ELE 538B: Sparsity, Structure and Inference Spring 2017

Homework 1

Due date: Wednesday, Mar. 1, 2017 (at the beginning of class)

You are allowed to drop 1 subproblem without penalty. In addition, up to 1 bonus point will be awarded to
each subproblem for clean, well-organized, and elegant solutions.

1. Mutual coherence (40 points)

Recall that for an arbitrary pair of orthonormal bases ¥ = [t¢1,- - ,1,] € R"*™ and ® = [¢1, - ,d,] €
R™*™ the mutual coherence (¥, ®) of these two bases is defined by
_ T4
W, @) = max ¢ ¢ (1)

(a) Show that
< (¥, ®) <1

Bl

(b) Let ¥ = I, and suppose that ® = [¢; j]1< j<n is a Gaussian random matrix such that the ¢; ;’s
are i.i.d. random variables drawn from ¢; ; ~ N'(0,1/n). Can you provide an upper estimate on p(¥,®)
as defined in (1)? Since ® is a random matrix, we expect your answer to be a function f(n) such that
P{u(¥,®) > f(n)} — 0 as n scales.

Hint: to simplify analysis, you are allowed to use the crude approximation P{|z| > 7} ~ exp(—72/2) for
large 7 > 0, where z ~ N(0, 1).

(c) Set m = 100. Generate a random matrix ® as in Part (b), and compute pu(I, ®). Report the empirical
distribution (i.e. histogram) of u(I, ®) out of 1000 simulations. How does your simulation result compare
to your estimate in Part (b)?

(d) We now generalize the mutual coherence measure to accommodate a more general set of vectors
beyond two bases. Specifically, for any given matrix A = [a1, - ,a,] € R"*P obeying n < p, define the

mutual coherence of A as -

a:; a;
A) = max ) 1
wA) = max TaalTasl
Show that
p—n 1
A) > o
n(A) = P

This is a special case of the Welch bound.

Hint: you may want to use the following inequality: for any positive semidefinite M € R™*"_ || M|z >
2
& (Zi M)

2. Picket-fence signal (10 points)
Suppose that \/n is an integer. Let & € R™ be a picket-fence signal with uniform spacing y/n such that

vn i=1,---,n.

1, if =1 is an integer,
Ty =
0, else,



Compute
[zllo - [|Fzllo and |zllo + [[Fx]o,

where F' is the Fourier matrix such that

(F)ig = % exp <z27r(knl)(ll)) . 1<kl<n.

How do they compare to the uncertainty principles we derive in class?

3. ¢, minimization (20 points)

Suppose that A is an n x 2n dimensional matrix. Let & € R?" be an unknown k-sparse vector, and

y = Az the observed system output. This problem is concerned with ¢; minimization (or basis pursuit) in
recovering x, i.e.

minimize,cgen ||2]]1  st. Az =y. (2)

(a) An optimization problem is called a linear program (LP) if it has the form

minimize, c'z+d
s.t. Gz<h
Az=1b>

where ¢,d, G, h, A, and b are known. Here, for any two vectors r and s, we say r < s if r; < s; for all 7.
Show that (2) can be converted to a linear program.

(b) Set n = 256, and let k range between 1 and 128. For each choice of k, run 10 independent numerical
experiments: in each experiment, generate A = [a; jl1<i<n,1<j<2n as a random matrix such that the a; ;’s
are i.i.d. standard Gaussian random variables, generate £ € R?" as a random k-sparse signal (e.g. you may
generate the support of x uniformly at random, with each non-zero entry drawn from the standard Gaussian
distribution), and solve (2) with y = Ax. An experiment is claimed successful if the solution z returned by
(2) obeys ||& — z||2 < 0.001||x||2. Report the empirical success rates (averaged over 10 experiments) for each
choice of k.



