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Outline

e Stochastic gradient descent (stochastic approximation)
e Convergence analysis

e Reducing variance via iterate averaging
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Stochastic programming

minimizeg, F(x)=E|[f(x;¢)]

expected risk, population risk, ...

e &: randomness in problem

e suppose f(-, &) is convex for every € (and hence F(+) is convex)
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Example: empirical risk minimization

Let {a;,y;}!, be n random samples, and consider

n

minimize, F(x) := %Zf(xy {ai, vi})

=1

empirical risk

e.g. quadratic loss f(x;{ai,vi}) = (a]  — y;)?

If one draws index j ~ Unif(1,--- ,n) uniformly at random, then

F(x) = E;[f (z: {aj,y;}) ]
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A natural solution

Under “mild” technical conditions

xt-i—l = gt — ntVF(:ct)
= ' - VE[f(a";€)]
=" — nE[Vaf(z'; €)]

issues:

e distribution of & may be unknown

e even if it is known, evaluating high-dimensional expectation is
often expensive
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Stochastic gradient descent

(stochastic approximation)



Stochastic gradient descent (SGD)

— Robbins, Monro '51

stochastic approximation / stochastic gradient descent (SGD)

t+1 _ wt o ntg(a:t;gt) (111)

x
where g(x'; £!) is unbiased estimate of VF(z!), i.e.

Elg(z';¢")] = VF(2")
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Stochastic gradient descent (SGD)

— Robbins, Monro '51

stochastic approximation / stochastic gradient descent (SGD)

t+1 _ wt o ntg(a:t;gt) (111)

€T

e a stochastic algorithm for finding a critical point  obeying
VF(x)=0

e more generally, a stochastic algorithm for finding the roots of

G(x) := Elg(z; §)]
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Example: SGD for empirical risk minimization

n

minimize, F(x) := %Zf(w;{ai,yi})

=1

empirical risk

fort=0,1,...

choose i; uniformly at random, and run

' =2t — Ve fi, (2 {ai, vi})
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Example: SGD for empirical risk minimization

benefits: SGD exploits information more efficiently than batch
methods

e practical data usually involve lots of redundancy; using all data
simultaneously in each iteration might be inefficient

e SGD is particularly efficient at the very beginning, as it achieves
fast initial improvement with very low per-iteration cost
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Example: SGD for empirical risk minimization

— Bottou, Curtis, Nocedal '18
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binary classification with logistic loss and RCV1 dataset (7, = 4)
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Example: temporal difference (TD) learning

Reinforcement learning studies a Markov decision process (MDP)
with unknown model

core problem: estimate the so-called "value function” under a
stationary policy 7

V7(s) = E{To +V7(s1) | 50 = S} (11.2)

for all s € S, without knowing the transition probabilities of the MDP
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Example: temporal difference (TD) learning

We won't explain what Equation (11.2) means, but remark that ...

V7(-): value function under policy 7

s;. state at time ¢

S: state space

0 < = < 1: discount factor

r¢: reward at time ¢
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Example: temporal difference (TD) learning

The definition of the value function is equivalent to

E[V’T(s) —1rog—yV7(s1) | so = s} =0

g(V™)

TD(0) algorithm: fort =0,1,...

draw a new state s;41, collect a reward 7y, then update
V(s1) « V™(s)) —mg(V™)  or

A~ A~

V(se) o V(s = {V7(s0) = 1= V7 (s010)}
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Example: Q-learning

What if we also want to find an optimal policy?

core problem: solve the so-called “Bellman equation”

V(s) = max{R(s,a) +yE[V(s1) | so = s,a0 = a]} (11.3)

acA

for all s € S, without knowing the transition probabilities of the MDP
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Example: Q-learning

Again we won't explain what the Bellman equation means, but
remark that ...

e V(-): value function

e s;: state at time ¢

S: state space

e q;: action at time ¢

A: action space

0 < v < 1: discount factor

e R(-,-): reward function
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Example: Q-learning

