ELE 538B: Sparsity, Structure and Inference

Spring 2017

Homework 2

Due date: Wednesday, Mar. 29, 2017 (at the beginning of class)

You are allowed to drop 1 subproblem without penalty. In addition, up to 1 bonus point will be awarded to each subproblem for clean, well-organized, and elegant solutions.

1. Prediction error for the MMSE estimator (20 points)

Suppose that the training data is $(\boldsymbol{y} \in \mathbb{R}^n, \boldsymbol{X} \in \mathbb{R}^{n \times n})$ obeying

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\eta}, \qquad \boldsymbol{\eta} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$$

(a) Suppose that we know a priori that $\boldsymbol{\beta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$. What is the Bayes minimum mean square error (MMSE) estimate $\hat{\boldsymbol{\beta}}^{\text{mmse}}$, i.e. the estimate that minimizes $\mathbb{E}\left[\|\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}\|^2\right]$?

(b) We now want to use $\hat{X}\hat{\beta}^{\text{mmse}}$ to predict new data $\tilde{y} = X\beta + \tilde{\eta}$ with $\tilde{\eta} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ independent of η (note that \tilde{y} is unobserved). Can you come up with an unbiased estimate for the prediction error $\mathsf{PE} := \mathbb{E}[\|\tilde{y} - X\hat{\beta}^{\text{mmse}}\|^2]$?

2. Lasso with a single parameter (10 points)

Consider the single parameter setting $y = \beta z + \eta$ with $\beta \in \mathbb{R}$. In this case, the Lasso estimator is given by

minimize_{$\hat{\beta} \in \mathbb{R}$} $\frac{1}{2} \| \boldsymbol{y} - \hat{\beta} \boldsymbol{z} \|^2 + \lambda |\hat{\beta}|.$

Show that $\hat{\beta} = \psi_{\text{st}}\left(\frac{z^{\top}y}{\|z\|^2}; \frac{\lambda}{\|z\|^2}\right)$ is a closed-form solution to the above program, where $\psi_{\text{st}}(x;\lambda) = \operatorname{sign}(x) \max\{|x| - \lambda, 0\}$ is the soft-thresholding operator. You should use the optimality condition based on subgradients.

3. Convexity of the SLOPE estimator (30 points)

For any $\boldsymbol{\beta} = [\beta_1, \cdots, \beta_p]^\top \in \mathbb{R}^p$, let $|\beta|_{(1)} \ge |\beta|_{(2)} \ge \cdots \ge |\beta|_{(p)}$ denote the order statistics of $\{|\beta_1|, \cdots, |\beta_p|\}$, i.e. $|\beta|_{(i)}$ is the *i*th largest in $\{|\beta_1|, \cdots, |\beta_p|\}$.

(a) Suppose that p = 2. Show that the function

$$f(\boldsymbol{\beta}) := \lambda_1 |\boldsymbol{\beta}|_{(1)} + \lambda_2 |\boldsymbol{\beta}|_{(2)}$$

is convex if $\lambda_1 \geq \lambda_2 \geq 0$.

(b) Show that the function

$$g_k(\boldsymbol{\beta}) = \sum_{i=1}^k |\boldsymbol{\beta}|_{(i)}$$

is convex for any $1 \le k \le p$.

(c) Show that the function

$$f(\boldsymbol{\beta}) := \sum_{i=1}^{p} \lambda_i |\beta|_{(i)}$$

is convex for any $p \ge 3$, as long as $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p \ge 0$. This justifies that SLOPE (Sorted L-One Penalized Estimation)

minimize_{$$\beta$$} $\frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|^2 + \sum_{i=1}^p \lambda_i |\beta|_{(i)}$

is a convex program.

4. Gaussian graphical models (20 points)

(a) Consider a *p*-dimensional Gaussian vector $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma})$. For any $1 \leq u, v \leq p$, show that

$$x_u \perp \!\!\!\perp x_v \mid \boldsymbol{x}_{\mathcal{V} \setminus \{u,v\}}$$

(namely, x_u and x_v are conditionally independent given all other variables) if and only if $\Theta_{u,v} = 0$. Here, $\Theta = \Sigma^{-1}$.

(b) In graphical lasso, the objective function includes a term $\log \det \Theta$. Show that $g(\Theta) := \log \det(\Theta)$ $(\Theta \succ \mathbf{0})$ is a concave function.

Hint: A function $g(\Theta)$ is concave if $h(t) := g(\Theta + tV)$ is concave for all t and V obeying $\Theta + tV \succ 0$.