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Outline

• Stochastic gradient descent (stochastic approximation)

• Convergence analysis

• Reducing variance via iterate averaging

Stochastic gradient methods 11-2



Stochastic programming

minimizex F (x) = E
[
f (x; ξ)

]
︸ ︷︷ ︸

expected risk, population risk, ...

• ξ: randomness in problem

• suppose f(·, ξ) is convex for every ξ (and hence F (·) is convex)
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Example: empirical risk minimization

Let {ai, yi}ni=1 be n random samples, and consider

minimizex F (x) := 1
n

n∑

i=1
f
(
x; {ai, yi}

)

︸ ︷︷ ︸
empirical risk

e.g. quadratic loss f
(
x; {ai, yi}

)
= (a>i x− yi)2

If one draws index j ∼ Unif(1, · · · , n) uniformly at random, then

F (x) = Ej
[
f (x; {aj , yj})

]
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A natural solution

Under “mild” technical conditions

xt+1 = xt − ηt∇F (xt)
= xt − ηt∇E

[
f(xt; ξ)

]

= xt − ηtE
[∇xf(xt; ξ)

]

issues:
• distribution of ξ may be unknown
• even if it is known, evaluating high-dimensional expectation is

often expensive
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Stochastic gradient descent
(stochastic approximation)



Stochastic gradient descent (SGD)

— Robbins, Monro ’51

stochastic approximation / stochastic gradient descent (SGD)

xt+1 = xt − ηt g(xt; ξt) (11.1)

where g(xt; ξt) is unbiased estimate of ∇F (xt), i.e.

E
[
g(xt; ξt)

]
= ∇F (xt)

• a stochastic algorithm for finding a critical point x obeying
∇F (x) = 0

• more generally, a stochastic algorithm for finding the roots of
G(x) := E[g(x; ξ)]
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Example: SGD for empirical risk minimization

minimizex F (x) := 1
n

n∑

i=1
f
(
x; {ai, yi}

)

︸ ︷︷ ︸
empirical risk

for t = 0, 1, . . .
choose it uniformly at random, and run

xt+1 = xt − ηt∇xfit(xt; {ai, yi})
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Example: SGD for empirical risk minimization

benefits: SGD exploits information more efficiently than batch
methods
• practical data usually involve lots of redundancy; using all data

simultaneously in each iteration might be inefficient
• SGD is particularly efficient at the very beginning, as it achieves

fast initial improvement with very low per-iteration cost
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Example: SGD for empirical risk minimization
— Bottou, Curtis, Nocedal ’18
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Fig. 3.1: Empirical risk Rn as a function of the number of accessed data points (ADP) for a batch
L-BFGS method and the stochastic gradient (SG) method (3.7) on a binary classification problem
with a logistic loss objective and the RCV1 dataset. SG was run with a fixed stepsize of ↵ = 4.

w1 −1 w1,* 1

Fig. 3.2: Simple illustration to motivate the fast initial behavior of the SG method for minimizing
empirical risk (3.6), where each fi is a convex quadratic. This example is adapted from [15].

convergence by employing a sequence of diminishing stepsizes to overcome any oscillatory behavior
of the algorithm.

Theoretical Motivation One can also cite theoretical arguments for a preference of SG over a
batch approach. Let us give a preview of these arguments now, which are studied in more depth
and further detail in §4.

• It is well known that a batch approach can minimize Rn at a fast rate; e.g., if Rn is strongly
convex (see Assumption 4.5) and one applies a batch gradient method, then there exists a
constant ⇢ 2 (0, 1) such that, for all k 2 N, the training error satisfies

Rn(wk)�R⇤
n  O(⇢k), (3.9)

where R⇤
n denotes the minimal value of Rn. The rate of convergence exhibited here is refereed

to as R-linear convergence in the optimization literature [117] and geometric convergence in
the machine learning research community; we shall simply refer to it as linear convergence.
From (3.9), one can conclude that, in the worst case, the total number of iterations in which
the training error can be above a given ✏ > 0 is proportional to log(1/✏). This means that, with

18

binary classification with logistic loss and RCV1 dataset (ηt ≡ 4)
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Example: temporal difference (TD) learning

Reinforcement learning studies a Markov decision process (MDP)
with unknown model

core problem: estimate the so-called “value function” under a
stationary policy π

V π(s) = E
[
r0 + γV π(s1) | s0 = s

]
(11.2)

for all s ∈ S, without knowing the transition probabilities of the MDP
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Example: temporal difference (TD) learning

We won’t explain what Equation (11.2) means, but remark that . . .