V(s) = majt({R(s,a) +yE[V(s1) | so = s,a0 = a]}

ac

e since the transition probabilities are unknown, it is natural to
resort to stochastic approximation methods

e issue: the Bellman equation has E inside the max operator

e a very cute idea: introduce the so-called “Q function”
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Example: Q-learning

V(s) = maj({R(s,a) +yE[V(s1) | so = s,a0 = a]}

ac

Define the Q function as

Q(s,a) := R(s,a) +yE[V(s1) | so = s,a0 = a
= R(s,a) + ’yE[maﬁi( Q(s1,a) | so = s,a9 = a} (11.4)
ac —
=V (s1

e Q learning: use stochastic approximation methods to estimate
the Q function (rather than the value function V (-))
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Example: Q-learning

Definition of the Q-function is equivalent to

E[Q(s,a) — R(s,a) — 71;133{@(51,&) | so =s,a0 = a} =0

9(Q)

Q-learning algorithm: for t =0,1,...

draw a new state sy41 using an action a;, then update

Q(st,ar) « Q(se,ar) —mg(Q)  or

N A

Q(Su at) — Q(Snat) — Tt {Q(Su at) - R(Su (lt) - ’Y%leaj( Q(5t+17 d)}
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Convergence analysis



Strongly convex and smooth problems

minimize; F(x) :=E[f(x;¢)]

e [ u-strongly convex, L-smooth
e g(x!;¢"): an unbiased estimate of VF (x!) given {¢°,... ¢!~11

e for all z,
Elllg(z;&)[3] < o + | VF(2)]3 (11.5)
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Convergence: fixed stepsizes

Theorem 11.1 (Convergence of SGD for strongly convex
problems; fixed stepsizes)

Under the assumptions in Page 11-20, if iy = n < L%g then SGD
(11.1) achieves

—5 + (1 —nu)'(F(z°) — F(z"))

e check Bottou, Curtis, Nocedal '18 (Theorem 4.6) for the proof
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Implications: SGD with fixed stepsizes

0.2
E[F(2') - F(z")] < =% + (1 - qp) (F(2°) - F(z"))

= o
e fast (linear) convergence at the very beginning

e converges to some neighborhood of x* — variation in gradient
computation prevents further progress

e when gradient computation is noiseless (i.e. oz = 0), it converges
linearly to optimal points

e smaller stepsizes 7 yield better converging points
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One practical strategy

Run SGD with fixed stepsizes; whenever progress stalls, reduce
stepsizes and continue SGD

— Bottou, Curtis, Nocedal '18

whenever progress stalls, we half the stepsizes and repeat
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Convergence with diminishing stepsizes

Theorem 11.2 (Convergence of SGD for strongly convex
problems; diminishing stepsizes)

Suppose Fis p- strongly convex, and (11.5) holds with c¢; = 0. If

Ny = t+1 for some 6 > 2— then SGD (11.1) achieves
Co
E
ot 21 < 72

2.2
where cp = max {%, |20 — 37*"%}

e convergence rate O(1/t) with diminishing stepsize 1, < 1/t
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Proof of Theorem 11.2

Using the SGD update rule, we have

%112
la'*t — || = [[a" —mg(z';€") — 2

= |lz* — 2*|3 - 2m(a" — ") "g(z";€") + nfllg(a’ €N)I5  (11.6)

tis indep. of &, apply the law of total expectation to obtain

E[E[(wt CB*)TQ(CBt;ft) | &1, 7£t—1]]
=E[(z' — «*) 'Elg(z"£") | &1, &1]]
=E[(z' — ") VF(z")] (11.7)

Since ©

E(z' —2") g(=";¢")]
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Proof of Theorem 11.2 (cont.)

