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Dual proximal gradient method



Constrained convex optimization

minimize,  f(x)
subjectto Ax+beC

where f is convex, and C is convex set

e projection onto such a feasible set could sometimes be highly
nontrivial (even when projection onto C is easy)
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Constrained convex optimization

More generally, consider
minimize,  f(x) + h(Ax)

where f and h are convex

e computing the proximal operator w.r.t. h(z) := h(Axz) could be
difficult (even when prox,, is inexpensive)
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A possible route: dual formulation

minimize, f(x) + h(Ax)
ﬁ add auxiliary variable 2

minimizeg .,  f(x) + h(2)
subject to Ax ==z

dual formulation:

maximizex min f(x) + h(2) + (A, Az — z)

=:L(x,z,\) (Lagrangian)
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A possible route: dual formulation

maximizex  min f(®) +h(z)+ (X Az — 2z)
II decouple @ and 2z

maximizey  min {(AT)\, x) + f(:c)} + min {h(z) — (N, 2)}

)
maximizex — f*(=ATA) — h*(A)
where f* (resp. h*) is the Fenchel conjugate of f (resp. h)
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Primal vs. dual problems

(primal) minimize, f(x) + h(Ax)
(dual) minimizey  f*(—ATX) + h*(A)

Dual formulation is useful if

e the proximal operator w.r.t. h is cheap (then we can use the
Moreau decomposition prox,-(x) = & — prox,(x))

e f* is smooth (or if f is strongly convex)
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Dual proximal gradient methods

Apply proximal gradient methods to the dual problem:

Algorithm 9.1 Dual proximal gradient algorithm

1: fort =0,1,--- do
20 A" = prox,, - ()\t +m AV (- AT)\t))

o let Q(A) := —f*(—ATA) — h*(X) and Q°P* = maxy Q(A), then

ooy s]
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Primal representation of dual proximal gradient
methods

Algorithm 9.1 admits a more explicit primal representation

Algorithm 9.2 Dual proximal gradient algorithm (primal representa-
tion)
1: fort=0,1,--- do
2.zt =argming {f(z)+ (ATA x)}
3 A=A g Axt — ntproanh(nt_l)\t + Azx')
t

e {x'} is a primal sequence, which is nonetheless not always
feasible
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Justification of the primal representation

By definition of x?,
—ATX e of(xh)

This together with the conjugate subgradient theorem and the
smoothness of f* yields

.’IJt _ Vf*(—ATAt)
Therefore, the dual proximal gradient update rule can be rewritten as

A = prox,, - (A" + n, Ax?) (9.2)

Dual and primal-dual method 9-11



Justification of primal representation (cont.)

Moreover, from the extended Moreau decomposition, we know

Prox,,, j« (A" + nAzx?) = AL+ n, Az’ — nyprox _1h( I\ Azt

— XL = AP Azt — prox ‘1h( ny AT+ Axt)
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Accuracy of the primal sequence

One can control the primal accuracy via the dual accuracy:
Lemma 9.1
Let z := argming { f(x) + (AT X, x)}. Suppose f is u-strongly

convex. Then
2(Q°P — Q(N))
I

lz” — ll5 <

e consequence: |z* — x!||3 <1/t (using (9.1))
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Proof of Lemma 9.1

Recall that Lagrangian is given by
L(xz,z,A) = flx)+ (ATA z) + h(z) — (A, 2)

=: J"’V(:E,A) ::,}\L/(Z,A)
For any A, define & := argmin, f(,A) and zx := argmin, h(z, \)
(non-rigorous). Then by strong convexity,

L(a, 27 N) — Llox 2, 0) > FlaA) ~ fleaA) > gulle” — oal3
In addition, since Ax* = z*, one has
Lz, 25, A) = f(x*) + h(z*) + (N, Az* — 2*) = f(z*) + h(Az™)
— port 42 opt

This combined with L(zx, zx, A) = Q(A) gives

1 *
Q® — Q) > sulla” — w3

as claimed
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Accelerated dual proximal gradient methods

