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Nondifferentiable problems

Differentiability of the objective function f is essential for the validity
of gradient methods

However, there is no shortage of interesting cases (e.g. {1
minimization, nuclear norm minimization) where non-differentiability
is present at some points
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Generalizing steepest descent?

minimize, f(x) subject to x € C

e find a search direction d? that minimizes the directional derivative

d' € argmin f'(z';d)
d:||d|]2<1

f(z+ad)—f(z)

where f'(x;d) := limy o

e updates
$t+1 = a:t + Utdt
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Issues

e Finding the steepest descent direction (or even finding a descent
direction) may involve expensive computation

e Stepsize rules are tricky to choose: for certain popular stepsize
rules (like exact line search), steepest descent might converge to
non-optimal points
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Wolfe's example

1.5
:E(]
;
05 , 5922 4+ 1622)2  if 21 > |a
x f(x1,22) = -
. 9z1 + 16]|x2] if 21 < |z2|
wl

-0.5
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e (0,0) is a non-differentiable point

e if one starts from 20 = (%6, 1) and uses exact line search, then
o {a'} are all differentiable points
o x! — (0,0) as t — oo
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Wolfe's example

05 5(9z7 + 16$§)% if £1 > |22

9z1 + 16]|x2] if 21 < |z2|

z? f(x1,22) :{

-0.5

-1 -0.5 0 0.5 1 1.5 2

e even though it never hits non-differentiable points, steepest
descent with exact line search gets stuck around a non-optimal
point (i.e. (0,0))

e problem: steepest descent directions may undergo
large / discontinuous changes when close to convergence limits
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(Projected) subgradient method

Practically, a popular choice is “subgradient-based methods”
't = Pe(x! — mgh) (4.1)

where g' is any subgradient of f at x!

e the focus of this lecture

e caution: this update rule does not necessarily yield reduction
w.r.t. the objective values
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Subgradients



Subgradients

T

We say g is a subgradient of f at the point x if

f(z)> fl@)+g'(z—x) , Vz (4.2)

a linear under-estimate of f

e the set of all subgradients of f at x is called the subdifferential
of f at @, denoted by df(x)
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Example: f(z) = |z|

f(@) = x| of(x)
1 1
08
05
06
0
0.4
02 05
0 -
El 05 0 05 1 -1 05
T

{_1}7
f(z) = |z 9f (x) = ¢ [-1,1],

{1},
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Example: a subgradient of norms at 0

Let f(x) = ||x|| for any norm || - ||, then for any g obeying ||g||. < 1,
g € 9f(0)
where || - ||, is the dual norm of || - || (i.e. [« := sup . <1 (2, ®))

Proof: To see this, it suffices to prove that
f(z) = f(0) +{g,2—0), Vz

= (9,2) <[z, V=

This follows from generalized Cauchy-Schwarz, i.e.

(g:2) < llgll-[lz]l < =]
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Example: max{fi(x), fo(z)}

f(z) = max{fi(x), f2(2)} af(z)

— max(7,, f,)

6
4
2
0
2
4
6

A 05 0 05 1 15

f(x) = max{fi(z), fa(x)} where fi and fo are differentiable

{f1(=)}, if fi(x) >
Of(x) = [fi(@), fa(x)], if fi(z) = fa(2)
{f2(2)}, if fi(z) <
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Basic rules

e scaling: O(af) = adf (for a > 0)

e summation:

Subgradient methods

O(fi+ f2) =0f1 +0f2
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Example: /; norm

since

we have

Subgradient methods

n

xr) = || = i
f@) =l =3 zi]
=:fi(x)

A N sgn(xi)ei, if €Ty 75 0
afl(a:) N {[—1, 1] + €4, if xT; = 0

Z sgn(zi)e; € Of(x)

1:x;7#0
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Basic rules (cont.)

o affine transformation: if h(x) = f(Ax +b), then

Oh(x) = ATOf(Ax + b)

Subgradient methods
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Example: |Ax + b||;

h(xz) = ||Az + b|;

letting f(x) = ||z||; and A = [a1,--- ,a;]", we have
g= Z sgn(a; x + b)e; € Of(Ax +b).
i:a?m—&-bﬁéo
— Alg= Z sgn(a; © + b;)a; € Oh(x)

Subgradient methods

i:aiTm—i-bi;éO
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Basic rules (cont.)

e chain rule: suppose f is convex, and g is differentiable,
nondecreasing, and convex. Let h = g o f, then