Furthermore, strong convexity gives
(VF(z'),z' — x*) = (VF(z') - VF(z"),z' — x*) > ya’ - 2*||]
=0

—  E[(VF@").a' —2")] 2 jE[J2' —2"|3]  (118)

Combine (11.6), (11.7), (11.8) and (11.5) (with ¢z = 0) to obtain

Efl"™ - 2*|3] < (1 - 2um)E[[la" — x*||3] + nfoy
~—~—

does not vanish unless 7:—0

(11.9)
Take n, = t—&—il and use induction to conclude the proof (exercise!)
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Optimality

— Nemirovski, Yudin ‘83, Agarwal et al. '11, Raginsky, Rakhlin 11

Informally, when minimizing strongly convex functions, no algorithm
performing t queries to noisy first-order oracles can achieve an
accuracy better than the order of 1/t

=  SGD with stepsizes 7; =< 1/t is optimal
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Optimality

— Nemirovski, Yudin '83
More precisely, consider a class of problems in which f is u-strongly

convex and L-smooth, and Var(||g(x?; £')||2) < 02. Then the
worst-case iteration complexity for (stochastic) first-order methods:

f log (Luzco —x*|r%> L
) € He

e for deterministic cases: o = 0, and hence the lower bound is

L L k|2
— log (M> (achievable by Nesterov's method)
\

3
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Optimality

— Nemirovski, Yudin '83

More precisely, consider a class of problems in which f is u-strongly
convex and L-smooth, and Var(||g(x?; £')||2) < 02. Then the
worst-case iteration complexity for (stochastic) first-order methods:

f log (Luzco —x*|r%> L
) € He

e for noisy cases with large o, the lower bound is dominated by

0.2

m

o | =
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Comparisons with batch GD

Empirical risk minimization with n samples:

iteration per-iteration total
complexity cost comput. cost
batch GD log L n nlog L
SGD z 1 1

SGD is more appealing for large n and moderate accuracy ¢ (in which
1 1

case - < nlog 2)
— which often arises in the big data regime!
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Convex problems

What if we lose strong convexity?
minimize; F(x) :=E[f(x;¢)]

e [ convex
o Ellg(;€)3] < ag for all x
e g(x!; ") is an unbiased estimate of VF(x!) given {£°,---  &!~11
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Convex problems

Suppose we return a weighted average

t

~t . Z Mk zF
L .
Z] Onj

k=0

Theorem 11.3

Under the assumptions in Page 11-30, one has

SB[l — 23] + 3

2 t 2
Og 2 k=0 "M

E[F(&") - F(z")] < S0

e if 7y < 1//t, then

BIP(@) — Fa")] < 5
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Proof of Theorem 11.3

Remark: very similar to the convergence analysis for subgradient
methods

By convexity of F, we have F(x) > F(x!) + (x — ') T VF(x!)
—  E[(z' — %) VF(z!)] > E[F(z!) — F(z*)]
This together with (11.6) and (11.7) implies
2 E[F (a*) — F(2*)] < E[|la" —a*(3] - E[l]z""! —a*(|3] + nio;

Sum over k =0,--- ,t to obtain

t t
> 2mE[F(e") - F(a")] < Efll2’ - 2" |3] —E[l2"" —2"|3] + 07 >
k=0 k=0

<E[|la” — 23] + o2 > i
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Proof of Theorem 11.3 (cont.)

Setting vy = —¢%&— vyields

ZZ:O Mk

%E[Hmo - m*\l%] + %Ug ZZ:O 771%
> o Mk

> o E[F(2F) — F(x*)] <
k=0

By convexity of F', we arrive at

SB[l — 23] + 507 Sh—o

E[F(2") - F(x")] < S
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Reducing variance via iterate averaging



Stepsize choice O(1/t)?

