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Nonsmooth optimization

minimizex∈Rn f(x)

where f is convex but not always differentiable

• subgradient methods yield ε-accuracy in

O

( 1
ε2

)
iterations

• in contrast, if f is smooth, then accelerated GD yields
ε-accuracy in

O

( 1√
ε

)
iterations

— significantly better than the nonsmooth case
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Lower bound

— Nemirovski & Yudin ’83

If one only has access to the first-order oracle︸ ︷︷ ︸
black box model

(which takes as inputs

a point x and outputs a subgradient of f at x), then one cannot
improve upon O

( 1
ε2
)

in general
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Nesterov’s smoothing idea

Practically, we rarely meet pure black box models; rather, we know
something about the structure of the underlying problems

One possible strategy is:
1. approximate the nonsmooth objective by a smooth function
2. optimize the smooth approximation instead (using, e.g.,

Nesterov’s accelerated method)
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Smooth approximation



Smooth approximation

A convex function f is called (α, β)-smoothable if, for any µ > 0, ∃
convex function fµ s.t.
• fµ(x) ≤ f(x) ≤ fµ(x) + βµ, ∀x (approximation accuracy)
• fµ is α

µ -smooth (smoothness)

— µ: tradeoff between approximation accuracy and smoothness

Here, fµ is called a 1
µ -smooth approximation of f with parameters

(α, β)
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Example: `1 norm

Example: ¸1 norm
Consider Huber function

hµ(z) =
I
z2/2µ, if |z| Æ µ

|z| ≠ µ/2, else

which satisfies

hµ(z) Æ |z| Æ hµ(z) + µ/2 and hµ(z) is 1
µ

-smooth

Therefore, fµ(x) := qn
i=1 hµ(xi) is n

µ -smooth and obeys

fµ(x) Æ ÎxÎ1 Æ fµ(x) + nµ

2

=∆ Î · Î1 is (n, n/2)-smoothable
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Example: ¸2 norm

Consider fµ(x) :=
Ò

ÎxÎ2
2 + µ2 ≠ µ, then for any µ > 0 and any

x œ Rn,

fµ(x) Æ !ÎxÎ2 + µ
" ≠ µ = ÎxÎ2

ÎxÎ2 Æ
Ò

ÎxÎ2
2 + µ2 = fµ(x) + µ

In addition, fµ(x) is 1
µ -smooth (exercise)

Therefore, Î · Î2 is (1,1)-smoothable
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Consider the Huber function

hµ(z) =
{
z2/2µ, if |z| ≤ µ
|z| − µ/2, else

which satisfies
hµ(z) ≤ |z| ≤ hµ(z) + µ/2 and hµ(z) is 1

µ
-smooth

Therefore, fµ(x) := ∑n
i=1 hµ(xi) is 1

µ -smooth and obeys

fµ(x) ≤ ‖x‖1 ≤ fµ(x) + nµ

2
=⇒ ‖ · ‖1 is (1, n/2)-smoothable
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Example: `2 norm

fµ(x) ‖x‖2

Consider fµ(x) :=
√
‖x‖2

2 + µ2 − µ, then for any µ > 0 and any x ∈ Rn,

fµ(x) ≤
(
‖x‖2 + µ

)
− µ = ‖x‖2

‖x‖2 ≤
√
‖x‖2

2 + µ2 = fµ(x) + µ

In addition, fµ(x) is 1
µ -smooth (exercise)

Therefore, ‖ · ‖2 is (1,1)-smoothable
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Example: max function

fµ(x) max{x1, x2}

Consider fµ(x) := µ log
(∑n

i=1 e
xi/µ

)
− µ logn, then ∀µ > 0 and ∀x ∈ Rn,

fµ(x) ≤ µ log
(
nmax

i
exi/µ

)
− µ logn = max

i
xi

max
i
xi ≤ µ log

(
n∑

i=1
exi/µ

)
= fµ(x) + µ logn

In addition, fµ(x) is 1
µ -smooth (exercise). Therefore, max1≤i≤n xi is

(1,logn)-smoothable
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Basic rules: addition