Oh(z) = ¢'(f(x))0f (x)

e composition: suppose f(x) = h(fi(x), -, fn(x)), where f;'s
are convex, and h is differentiable, nondecreasing, and convex.
Let g = VA (Y) ly=(f, (@), ,fu(@)]> and gi € Ofi(x). Then

@191+ +qngn € Of(x)

Subgradient methods 4-17



Basic rules (cont.)

e pointwise maximum: if f(x) = max;<;<j fi(x), then

of() = conv{J{0fi(x) | filx) = f(x)}}

convex hull of subdifferentials of all active functions

e pointwise supremum: if f(x) = sup,cr fo(x), then

Jf(x) = closure (conv {U {0fa(®) | fa(®) = f(@}})
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Example: piece-wise linear functions

_ T )
f(®) = max {a;x+bi}

pick any a; s.t. aj @ + b; = max; {a; @ + b;}, then

a; € 0f(x)

Subgradient methods 4-19



Example: the /., norm

f(@) = el = max o

if © # 0, then pick any x; obeying |z;| = max; |z;| to obtain

sgn(zj)e; € 0f(x)
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Example: the maximum eigenvalue

f(x) = Amax ($1A1 + -+ :EnAn)

where A4, -+, A, are real symmetric matrices

Rewrite

fl®)= sup y' (11A1+ - +2,4,)y
yillyll2=1

as the supremum of some affine functions of x. Therefore, taking y
as the leading eigenvector of x1 Ay + - -+ + z,A,, we have

[y Ay, yT Ayl € of(a)
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Example: the nuclear norm

Let X € R™*" with SVD X =UXV and
min{n,m}

f(X)= > aiX)

i=1

where o;(x) is the ith largest singular value of X

Rewrite

f(X) = sup <ABT,X> = sup faB(X)

orthonormal A,B orthonormal A,B

Recognizing that fa g(X) is maximized by A =U and B =V and
that Vfa g(X) = ABT, we have

UV’ cof(X)
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Negative subgradients are not necessarily descent

directions
0.4
0.2+
Example: f(x) = |z1| + 3|z2| 01<&
-0.2+
-0.4
-1 0.5 0 0.5 1

at z = (1,0):
e g1 =(1,0) € 9f(x), and —g; is a descent direction
e go=(1,3) € 9f(x), but —go is not a descent direction

Reason: lack of continuity — one can change directions
significantly without violating the validity of subgradients
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Negative subgradient is not necessarily descent
direction

Since f(x') is not necessarily monotone, we will keep track of the

best point

"best,t — . 7
f = min, f(z")

We also denote by f°P' := min, f(x) the optimal objective value
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Convex and Lipschitz problems

Clearly, we cannot analyze all nonsmooth functions. A nice (and

widely encountered) class to start with is Lipschitz functions, i.e. the

set of all f obeying

|f(x) — f(2)| < Lyllz — 2|2 Va and z

Subgradient methods
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Fundamental inequality for projected subgradient
methods

We'd like to optimize ||z*! — x*||3, but don't have access to x*

Key idea (majorization-minimization): find another function that
majorizes ||x!*! — x*||2, and optimize the majorizing function
Lemma 4.1

Projected subgradient update rule (4.1) obeys

o — 23 < [l — @[3 20 (7 (@) — 1) + g3 (43)
N——o
fixed

majorizing function
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Proof of Lemma 4.1

[ —a*|15 = |Pe (" — nig') — Pe(x*) |3
< Hwt — g’ — iU*H% (nonexpansiveness of projection)
= ||’ — x*|3 — 2m(a’ — =%, g") + 07|93
< &' — &*[|5 — 2n: (f (") — f(=*)) + 07 llg" I3

where the last line uses the subgradient inequality

fz*) = f(z) > (2" — ', g")
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Polyak’s stepsize rule

The majorizing function in (4.3) suggests a stepsize (Polyak '87)

fla') — o
= 4.4
"=l (44)
which leads to error reduction
ty _ %) 2
o~ at < o -2ty - LS TED )

lg*13

e useful if f°P s known

e the estimation error is monotonically decreasing with Polyak's
stepsize
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Example: projection onto intersection of convex sets

c C2

Let C1, Cy be closed convex sets and suppose C1 N Cy # ()
find ze€CinCy

)

minimize, max {diste, (x), distc, ()}

where diste(x) := min,ec || — z||2
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Example: projection onto intersection of convex sets

/’.
o
c 2

For this problem, the subgradient method with Polyak's stepsize rule
is equivalent to alternating projection

wt+1 - PC1 (wt)a wt+2 — PCQ (wt+1) J
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Example: projection onto intersection of convex sets