• V π(·): value function under policy π
• st: state at time t
• S: state space
• 0 < γ < 1: discount factor
• rt: reward at time t
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Example: temporal difference (TD) learning

The definition of the value function is equivalent to

E
[
V π(s)− r0 − γV π(s1)︸ ︷︷ ︸

g(V π)

| s0 = s
]

= 0

TD(0) algorithm: for t = 0, 1, . . .
draw a new state st+1, collect a reward rt, then update

V̂ π(st) ← V̂ π(st)− ηt g(V̂ π) or

V̂ π(st) ← V̂ π(st)− ηt
{
V̂ π(st)− rt − V̂ π(st+1)

}
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Example: Q-learning

What if we also want to find an optimal policy?

core problem: solve the so-called “Bellman equation”

V (s) = max
a∈A

{
R(s, a) + γ E

[
V (s1) | s0 = s, a0 = a

]}
(11.3)

for all s ∈ S, without knowing the transition probabilities of the MDP
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Example: Q-learning

Again we won’t explain what the Bellman equation means, but
remark that . . .

• V (·): value function
• st: state at time t
• S: state space
• at: action at time t
• A: action space
• 0 < γ < 1: discount factor
• R(·, ·): reward function
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Example: Q-learning

V (s) = max
a∈A

{
R(s, a) + γ E

[
V (s1) | s0 = s, a0 = a

]}

• since the transition probabilities are unknown, it is natural to
resort to stochastic approximation methods
• issue: the Bellman equation has E inside the max operator
• a very cute idea: introduce the so-called “Q function”
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Example: Q-learning

V (s) = max
a∈A

{
R(s, a) + γ E

[
V (s1) | s0 = s, a0 = a

]}

Define the Q function as

Q(s, a) := R(s, a) + γ E [V (s1) | s0 = s, a0 = a]

= R(s, a) + γ E
[
max
ã∈A

Q(s1, ã)
︸ ︷︷ ︸

=V (s1)

| s0 = s, a0 = a
]

(11.4)

• Q learning: use stochastic approximation methods to estimate
the Q function (rather than the value function V (·))
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Example: Q-learning

Definition of the Q-function is equivalent to

E
[
Q(s, a)−R(s, a)− γmax

ã∈A
Q(s1, ã)

︸ ︷︷ ︸
g(Q)

| s0 = s, a0 = a
]

= 0

Q-learning algorithm: for t = 0, 1, . . .
draw a new state st+1 using an action at, then update

Q̂(st, at) ← Q̂(st, at)− ηt g(Q̂) or

Q̂(st, at) ← Q̂(st, at)− ηt
{
Q̂(st, at)−R(st, at)− γmax

ã∈A
Q̂(st+1, ã)

}
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Convergence analysis



Strongly convex and smooth problems

minimizex F (x) := E
[
f(x; ξ)

]

• F : µ-strongly convex, L-smooth

• g(xt; ξt): an unbiased estimate of ∇F (xt) given {ξ0, · · · , ξt−1}

• for all x,
E
[‖g(x; ξ)‖22

] ≤ σ2
g + cg‖∇F (x)‖22 (11.5)
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Convergence: fixed stepsizes

Theorem 11.1 (Convergence of SGD for strongly convex
problems; fixed stepsizes)

Under the assumptions in Page 11-20, if ηt ≡ η ≤ 1
Lcg

, then SGD
(11.1) achieves

E
[
F (xt)− F (x∗)

