+\eta \mathcal{F})^{-1}(\boldsymbol{x})
$$

This suggests a natural fixed-point iteration / resolvent iteration:

$$
\boldsymbol{x}^{t+1}=(\mathcal{I}+\eta \mathcal{F})^{-1}\left(\boldsymbol{x}^{t}\right), \quad t=0,1, \cdots
$$

Aside: monotone operators

- Ryu, Boyd '16

(A) Not monotone.

(C) Maximal monotone func-
tion.

(B) Monotone but not maxi-
mal.

(D) Maximal monotone but not
a function.
- a relation \mathcal{F} is called monotone if

$$
\langle\boldsymbol{u}-\boldsymbol{v}, \boldsymbol{x}-\boldsymbol{y}\rangle \geq 0, \quad \forall(\boldsymbol{x}, \boldsymbol{u}),(\boldsymbol{y}, \boldsymbol{v}) \in \mathcal{F}
$$

- relation \mathcal{F} is called maximal monotone if there is no monotone operator that contains it

Proximal point method

$$
\boldsymbol{x}^{t+1}=\left(\mathcal{I}+\eta_{t} \mathcal{F}\right)^{-1}\left(\boldsymbol{x}^{t}\right), \quad t=0,1, \cdots
$$

If $\mathcal{F}=\partial f$ for some convex function f, then this proximal point method becomes

$$
\boldsymbol{x}^{t+1}=\operatorname{prox}_{\eta_{t} f}\left(\boldsymbol{x}^{t}\right), \quad t=0,1, \cdots
$$

- useful when $\operatorname{prox}_{\eta_{t} f}$ is cheap

Back to primal-dual approaches

Recall that we want to solve

$$
\mathbf{0} \in\left[\begin{array}{cc}
& \boldsymbol{A}^{\top} \\
-\boldsymbol{A} &
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{\lambda}
\end{array}\right]+\left[\begin{array}{c}
\partial f(\boldsymbol{x}) \\
\partial h^{*}(\boldsymbol{\lambda})
\end{array}\right]=: \mathcal{F}(\boldsymbol{x}, \boldsymbol{\lambda})
$$

the issue of proximal point methods: computing $(\mathcal{I}+\eta \mathcal{F})^{-1}$ is in general difficult

Back to primal-dual approaches

observation: practically we may often consider splitting \mathcal{F} into two operators

$$
\begin{gather*}
\mathbf{0} \in \mathcal{A}(\boldsymbol{x}, \boldsymbol{\lambda})+\mathcal{B}(\boldsymbol{x}, \boldsymbol{\lambda}) \\
\text { with } \mathcal{A}(\boldsymbol{x}, \boldsymbol{\lambda})=\left[\begin{array}{c}
\boldsymbol{A} \\
-\boldsymbol{A}^{\top}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{\lambda}
\end{array}\right], \mathcal{B}(\boldsymbol{x}, \boldsymbol{\lambda})=\left[\begin{array}{c}
\partial f(\boldsymbol{x}) \\
\partial h^{*}(\boldsymbol{\lambda})
\end{array}\right. \tag{9.5}
\end{gather*}
$$

- $(\mathcal{I}+\mathcal{A})^{-1}$ can be computed by solving linear systems
- $(\mathcal{I}+\mathcal{B})^{-1}$ is easy if prox_{f} and prox $_{h^{*}}$ are both inexpensive
solution: design update rules based on $(\mathcal{I}+\mathcal{A})^{-1}$ and $(\mathcal{I}+\mathcal{B})^{-1}$ instead of $(\mathcal{I}+\mathcal{F})^{-1}$