One can apply FISTA to dual problem to improve convergence:

Algorithm 9.3 Accelerated dual proximal gradient algorithm

1: fort =0,1,--- do
20 A= prox,, - (wt + AV f*(— AT'wt))

14+/14+462
3: Orp1 = — L

40wt = A4 GEL(XFL X\
t+1

e apply FISTA theory and Lemma 9.1 to get

1 . 1
QP -Q) S 5 and [a" — a3 S
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Primal representation of accelerated dual proximal
gradient methods

Algorithm 9.3 admits more explicit primal representation

Algorithm 9.4 Accelerated dual proximal gradient algorithm (primal
representation)
1: fort=0,1,--- do
2. ! =argming f(z)+ (ATw!, x)
3 A = w! 4 Azt — ntproxnflh(nt_lwt + Azx')
t
1+4/1-+467
Opr1 = —5—+
witl = \t+1 + 0:—1 ()\t—H _ )\t)
Oi41
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Primal-dual proximal gradient method



Nonsmooth optimization

minimize, f(x) + h(Ax)

where f and h are closed and convex

e both f and h might be non-smooth

e both f and h might have inexpensive proximal operators
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Primal-dual approaches?

minimize, f(x) + h(Ax)

So far we have discussed proximal methods (resp. dual proximal
methods), which essentially updates only primal (resp. dual) variables

Question: can we update both primal and dual variables
simultaneously and take advantage of both prox; and prox;?
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A saddle-point formulation

To this end, we first derive a saddle-point formulation that includes
both primal and dual variables

minimize, f(x) + h(Ax)
II add an auxiliary variable z

minimizeg » f(x)+ h(z) subjectto Ax ==z

0
maximizey ming , f(x) + h(z) + (X, Az — z)
)
maximizey ming f(x) + (A, Ax) — h*(A)
)

minimize, maxy f(x) + (X, Az) — h*(A) (saddle-point problem)
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A saddle-point formulation

minimize; maxy f(x) + (A, Ax) — h*(A) (9.3)

e one can then consider updating the primal variable  and the
dual variable A simultaneously

e we'll first examine the optimality condition for (9.3), which in
turn gives ideas about how to jointly update primal and dual
variables
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Optimality condition

minimize; maxy f(x) + (A, Az) — h*(A)

optimality condition:

0c Of(x)+ATA
0e —Azx+90h*(\)

= ec[ [

key idea: iteratively update (x, A) to reach a point obeying
0e F(x,A)

_|_

of(x) | _.
SN 1 = F(z,A) (9.4)
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How to solve 0 € F(x) in general?

In general, finding solution to

0 € F(x)

called “monotone inclusion problem” if F is maximal monotone

e  ze(I+F)(x)

is equivalent to finding fixed points of (Z + nF)™", i.e. solutions to
—_———

resolvent of F

x = (I+nF)"}(z)

This suggests a natural fixed-point iteration / resolvent iteration:
= (T +nF) (=), =01
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Aside: monotone operators

— Ryu, Boyd '16

e
- /~

F

(A) Not monotone. (B) Monotone but not maxi-
mal.

(c) Maximal monotone func- (D) Maximal monotone but not
tion. a function.

e a relation F is called monotone if
<U—’U,£B—y>20, V(w,u),(y,v)ef

e relation F is called maximal monotone if there is no monotone
operator that contains it
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Proximal point method

wt+1 = (I+ntf)71(wt)7 t= 07 17 e

If F = 0f for some convex function f, then this proximal point
method becomes

t+1

' = proxmf(a:t), t=0,1,---

e useful when prox,, ¢ is cheap
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Back to primal-dual approaches

Recall that we want to solve

o a3 e

the issue of proximal point methods: computing (Z +nF)!is in

general difficult
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Back to primal-dual approaches

observation: practically we may often consider splitting F into two
operators
0 € A(xz,A) + B(x, A\)

_ | 9f(=)
(9.5)

with A(z, ) = [ o A]