] ≤ ηLσ2
g

2µ + (1− ηµ)t
(
F (x0)− F (x∗)

)

• check Bottou, Curtis, Nocedal ’18 (Theorem 4.6) for the proof
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Implications: SGD with fixed stepsizes

E
[
F (xt)− F (x∗)

] ≤ ηLσ2
g

2µ + (1− ηµ)t
(
F (x0)− F (x∗)

)

• fast (linear) convergence at the very beginning
• converges to some neighborhood of x∗ — variation in gradient

computation prevents further progress
• when gradient computation is noiseless (i.e. σg = 0), it converges

linearly to optimal points
• smaller stepsizes η yield better converging points
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One practical strategy
Run SGD with fixed stepsizes; whenever progress stalls, reduce
stepsizes and continue SGD

— Bottou, Curtis, Nocedal ’18

of stepsize decrease, we may invoke Theorem 4.6, from which it follows that to achieve the first
bound in (4.17) one needs

(1� ↵rcµ)(kr+1�kr)(4F↵r � F↵r)  F↵r

=) kr+1 � kr �
log(1/3)

log(1� ↵rcµ)
⇡ log(3)

↵rcµ
= O(2r).

(4.18)

In other words, each time the stepsize is cut in half, double the number of iterations are required.
This is a sublinear rate of stepsize decrease—e.g., if {kr} = {2r�1}, then ↵k = ↵1/k for all k 2
{2r}—which, from {F↵r} = {↵rLM

2cµ } and (4.17), means that a sublinear convergence rate of the
suboptimality gap is achieved.
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Fig. 4.1: Depiction of the strategy of halving the stepsize ↵ when the expected suboptimality gap
is smaller than twice the asymptotic limit F↵. In the figure, the segment B–B0 has one third of the
length of A–A0. This is the amount of decrease that must be made in the exponential term in (4.14)
by raising the contraction factor to the power of the number of steps during which one maintains
a given constant stepsize; see (4.18). Since the contraction factor is (1�↵cµ), the number of steps
must be proportional to ↵. Therefore, whenever the stepsize is halved, one must maintain it twice
as long. Overall, doubling the number of iterations halves the suboptimality gap each time, yielding
an e↵ective rate of O(1/k).

In fact, these conclusions can be obtained in a more rigorous manner that also allows more
flexibility in the choice of stepsize sequence. The following result harks back to the seminal work
of Robbins and Monro [130], where the stepsize requirement takes the form

1X

k=1

↵k =1 and

1X

k=1

↵2
k <1. (4.19)

Theorem 4.7 (Strongly Convex Objective, Diminishing Stepsizes). Under Assumptions 4.1,
4.3, and 4.5 (with Finf = F⇤), suppose that the SG method (Algorithm 4.1) is run with a stepsize
sequence such that, for all k 2 N,

↵k =
�

� + k
for some � >

1

cµ
and � > 0 such that ↵1 

µ

LMG
. (4.20)
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Convergence analysis
Using Lemma 5.4, we immediate arrive at
Theorem 5.3

Suppose f is convex and Lipschitz continuous (i.e. ÎgtÎú Æ Lf ) on C,
and suppoe Ï is fl-strongly convex w.r.t. Î · Î. Then

fbest,t ≠ fopt Æ
supxœC DÏ

!
x,x0"

+ L2
f

2fl

qt
k=0 ÷2

kqt
k=0 ÷k

• If ÷t =
Ô

2flR
Lf

1Ô
t

with R := supxœC DÏ
!
x,x0"

, then

fbest,t ≠ fopt Æ O

A
Lf

Ô
RÔ

fl

log tÔ
t

B

¶ one can further remove log t factor
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whenever progress stalls, we half the stepsizes and repeat
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Convergence with diminishing stepsizes

Theorem 11.2 (Convergence of SGD for strongly convex
problems; diminishing stepsizes)