Operator splitting via Cayley operators

We now introduce a principled approach based on operator splitting

$$
\text { find } \boldsymbol{x} \quad \text { s.t. } \mathbf{0} \in \mathcal{F}(\boldsymbol{x})=\underbrace{\mathcal{A}(\boldsymbol{x})+\mathcal{B}(\boldsymbol{x})}_{\text {operator splitting }}
$$

let $\mathcal{R}_{\mathcal{A}}:=(\mathcal{I}+\mathcal{A})^{-1}$ and $\mathcal{R}_{\mathcal{B}}:=(\mathcal{I}+\mathcal{B})^{-1}$ be the resolvents, and $\mathcal{C}_{\mathcal{A}}:=2 \mathcal{R}_{\mathcal{A}}-\mathcal{I}$ and $\mathcal{C}_{\mathcal{B}}:=2 \mathcal{R}_{\mathcal{B}}-\mathcal{I}$ be the Cayley operators

Lemma 9.2

$$
\begin{equation*}
\underbrace{\mathbf{0} \in \mathcal{A}(\boldsymbol{x})+\mathcal{B}(\boldsymbol{x})}_{\boldsymbol{x} \in \mathcal{R}_{\mathcal{A}+\mathcal{B}}(\boldsymbol{x})} \Longleftrightarrow \underbrace{\mathcal{C}_{\mathcal{A}} \mathcal{C}_{\mathcal{B}}(\boldsymbol{z})=\boldsymbol{z} \text { with } \boldsymbol{x}=\mathcal{R}_{\mathcal{B}}(\boldsymbol{z})}_{\text {it comes down to finding fixed points of } \mathcal{C}_{\mathcal{A}} \mathcal{C}_{\mathcal{B}}} \tag{9.6}
\end{equation*}
$$

Operator splitting via Cayley operators

$$
\boldsymbol{x} \in \mathcal{R}_{\mathcal{A}+\mathcal{B}}(\boldsymbol{x}) \quad \Longleftrightarrow \mathcal{C}_{\mathcal{A}} \mathcal{C}_{\mathcal{B}}(\boldsymbol{z})=\boldsymbol{z}
$$

- advantage: allows us to apply $\mathcal{C}_{\mathcal{A}}\left(\right.$ resp. $\left.\mathcal{R}_{\mathcal{A}}\right)$ and $\mathcal{C}_{\mathcal{B}}\left(\right.$ resp. $\left.\mathcal{R}_{\mathcal{B}}\right)$ sequentially (instead of computing $\mathcal{R}_{\mathcal{A}+\mathcal{B}}$ directly)

Proof of Lemma 9.2

$$
\begin{align*}
& \mathcal{C}_{\mathcal{A}} \mathcal{C}_{\mathcal{B}}(\boldsymbol{z})=\boldsymbol{z} \\
& \boldsymbol{x}=\mathcal{R}_{\mathcal{B}}(\boldsymbol{z}) \tag{9.7a}\\
& \widetilde{\boldsymbol{z}}=2 \boldsymbol{x}-\boldsymbol{z} \tag{9.7b}\\
& \widetilde{\boldsymbol{x}}=\mathcal{R}_{\mathcal{A}}(\widetilde{\boldsymbol{z}}) \tag{9.7c}\\
& \boldsymbol{z}=2 \widetilde{\boldsymbol{x}}-\widetilde{\boldsymbol{z}} \tag{9.7d}
\end{align*}
$$

From (9.7b) and (9.7d), we see that

$$
\widetilde{\boldsymbol{x}}=\boldsymbol{x}
$$

which together with (9.7d) gives

$$
\begin{equation*}
2 x=z+\widetilde{z} \tag{9.8}
\end{equation*}
$$

Proof of Lemma 9.2 (cont.)