Proof: Use the subgradient rule for pointwise max functions to get
g’ € odistc, (x")

where ¢ = argmax;— o diSth (")

If diste, (x') # 0, then one has

x! — Pe,(xt)

t = Vdiste (x!) =
g Vdiste, (") distc, (x?)

which follows since V(%distgi(mt)) = ' — Pc,(x!) (homework) and

v (1dist?, (")) = distc, (2) - Vdiste, (")
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Example: projection onto intersection of convex sets

Proof (cont.): Adopting Polya’s stepsize rule and recognizing that
llgt|l2 = 1, we arrive at
¢ diste, (z') 2" — Pe, (x")
lg*3 diste, (z)
—

="t

t+1

gt =a' —ng' ==

= Pe, (wt)

where i = arg max;1 o distc; (x!)
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Convergence rate with Polyak’s stepsize

Theorem 4.2 (Convergence of projected subgradient method
with Polyak’s stepsize)

Suppose f is convex and L ¢-Lipschitz continuous. Then the projected
subgradient method (4.1) with Polyak’s stepsize rule obeys

Lyl|=® — x*|2

Vi+1

fbest7t o fopt <

e sublinear convergence rate O(1/+/%)
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Proof of Theorem 4.2

We have seen from (4.5) that

2 *
(f@') = f(@) < {lla’ =23 - |&'*! — 2|3} llg"II3
<{ll=" - ="l - =" — 213} L}
Applying it recursively for all iterations (from Oth to ¢th) and
summing them up yield

t

> (@) - f(@)” < {lla® — "3 - =" — 2|3} L}

k=0

— (1) = P < (|2 — 27|31

which concludes the proof
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Other stepsize choices?

Unfortunately, Polyak’s stepsize rule requires knowledge of f°Pt,
which is often unknown a priori

We might often need simpler rules for setting stepsizes

Subgradient methods
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Convex and Lipschitz problems

Theorem 4.3 (Subgradient methods for convex and Lipschitz
functions)

Suppose f is convex and L¢-Lipschitz continuous. Then the projected
subgradient update rule (4.1) obeys

= — a*(13 + L Xio n?

fbest7t _ fopt <
2 Zfzo Ui
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Implications: stepsize rules

e Constant step size 1, = n:

2
hm fbeSt,t < Lfn
t—00 - 2

i.e. may converge to non-optimal points
e Diminishing step size obeying >, 7? < oo and Y, 1, — oo:

lim fbest,t =0
t—o0

i.e. converges to optimal points

Subgradient methods
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Implications: stepsize rule

e Optimal choice? 7; = %:

|20 — |3 + L} logt
Vit

i.e. attains e-accuracy within about O(1/¢?) iterations (ignoring
the log factor)

best,t
f est,t fopt S
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Proof of Theorem 4.5

Applying Lemma 4.1 recursively gives

t

t
e — a3 < lla® — 2"l — 23" m(f (=) — 1) + X il
i=0 =0

Rearranging terms, we are left with

t

t
2> mi(f(ah) = foP) < Jla® — 275 — =" — 275+ Y _nllg'll3
1=0 1=0

t
< |lw® — a3 + L} Y _n?
=0

St oni(e) — ) _ |8~ o+ 1 Slon?
Yicomi N 235 omi
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Strongly convex and Lipschitz problems

If f is strongly convex, then the convergence guarantees can be
improved to O(1/t), as long as the stepsize dimishes at O(1/t)

Theorem 4.4 (Subgradient methods for strongly convex and
Lipschitz functions)

Let f be u-strongly convex and L ¢-Lipschitz continuous over C. If

m=n= ﬁ, then
2
fbest,t _ fopt < % . 1
T op t+1
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Proof of Theorem 4.4

When f is p-strongly convex, we can improve Lemma 4.1 to (exercise)
o+t — 23 < (1 — )2t — 23 — 2me (f(2') — ) + n2llg'3

l“?th e 2_L t+1

= x opt < AR |/
)= < 85l a5+ I3
Since n; = 2/(u(t + 1)), we have
flah)—rort < THiBt—w H%—THle—x ”%erHgtH%
and hence
ut(t —1) pt(t +1) . 1
t(ra) o) < D ot a3 EEE ot a4 '

Subgradient methods 4-41



Proof of Theorem 4.4 (cont.)