Suppose F is µ-strongly convex, and (11.5) holds with cg = 0. If
ηt = θ

t+1 for some θ > 1
2µ , then SGD (11.1) achieves

E
[‖xt − x∗‖22

] ≤ cθ
t+ 1

where cθ = max
{ 2θ2σ2

g
2µθ−1 , ‖x0 − x∗‖22

}

• convergence rate O(1/t) with diminishing stepsize ηt � 1/t
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Proof of Theorem 11.2

Using the SGD update rule, we have

‖xt+1 − x∗‖22 =
∥∥xt − ηtg(xt; ξt)− x∗

∥∥2
2

= ‖xt − x∗‖22 − 2ηt(xt − x∗)>g(xt; ξt) + η2
t ‖g(xt; ξt)‖22 (11.6)

Since xt is indep. of ξt, apply the law of total expectation to obtain

E
[
(xt − x∗)>g(xt; ξt)

]
= E

[
E
[
(xt − x∗)>g(xt; ξt) | ξ1, · · · , ξt−1

]]

= E
[
(xt − x∗)>E[g(xt; ξt) | ξ1, · · · , ξt−1]

]

= E
[
(xt − x∗)>∇F (xt)

]
(11.7)
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Proof of Theorem 11.2 (cont.)

Furthermore, strong convexity gives

〈∇F (xt),xt − x∗〉 = 〈∇F (xt)−∇F (x∗)︸ ︷︷ ︸
=0

,xt − x∗〉 ≥ µ
∥∥xt − x∗

∥∥2
2

=⇒ E
[〈∇F (xt),xt − x∗〉] ≥ µE[‖xt − x∗‖22

]
(11.8)

Combine (11.6), (11.7), (11.8) and (11.5) (with cg = 0) to obtain

E
[‖xt+1 − x∗‖22

] ≤ (1− 2µηt)E
[‖xt − x∗‖22

]
+ η2

t σ
2
g︸ ︷︷ ︸

does not vanish unless ηt→0
(11.9)

Take ηt = θ
t+1 and use induction to conclude the proof (exercise!)

Stochastic gradient methods 11-26



Optimality

— Nemirovski, Yudin ’83, Agarwal et al. ’11, Raginsky, Rakhlin ’11

Informally, when minimizing strongly convex functions, no algorithm
performing t queries to noisy first-order oracles can achieve an
accuracy better than the order of 1/t

=⇒ SGD with stepsizes ηt � 1/t is optimal
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Optimality

— Nemirovski, Yudin ’83

More precisely, consider a class of problems in which f is µ-strongly
convex and L-smooth, and Var(‖g(xt; ξt)‖2) ≤ σ2. Then the
worst-case iteration complexity for (stochastic) first-order methods:

√
L

µ
log

(
L‖x0 − x∗‖22

ε

)
+ σ2

µε

• for deterministic cases: σ = 0, and hence the lower bound is
√
L

µ
log

(
L‖x0 − x∗‖22

ε

)
(achievable by Nesterov’s method)

• for noisy cases with large σ, the lower bound is dominated by

σ2

µ
· 1
ε
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Comparisons with batch GD

Empirical risk minimization with n samples:

iteration per-iteration total
complexity cost comput. cost

batch GD log 1
ε n n log 1

ε

SGD 1
ε 1 1

ε

SGD is more appealing for large n and moderate accuracy ε (in which
case 1

ε < n log 1
ε )

— which often arises in the big data regime!
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Convex problems

What if we lose strong convexity?

minimizex F (x) := E
[
f(x; ξ)

]

• F : convex
• E

[‖g(x; ξ)‖22
] ≤ σ2

g for all x
• g(xt; ξt) is an unbiased estimate of ∇F (xt) given {ξ0, · · · , ξt−1}
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Convex problems
Suppose we return a weighted average

x̃t :=
t∑

k=0

ηk∑t
j=0 ηj

xk

Theorem 11.3

Under the assumptions in Page 11-30, one has

E[F (x̃t)− F (x∗)] ≤
1
2E
[‖x0 − x∗‖22

]
+ 1

2σ
2
g
∑t
k=0 η

2
k∑t

k=0 ηk

• if ηt � 1/
√
t, then

E[F (x̃t)− F (x∗)] . log t√
t
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Proof of Theorem 11.3
Remark: very similar to the convergence analysis for subgradient
methods