Recall that

$$
\boldsymbol{z} \in \boldsymbol{x}+\mathcal{B}(\boldsymbol{x}) \quad \text { and } \quad \tilde{\boldsymbol{z}} \in \boldsymbol{x}+\mathcal{A}(\boldsymbol{x})
$$

Adding these two facts and using (9.8), we get

$$
\begin{gathered}
2 \boldsymbol{x}=\boldsymbol{z}+\tilde{\boldsymbol{z}} \in 2 \boldsymbol{x}+\mathcal{B}(\boldsymbol{x})+\mathcal{A}(\boldsymbol{x}) \\
\Longleftrightarrow \quad \mathbf{0} \in \mathcal{A}(\boldsymbol{x})+\mathcal{B}(\boldsymbol{x})
\end{gathered}
$$

Douglas-Rachford splitting

How to find points obeying $\boldsymbol{x}=\mathcal{C}_{\mathcal{A}} \mathcal{C}_{\mathcal{B}}(\boldsymbol{x})$?

- First attempt: fixed-point iteration

$$
\boldsymbol{z}^{t+1}=\mathcal{C}_{\mathcal{A}} \mathcal{C}_{\mathcal{B}}\left(\boldsymbol{z}^{t}\right)
$$

unfortunately, it may not converge in general

- Douglas-Rachford splitting: damped fixed-point iteration

$$
\boldsymbol{z}^{t+1}=\frac{1}{2}\left(\mathcal{I}+\mathcal{C}_{\mathcal{A}} \mathcal{C}_{\mathcal{B}}\right)\left(\boldsymbol{z}^{t}\right)
$$

converges when a solution to $\mathbf{0} \in \mathcal{A}(\boldsymbol{x})+\mathcal{B}(\boldsymbol{x})$ exists!

More explicit expression for D-R splitting

Douglas-Rachford splitting update rule $\boldsymbol{z}^{t+1}=\frac{1}{2}\left(\mathcal{I}+\mathcal{C}_{\mathcal{A}} \mathcal{C}_{\mathcal{B}}\right)\left(\boldsymbol{z}^{t}\right)$ is essentially:

$$
\begin{aligned}
\boldsymbol{x}^{t+\frac{1}{2}} & =\mathcal{R}_{\mathcal{B}}\left(\boldsymbol{z}^{t}\right) \\
\boldsymbol{z}^{t+\frac{1}{2}} & =2 \boldsymbol{x}^{t+\frac{1}{2}}-\boldsymbol{z}^{t} \\
\boldsymbol{x}^{t+1} & =\mathcal{R}_{\mathcal{A}}\left(\boldsymbol{z}^{t+\frac{1}{2}}\right) \\
\boldsymbol{z}^{t+1} & =\frac{1}{2}\left(\boldsymbol{z}^{t}+2 \boldsymbol{x}^{t+1}-\boldsymbol{z}^{t+\frac{1}{2}}\right) \\
& =\boldsymbol{z}^{t}+\boldsymbol{x}^{t+1}-\boldsymbol{x}^{t+\frac{1}{2}}
\end{aligned}
$$

where $\boldsymbol{x}^{t+\frac{1}{2}}$ and $\boldsymbol{z}^{t+\frac{1}{2}}$ are auxiliary variables

More explicit expression for D-R splitting

or equivalently,

$$
\begin{aligned}
\boldsymbol{x}^{t+\frac{1}{2}} & =\mathcal{R}_{\mathcal{B}}\left(\boldsymbol{z}^{t}\right) \\
\boldsymbol{x}^{t+1} & =\mathcal{R}_{\mathcal{A}}\left(2 \boldsymbol{x}^{t+\frac{1}{2}}-\boldsymbol{z}^{t}\right) \\
\boldsymbol{z}^{t+1} & =\boldsymbol{z}^{t}+\boldsymbol{x}^{t+1}-\boldsymbol{x}^{t+\frac{1}{2}}
\end{aligned}
$$

Douglas-Rachford primal-dual splitting

$$
\operatorname{minimize}_{\boldsymbol{x}} \max _{\boldsymbol{\lambda}} f(\boldsymbol{x})+\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}\rangle-h^{*}(\boldsymbol{\lambda})
$$