T
A
e (Z+ A)~! can be computed by solving linear systems

o (Z+B) !iseasy if prox; and prox;. are both inexpensive

solution: design update rules based on (Z + A)~! and (Z + B)~!
instead of (Z + F)~1

Dual and primal-dual method 9-27



Operator splitting via Cayley operators

We now introduce a principled approach based on operator splitting

find z st 0e€ F(x)=A(z) + B(x)

operator splitting

let R4 :=(Z+.A)~!and Rp:= (T + B)~! be the resolvents, and
Ca:=2R4—1 and Cp := 2Rp — I be the Cayley operators

Lemma 9.2

0 A(x) + B(x) <= CuCp(z) =2z withx =Rp(z) (9.6)

r€RA+8(x) it comes down to finding fixed points of CACp
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Operator splitting via Cayley operators

b S RA+B(513) <~ CACB(Z) =z

e advantage: allows us to apply C4 (resp. R4) and Ci (resp. Rp)
sequentially (instead of computing R 445 directly)
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Proof of Lemma 9.2

CaCs(z) =z
x =Rp(z)
= z=2r—=z
T =Ra(Z)
z=2xr—2z

From (9.7b) and (9.7d), we see that
T=x
which together with (9.7d) gives

2r=2z+z2
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Proof of Lemma 9.2 (cont.)

Recall that
ze€x+ B(x) and zex+ Alx)
Adding these two facts and using (9.8), we get
20 =z + z € 2 + B(x) + A(x)

= 0c A(xz) + B(x)
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Douglas-Rachford splitting

How to find points obeying & = C4Cp(x)?
e First attempt: fixed-point iteration

zt+1 — CACB(Zt)
unfortunately, it may not converge in general

¢ Douglas-Rachford splitting: damped fixed-point iteration
1
2 = 5(I +CACB) (2"

converges when a solution to 0 € A(x) + B(x) exists!
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More explicit expression for D-R splitting

Douglas-Rachford splitting update rule z!*! = %(Z +CACB) () is

essentially:

1
$t+2 — RB(Zt)

1 1
Zt+§ — th+§ _ Zt

1
't =R 4 (2"2)
1 1

L1 §(zt 4o9pttl zt+2)

1
— ot 4 gttl _ ptt3

) 1 . :
where /"2 and z!*2 are auxiliary variables
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More explicit expression for D-R splitting

or equivalently,

1
xt+§ — R[j’(Zt)
1
wt+1 — RA(2mt+§ _ zt)
1
t+1 _ Zt 4 $t+1 _ ptt3

z r
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Douglas-Rachford primal-dual splitting

minimize; maxy f(x) + (X, Az) — h*(X)

Applying Douglas-Rachford splitting to (9.5) yields
1
2+ = prox,(p')

A = prox, ;- (q")

mt—l—l TI T]AT
)\t+1 =
_l’_

-nA I
pttl = pt 4 ot _ gt

L gpttd _pt
oN\ttE _ q'

1
2

1

qt+1 — qt + )\t+1 — A\tt3
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Example

minimize, ||z|]2 + v||Ax — bl

= minimize, f(x) + g(Ax)
with f(x) := |||z and g(y) := 7[ly — bls
: et — I/ "
10 - -
== -~ADMM
primal DR
—— primal-dual DR
107 E|
107}
10°
107
0 50 100 150

iteration number k

— Connor, Vandenberghe '14
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Example

minimize ||[Kz —b|i +v | Dz|is st. 0<x<1
—_——
certain o—¥1 norm
= minimize, f(x) + g(Ax)
with f(z) := Lio<z<1y(2) and g(y1,¥2) :== [y1 — b1 +v/[y2[liso
N (f@@*) =)/
10
‘}‘ ---/CX:[F;MM
107 Hy == primal DR
Ry —— primal-dual DR
10°
10° .
10 \‘“\,
* \\-\&é ---------
10° B
10770 260 460 660 860 1000

iteration number k

— Connor, Vandenberghe '14
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