By convexity of F , we have F (x) ≥ F (xt) + (x− xt)>∇F (xt)

=⇒ E[(xt − x∗)>∇F (xt)] ≥ E[F (xt)− F (x∗)]

This together with (11.6) and (11.7) implies

2ηkE[F (xk)− F (x∗)] ≤ E
[‖xk − x∗‖22

]− E
[‖xk+1 − x∗‖22

]
+ η2

kσ
2
g

Sum over k = 0, · · · , t to obtain
t∑

k=0
2ηkE[F (xk)− F (x∗)] ≤ E

[
‖x0 − x∗‖2

2
]
− E

[
‖xt+1 − x∗‖2

2
]

+ σ2
g

t∑

k=0
η2
k

≤ E
[
‖x0 − x∗‖2

2
]

+ σ2
g

t∑

k=0
η2
k
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Proof of Theorem 11.3 (cont.)

Setting vt = ηt∑t

k=0 ηk
yields

t∑

k=0
vkE[F (xk)− F (x∗)] ≤

1
2E
[‖x0 − x∗‖22

]
+ 1

2σ
2
g
∑t
k=0 η

2
k∑t

k=0 ηk

By convexity of F , we arrive at

E[F (x̃t)− F (x∗)] ≤
1
2E
[‖x0 − x∗‖22

]
+ 1

2σ
2
g
∑t
k=0 η

2
k∑t

k=0 ηk
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Reducing variance via iterate averaging



Stepsize choice O(1/t)?

Two conflicting regimes
• the noiseless case (i.e. g(x; ξ) = ∇F (x)): stepsizes ηt � 1/t are

way too conservative

• the general noisy case: longer stepsizes (ηt � 1/t) might fail to
suppress noise (and hence slow down convergence)

Can we modify SGD so as to allow for larger stepsizes
without compromising convergence rates?
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Motivation for iterate averaging

SGD with long stepsizes poorly suppresses noise, which tends to
oscillate around the global minimizers due to the noisy nature of
gradient computation

One may, however, average iterates to mitigate oscillation and reduce
variance
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Acceleration by averaging

— Ruppert ’88, Polyak ’90, Polyak, Juditsky ’92

return xt := 1
t

t−1∑

i=0
xi (11.10)

with larger stepsizes ηt � t−α, α < 1

Key idea: average the iterates to reduce variance and improve
convergence
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Example: a toy quadratic problem

minimizex∈Rd
1
2‖x‖

2
2

• constant stepsizes: ηt ≡ η < 1

• g(xt; ξt) = xt + ξt with
◦ E

[
ξt | ξ0, · · · , ξt−1] = 0

◦ E
[
ξtξt> | ξ0, · · · , ξt−1] = I

SGD iterates:
x1 = x0 − η(x0 + ξ0) = (1− η)x0 − ηξ0

x2 = x1 − η(x1 + ξ1) = (1− η)2x0 − η(1− η)ξ0 − ηξ1

...
xt = (1− η)tx0 − η(1− η)t−1ξ0 − η(1− η)t−2ξ1 − · · ·

xt ≈ 1
t

t−1∑

k=0
(1− η)kx0

︸ ︷︷ ︸
= 1
t

1−(1−η)t
η

x0 t→∞→ 0

− η {1 + (1− η) + · · · } 1
t

t−1∑

k=0
ξk

︸ ︷︷ ︸
imprecise; but close enough for large t

≈ −1
t

t−1∑

k=0
ξk (since 1 + (1− η) + · · · = η−1)

t→∞→ 1√
t
N (0, I) (the central limit theorem for martingale)
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Example: a toy quadratic problem