Summing over all iterations before ¢, we get

t

Zk (f(wk) - fOPt) <0- Muwtﬂ _

1, x
|5+ = [lg" Il
H =0

2L?p 1

k=0 4
<l
7!
L2 ¢
— fbest,k . fopt < ~f <
K Z}Zzo k

Subgradient methods
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Summary: subgradient methods

stepsize | convergence | iteration
rule rate complexity
convex & Lipschitz 1 ( 1 ) 1
<] o) | o)
problems "=V O\ e
strongly convex & 1 1 1
m=t | o(i) | o)

Lipschitz problems

Subgradient methods
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Convex-concave saddle point problems



Convex-concave saddle point problems

minimize max f(ax
nimize max f(z,y)

f(x,y): convex in x and concave in y

e X, V: bounded closed convex sets

e arises in game theory, robust optimization, generative adversarial
network (GAN), ...
e under mild conditions, it is equivalent to its dual formulation

maximize min f(x
xim meXf( . Y)
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Saddle points

Optimal point (*,y*) obeys

fx*y) < f(x*,y") < flz,y),

Subgradient methods

Vee X, ye)y
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Projected subgradient method

A natural strategy is to apply the subgradient-based approach

a:t-l-l ZBt gé
FIE Y .

Yy
— oroiection subgrad descent on x!
= ProJ subgrad ascent on y*

where gl € 0, f(x",9") and —g} € 0y ( — f(z", y"))
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Performance metric

One way to measure the quality of the solution is via the following
error metric (think of it as a certain “duality gap”)

e(x,y) = max flx,g)— f‘)ﬂ + {f"pt — Iin f(z,y)

= max flx,9) — min f(z,y)

where fOPt := f(z* y*) with (z*, y*) the optimal solution

Subgradient methods



Convex-concave and Lipschitz problems

Theorem 4.5 (Subgradient methods for saddle point problems)

Suppose f is convex in x and concave iny, and is Ly-Lipschitz
continuous over X x Y. Let Dy (resp. Dy) be the diameter of X
(resp. V). Then the projected subgradient method (4.6) obeys

2 P 29—t 9
c(@t §h) < D%+ D3+ L3> r—on;

7
2 ZTZO Nr
t - t -
A~ T A~
where &t = 727?0 " and gt = ZTO Ay
=07 ZT:U nr

e similar to our theory for convex problems

e suggests varying stepsize 1y < 1/\/5
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Iterate averaging

Notably, it is crucial to output the weighted average (!, 9') of the
iterates of the subgradient methods

In fact, the original iterates (x?, y?) might not converge
g Yy g g

Example (bilinear game): f(z,y) = xy
e When 1; — 0 (continuous limit), (zf, y*) exhibits cycling
behavior around (z*,y*) = (0,0) without converging to it
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Proof of Theorem 4.5

By the convexity-concavity of f,
fla'y') — flx.y") < (gr. 2’ —=), aeX
fla'y) = fa'y') < (g, y—v"), yel
Adding these two inequalities yields
S ) @) < b’ —x) ~ oy ~y), wEXyeY
Therefore, invoking the convexity-concavity of f once again gives

e(2',9") = max f(2',y) — min f(x,9")
yey xeX
t
= ET i {?255 Zﬁf ".y) — min ;)mf(azyv}
Zm (gl =" —x)—(g].y" —y)} (47)

- ET 0 Nr mGX yey
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Proof of Theorem 4.5 (cont.)

It then suffices to control the RHS of (4.7) as follows:

Lemma 4.6
ax Zm{ (97, 2" —x) — (g;, 9y y>}
DXJFDJ,JFL2 L on?
= 2

This lemma together with (4.7) immediately establishes Theorem 4.5

Subgradient methods
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Proof of Lemma 4.6

For any € X we have

la™ — 23 = |Px(x” — nrg7) — Pa(@)l3
<|lz" —n.g% — |3 (convexity of X)

= |27 — |3 - 20, (z7 — z. g7) + nZllgz I3
= 2 (" —x,g7) < a7 —alf — 27 — 2|3+ nilgll3
Similarly, for any y € ) one has
-2 (y" —y,9;) < lly" —ylls — lv"" —yl3 +n2llg; 3
Combining these two inequalities and using Lipschitz continuity yield
20:(gg. " —x) — 20:(g,,y" —y)

<lle” —l3 +lly" =yl — ™" =23 = ly™" —yl3 +nlLF

Subgradient methods
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Proof of Lemma 4.6 (cont.)

Summing up these inequalities over 7 =0, - -+ |t gives

t
2> {n-lgr. 2" —x) —nlg),y" —y)}
7=0

t
<l =2l + 1y° — yl3 — = — 23~y -yl + L7

t
<o — w3+l w3+ L3>
t
<Dy +Dy+Liy  n
as claimed

Remark: this lemma does NOT rely on the convexity-concavity of f(-,-)

Subgradient methods
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