Two conflicting regimes
e the noiseless case (i.e. g(x;&) = VF(x)): stepsizes n; < 1/t are

way too conservative

e the general noisy case: longer stepsizes (n; > 1/t) might fail to
suppress noise (and hence slow down convergence)

Can we modify SGD so as to allow for larger stepsizes
without compromising convergence rates?
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Motivation for iterate averaging

SGD with long stepsizes poorly suppresses noise, which tends to
oscillate around the global minimizers due to the noisy nature of
gradient computation

One may, however, average iterates to mitigate oscillation and reduce
variance
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Acceleration by averaging

— Ruppert '88, Polyak '90, Polyak, Juditsky '92

return T = - Zw’ (11.10)

with larger stepsizes 1y < t7%, a <1

Key idea: average the iterates to reduce variance and improve
convergence
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Example: a toy quadratic problem

L Lo
minimize, cpad §H$UH2

e constant stepsizes: n; =n <1
o g(a'; &) = at + ¢ with

o E[¢" &%+ ,¢7]=0

o E[¢¢'T | €0, &7 =1
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Example: a toy quadratic problem

L Lo
minimize, cpad §H$UH2

SGD iterates:
ol =z — @ +¢%) = (1—n)a’ —ng°
o’ =x' —n@' +¢&') =1-n)’x" -yl —n)e —ne'

=1 -z’ —nl—n)1e —n1-n'2 -
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Example: a toy quadratic problem

. L2
minimize, cpad §H$UH2

L

B 1t—1 1t—1
T Yy (I-nfa® —pf{l+(1-n+--}-> ¢
= b=

_11-(1-mt gt—oo imprecise; but close enough for large t
=i % = 0

1

t—1
_ZZEk (since 1+ (1—n)4---=nh
k=0

&

1
b2go — N(0,1) (the central limit theorem for martingale)

Vit
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Example: more general quadratic problems

N 1
minimize, crd §mTA:B—bT:c

o A ul >0 (strongly convex)
e constant stepsizes: m; =1 < 1/
o g(x'; ') = Azt — b+ £ with

o E[st | 507._. ’gt—l] =0
o §:= lim E[gPetT | €0, &7 is finite
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Example: more general quadratic problems

L 1
minimize,cpd §mTA:B—bT:c

Theorem 11.4

Fix d. Then ast — oo, the iterate average T' obeys

Vi@ —a) 3 N(©0,AT'SAT

convergence in distribution
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Example: quadratic problems

Vi@ —z*) B N(0,A7'SA™Y),  t— oo |

e asymptotically, ||z* — :1:*“3 = 1/t, which matches the
convergence rate in Theorem 11.2

e much longer stepsizes (1; < 1)
= faster convergence for less noisy cases (e.g. £ = 0)
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Proof sketch of Theorem 11.5

(1) Let A = ! —z* and A’ = ' — x*. SGD update rule gives
A = AP —p(AA" + &) = (I —nA)A" —ng!

t
— At+1 (I 77A)t+1AO n Z(I _ UA)t_kSk
k=0

(2) Simple calculation gives (check Polyak, Juditsky '92)

= t—2
At L 0 1 1 t —1\ ¢j
A_%GA + - ZA g+-> (Gi-A)e
] =0 7=0
t—1—j
where =7 Z (I —nA)
=0

Stochastic gradient methods 11-41



Proof sketch of Theorem 11.5 (cont.)

(3) From the central limit theorem for martingales,
] =2 o
— N Al¢g 3 N(0,A71sA7!
i ATE SN )
(4) With proper stepsizes, one has (check Polyak, Juditsky '92)
GG < o0, |G — A 1| < 0o and hm Z IG5 — AP =0

(5) Combining these bounds establishes Theorem 11.5
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More general strongly convex problems

minimizeycpa  F(x)

e [ strongly convex
e stepsizes: 1, <t~ with a € (0.5, 1)
o g(z';¢") =VF(z") + &

o E[¢|&°,--- ¢ =0
o §:= limt%ooE[ététT ‘ 507 T 7€t71} is finite

Stochastic gradient methods 11-43



More general strongly convex problems

minimizeycpa  F(x)

Theorem 11.5 (informal, Polyak, Juditsky '92)

Fix d and let t — oco. For a large class of strongly convex problems, if
e <t~ for some 1/2 < a < 1, then

Vie' - a%) B (0, (V2F(@) ' S(ViF(a) )

e depending on the local curvature at / around minimizers

e allow the stepsize 7; to be longer than 1/t
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