minimizex∈Rd
1
2‖x‖

2
2

• constant stepsizes: ηt ≡ η < 1

• g(xt; ξt) = xt + ξt with
◦ E

[
ξt | ξ0, · · · , ξt−1] = 0

◦ E
[
ξtξt> | ξ0, · · · , ξt−1] = I

SGD iterates:
x1 = x0 − η(x0 + ξ0) = (1− η)x0 − ηξ0

x2 = x1 − η(x1 + ξ1) = (1− η)2x0 − η(1− η)ξ0 − ηξ1

...
xt = (1− η)tx0 − η(1− η)t−1ξ0 − η(1− η)t−2ξ1 − · · ·

xt ≈ 1
t

t−1∑

k=0
(1− η)kx0

︸ ︷︷ ︸
= 1
t

1−(1−η)t
η

x0 t→∞→ 0

− η {1 + (1− η) + · · · } 1
t

t−1∑

k=0
ξk

︸ ︷︷ ︸
imprecise; but close enough for large t

≈ −1
t

t−1∑

k=0
ξk (since 1 + (1− η) + · · · = η−1)

t→∞→ 1√
t
N (0, I) (the central limit theorem for martingale)
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Example: more general quadratic problems

minimizex∈Rd
1
2x
>Ax− b>x

• A � µI � 0 (strongly convex)

• constant stepsizes: ηt ≡ η < 1/µ

• g(xt; ξt) = Axt − b+ ξt with
◦ E

[
ξt | ξ0, · · · , ξt−1] = 0

◦ S := lim
t→∞

E
[
ξtξt> | ξ0, · · · , ξt−1] is finite

Theorem 11.4

Fix d. Then as t→∞, the iterate average xt obeys
√
t
(
xt − x∗) D→︸︷︷︸

convergence in distribution

N (0,A−1SA−1)
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Example: quadratic problems

√
t
(
xt − x∗) D→ N (0,A−1SA−1), t→∞

• asymptotically,
∥∥xt − x∗

∥∥2
2 � 1/t, which matches the

convergence rate in Theorem 11.2

• much longer stepsizes (ηt � 1)
=⇒ faster convergence for less noisy cases (e.g. ξt = 0)
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Proof sketch of Theorem 11.5

(1) Let ∆t = xt − x∗ and ∆
t = xt − x∗. SGD update rule gives

∆t+1 = ∆t − η(A∆t + ξt
)

= (I − ηA)∆t − ηξt

=⇒ ∆t+1 = (I − ηA)t+1∆0 − η
t∑

k=0
(I − ηA)t−kξk

(2) Simple calculation gives (check Polyak, Juditsky ’92)

∆
t = 1

tη
Gt

0∆
0 + 1

t

t−2∑

j=0
A−1ξj + 1

t

t−2∑

j=0

(
Gt
j −A−1)ξj

where Gt
j := η

t−1−j∑

i=0
(I − ηA)i
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Proof sketch of Theorem 11.5 (cont.)

(3) From the central limit theorem for martingales,

1√
t

t−2∑

j=0
A−1ξj

D→ N
(
0,A−1SA−1

)

(4) With proper stepsizes, one has (check Polyak, Juditsky ’92)

‖Gt
0‖ <∞, ‖Gt

j −A−1‖ <∞ and lim
t→∞

1
t

t−1∑

j=0
‖Gt

j −A−1‖2 = 0

(5) Combining these bounds establishes Theorem 11.5
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More general strongly convex problems

minimizex∈Rd F (x)

• F : strongly convex

• stepsizes: ηt � t−α with α ∈ (0.5, 1)

• g(xt; ξt) = ∇F (xt) + ξt

◦ E
[
ξt | ξ0, · · · , ξt−1] = 0

◦ S := limt→∞ E
[
ξtξt> | ξ0, · · · , ξt−1] is finite

Theorem 11.5 (informal, Polyak, Juditsky ’92)

Fix d and let t→∞. For a large class of strongly convex problems, if
ηt � t−α for some 1/2 < α < 1, then

√
t
(
xt − x∗) D→ N

(
0,
(∇2F (x∗)

)−1
S
(∇2F (x∗)

)−1)

• depending on the local curvature at / around minimizers
• allow the stepsize ηt to be longer than 1/t
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