ELE 522: Large-Scale Optimization for Data Science

Smoothing for nonsmooth optimization

Yuxin Chen
Princeton University, Fall 2019



Outline

e Smoothing
e Smooth approximation

e Algorithm and convergence analysis



Nonsmooth optimization

minimizegzern  f(x)

where f is convex but not always differentiable
e subgradient methods yield e-accuracy in

1
O (2> iterations
€

e in contrast, if f is smooth, then accelerated GD yields

g-accuracy in
1
0] (\[> iterations
€

— significantly better than the nonsmooth case
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Lower bound

— Nemirovski & Yudin '83

If one only has access to the first-order oracle (which takes as inputs

black box model
a point x and outputs a subgradient of f at x), then one cannot

improve upon O(E%) in general
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Nesterov’s smoothing idea

Practically, we rarely meet pure black box models; rather, we know
something about the structure of the underlying problems

One possible strategy is:
1. approximate the nonsmooth objective by a smooth function

2. optimize the smooth approximation instead (using, e.g.,
Nesterov's accelerated method)
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Smooth approximation



Smooth approximation

A convex function f is called («, 3)-smoothable if, for any x> 0, 3
convex function f, s.t.

o fu(x) < f(x) < fulx) + Bu, Vo (approximation accuracy)

® fuis §-smooth (smoothness)

— . tradeoff between approximation accuracy and smoothness

Here, f, is called a %t—smooth approximation of f with parameters

(a, B)
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Example: /; norm

s

o
Consider the Huber function | |
= {2

which satisfies

1
hu(z) < |z < hu(z) + p/2 and hu(z) is —-smooth
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Example: /; norm

A ‘Z|

hu(z)

— m

Therefore, f,(x) := > i hy(x;) is i—smooth and obeys

i
fu(@) < 2l < fulz) + =
= || -|l1 is (1,n/2)-smoothable
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Example: /5 norm

fu(®) (4P
Consider f,(x) := /||| + > — , then for any x> 0 and any = € R",
fu(®) < (lzll2 + p) — o = [l
lzllz < A/l2l3 + p? = fu(@) + 1

In addition, f, () is ;,-smooth (exercise)

Therefore, || - ||2 is (1,1)-smoothable
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Example: max function

fu() max{zy, zs}
Consider f,(x) := plog (Z?:l e"’/’i/“) — plogn, then Yu > 0 and Vx € R™,

fu(x) < plog (n max ezi/“) — plogn = max z;

max ; < jplog (Z e‘”””) = fu(x) + plogn

‘ i=1
In addition, f,(x) is i—smooth (exercise). Therefore, maxi<;<p, ; is
(1,log n)-smoothable
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Basic rules: addition

o fu1isa l%—smooth approximation of f; with parameters (aq, 51)

o fu2isa %—smooth approximation of fo with parameters (aq, 32)

= Mfui+A2fu2 (M, A2 >0) is a i—smooth approximation of

A1f1 4+ Aafo with parameters (Aag + Aaag, A151 + A252)
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Basic rules: affine transformation

o hy,isa i—smooth approximation of h with parameters («, /3)

e f(x):=h(Ax + )

= hu,(Azx +b) is a i—smooth approximation of f with
parameters (| Al?, 3)
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Example: ||Ax + b|,

Recall that \/||z||3 + 2 — pis a %—smooth approximation of ||z||2

with parameters (1,1)

One can use the basic rule to show that

ful@) = /Il Az + bJ3 + 2 —

is a i—smooth approximation of || Az 4 b||2 with parameters (|| A[|*, 1)
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Example: |z|

Rewrite |x| = max{x, —z}, or equivalently,

|z| = max {Ax} with A = l _11 ]

Recall that plog (e“/“ + e""?/“) —pnlog2is a i—smooth
approximation of max{x,z2} with parameters (1,log2)

One can then invoke the basic rule to show that

Ju(x) := plog (ex/“ + e*x/“) — pnlog?2

is i—smooth approximation of |x| with parameters

(|A]%,log 2) = (2,10g 2)
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Smoothing via the Moreau envelope

The Moreau envelope (or Moreau-Yosida regularization) of a convex
function f with parameter p > 0 is defined as

Mygt@) =t {2) + -lle — 213}

e M,y is a smoothed or regularized form of f

e minimizers of f = minimizers of M,
=> minimizing f and minimizing My are equivalent
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Connection with the proximal operator

e prox;(x) is the unique point that achieves the infimum that
defines My, i.e.