Applying Douglas-Rachford splitting to (9.5) yields

$$
\begin{aligned}
\boldsymbol{x}^{t+\frac{1}{2}} & =\operatorname{prox}_{\eta f}\left(\boldsymbol{p}^{t}\right) \\
\boldsymbol{\lambda}^{t+\frac{1}{2}} & =\operatorname{prox}_{\eta h^{*}}\left(\boldsymbol{q}^{t}\right) \\
{\left[\begin{array}{c}
\boldsymbol{x}^{t+1} \\
\boldsymbol{\lambda}^{t+1}
\end{array}\right] } & =\left[\begin{array}{cc}
\boldsymbol{I} & \eta \boldsymbol{A}^{\top} \\
-\eta \boldsymbol{A} & \boldsymbol{I}
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \boldsymbol{x}^{t+\frac{1}{2}}-\boldsymbol{p}^{t} \\
2 \boldsymbol{\lambda}^{t+\frac{1}{2}}-\boldsymbol{q}^{t}
\end{array}\right] \\
\boldsymbol{p}^{t+1} & =\boldsymbol{p}^{t}+\boldsymbol{x}^{t+1}-\boldsymbol{x}^{t+\frac{1}{2}} \\
\boldsymbol{q}^{t+1} & =\boldsymbol{q}^{t}+\boldsymbol{\lambda}^{t+1}-\boldsymbol{\lambda}^{t+\frac{1}{2}}
\end{aligned}
$$

Example

$$
\operatorname{minimize}_{\boldsymbol{x}} \quad\|\boldsymbol{x}\|_{2}+\gamma\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{1}
$$

$$
\operatorname{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x})+g(\boldsymbol{A} \boldsymbol{x})
$$

with $f(\boldsymbol{x}):=\|\boldsymbol{x}\|_{2}$ and $g(\boldsymbol{y}):=\gamma\|\boldsymbol{y}-\boldsymbol{b}\|_{1}$

- Connor, Vandenberghe '14

Example

$$
\operatorname{minimize} \quad\|\boldsymbol{K} \boldsymbol{x}-\boldsymbol{b}\|_{1}+\gamma \underbrace{\|\boldsymbol{D} \boldsymbol{x}\|_{\text {iso }}}_{\text {certain } \ell_{2}-\ell_{1} \text { norm }} \quad \text { s.t. } \quad \mathbf{0} \leq \boldsymbol{x} \leq \mathbf{1}
$$

$\Longleftrightarrow \quad \operatorname{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x})+g(\boldsymbol{A} \boldsymbol{x})$
with $f(\boldsymbol{x}):=\mathbb{1}_{\{\mathbf{0} \leq \boldsymbol{x} \leq \mathbf{1}\}}(\boldsymbol{x})$ and $g\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right):=\left\|\boldsymbol{y}_{1}-\boldsymbol{b}\right\|_{1}+\gamma\left\|\boldsymbol{y}_{2}\right\|_{\text {iso }}$

- Connor, Vandenberghe '14

Reference

- "A First Course in Convex Optimization Theory," E. Ryu, W. Yin.
- "Optimization methods for large-scale systems, EE236C lecture notes," L. Vandenberghe, UCLA.
- "Convex optimization, EE364B lecture notes," S. Boyd, Stanford.
- "Mathematical optimization, MATH301 lecture notes," E. Candes, Stanford.
- "First-order methods in optimization," A. Beck, Vol. 25, SIAM, 2017.
- "Primal-dual decomposition by operator splitting and applications to image deblurring," D. O' Connor, L. Vandenberghe, SIAM Journal on Imaging Sciences, 2014.
- "On the numerical solution of heat conduction problems in two and three space variables," J. Douglas, H. Rachford, Transactions of the American mathematical Society, 1956.

Reference

- "A primer on monotone operator methods," E. Ryu, S. Boyd, Appl. Comput. Math., 2016.
- "Large-scale convex optimization: algorithms and analyses via monotone operators," E. Ryu, W. Yin, Cambridge University Press, 2022.