1
My(x) = f(prox(@)) + 5 ||= — prox(@)|3
e M; is continuously differentiable with gradients (homework)
1
VM, ¢(x) = ﬁ(cc — proxﬂf(a:))

This means

prox, (@) = @ — uV M, s()

prox,, ¢ (x) is the gradient step for minimizing M,y
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Properties of the Moreau envelope

Mys(e) = inf {£(2) + o e~ =13}

e M, is convex (homework)

o My is f—smooth (homework)

o If fis Ly-Lipschitz, then M, is a i—smooth approximation of f
with parameters (1, L? +/2)

Smoothing 8-17



Proof of smoothability

To begin with,
Mys(@) < f(@) + 3-le — ol = f(@)
In addition, let g, € Of(x), which obeys ||gz|2 < Ls. Hence,
Mas(@) = f(@) = inf { £(2) = F(@) + 3=~ al}
inf { (g0, 2 — ) + 5-l12 =l

2
Ly
2

v

1
= —5Hgm\|§ )

These together with the smoothness condition of My demonstrate

that My is a i-smooth approximation of f with parameters (1, L} /2)
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Smoothing via conjugation

Suppose f = g*, namely,

f(@) = sup{(z,2) ~ 9(2)}

One can build a smooth approximation of f by adding a strongly
convex component to its dual, namely,

fu(®@) = sup {(z,x) — g(2) — pd(2)} = (g + pd)" (x)

for some 1-strongly convex and continuous function d > 0 (called
proximity function)
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Smoothing via conjugation

2 properties:
® g+ pud is p-strongly convex == f, is i—smooth
o fu(x) < f(x) < fulx) + puD with D := sup,, d(x)

1
—> [, is a —-smooth approximation of f with parameters (1, D)
I
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Example: |z|

Recall that
|z| = sup zx
|z|<1

If we take d(z) = %zz, then smoothing via conjugation gives

fu(x) = sup {zx — %22} =

a?f2p,  Jx[<p
l2|<1

|x| — p/2, else

which is exactly the Huber function
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Example: |z|

Another way of conjugation:

|z| = sup (21 — z2)x
21,2220,21+29=1

If we take d(z) = z1 log z1 + 22 log 22 + log 2, then smoothing via
conjugation gives

ful@) = plog (cosh(z/p))

x —T
where coshz = %
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Example: norm

Consider ||| = sup|,|,<1(#; ), then smoothing via conjugation
gives

fu(®) = sup {{z,2) — pd(2)}

=[]~ <1
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Algorithm and convergence analysis



Algorithm

minimize, F(x) = f(x) + h(x)

e fis convex and («, 3)-smoothable

e h is convex but may not be differentiable
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Algorithm

Build f, — %—smooth approximation of f with parameters («, [3)

wt+1
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Convergence

Theorem 8.1 (informal)
Take pn = £5. Then one has F(z!) — F°P* < ¢ for any

26
Vap

1> Y

e iteration complexity: O(1/e), which improves upon that of
subgradient methods O(1/¢?)
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Proof sketch

e convergence rate for smooth problem: to attain §-accuracy

for minimizing F),(x) := fu(x) + h(x), one needs O(\/% ﬁ)
iterations

e approximation error: set 31 = § to ensure |f(x) — fu(x)] < §

e since F(x!) — F(x°F) < ‘f(wt) — fu(l't)| + (Fu(mt) - F/Spt)v

<e/2 <eg/2

the iteration complexity is
a 1Y\ af 1Y) vapj
o( uw)—O( e'ﬁ)—()( : )
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