• fµ,1 is a 1
µ -smooth approximation of f1 with parameters (α1, β1)

• fµ,2 is a 1
µ -smooth approximation of f2 with parameters (α2, β2)

=⇒ λ1fµ,1 + λ2fµ,2 (λ1, λ2 > 0) is a 1
µ -smooth approximation of

λ1f1 + λ2f2 with parameters (λ1α1 + λ2α2, λ1β1 + λ2β2)
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Basic rules: affine transformation

• hµ is a 1
µ -smooth approximation of h with parameters (α, β)

• f(x) := h(Ax + b)

=⇒ hµ(Ax + b) is a 1
µ -smooth approximation of f with

parameters (α‖A‖2, β)
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Example: ‖Ax + b‖2

Recall that
√
‖x‖22 + µ2 − µ is a 1

µ -smooth approximation of ‖x‖2
with parameters (1, 1)

One can use the basic rule to show that

fµ(x) =
√
‖Ax + b‖22 + µ2 − µ

is a 1
µ -smooth approximation of ‖Ax+b‖2 with parameters (‖A‖2, 1)
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Example: |x|

Rewrite |x| = max{x,−x}, or equivalently,

|x| = max {Ax} with A =
[

1
−1

]

Recall that µ log
(
ex1/µ + ex2/µ

)− µ log 2 is a 1
µ -smooth

approximation of max{x1, x2} with parameters (1, log 2)

One can then invoke the basic rule to show that

fµ(x) := µ log
(
ex/µ + e−x/µ

)
− µ log 2

is 1
µ -smooth approximation of |x| with parameters

(‖A‖2, log 2) = (2, log 2)
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Smoothing via the Moreau envelope

The Moreau envelope (or Moreau-Yosida regularization) of a convex
function f with parameter µ > 0 is defined as

Mµf (x) := inf
z

{
f(z) + 1

2µ‖x− z‖22
}

• Mµf is a smoothed or regularized form of f
• minimizers of f = minimizers of Mf

=⇒ minimizing f and minimizing Mf are equivalent
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Connection with the proximal operator

• proxf (x) is the unique point that achieves the infimum that
defines Mf , i.e.

Mf (x) = f
(
proxf (x)

)
+ 1

2‖x− proxf (x)‖22

• Mf is continuously differentiable with gradients (homework)

∇Mµf (x) = 1
µ

(
x− proxµf (x)

)

This means

proxµf (x) = x− µ∇Mµf (x)
︸ ︷︷ ︸

proxµf (x) is the gradient step for minimizing Mµf
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Properties of the Moreau envelope

Mµf (x) := inf
z

{
f(z) + 1

2µ‖x− z‖22
}

• Mµf is convex (homework)
• Mµf is 1

µ -smooth (homework)

• If f is Lf -Lipschitz, then Mµf is a 1
µ -smooth approximation of f

with parameters (1, L2
f/2)
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Proof of smoothability

To begin with,

Mµf (x) ≤ f(x) + 1
2µ‖x− x‖22 = f(x)

In addition, let gx ∈ ∂f(x), which obeys ‖gx‖2 ≤ Lf . Hence,

Mµf (x)− f(x) = inf
z

{
f(z)− f(x) + 1

2µ‖z − x‖22
}

≥ inf
z

{
〈gx, z − x〉+ 1

2µ‖z − x‖22
}

= −µ2 ‖gx‖
2
2 ≥ −

L2
f

2 µ

These together with the smoothness condition of Mf demonstrate
that Mf is a 1

µ -smooth approximation of f with parameters (1, L2
f/2)
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Smoothing via conjugation

Suppose f = g∗, namely,

f(x) = sup
z
{〈z,x〉 − g(z)}

One can build a smooth approximation of f by adding a strongly
convex component to its dual, namely,

fµ(x) = sup
z
{〈z,x〉 − g(z)− µd(z)} = (g + µd)∗ (x)

for some 1-strongly convex and continuous function d ≥ 0 (called
proximity function)
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Smoothing via conjugation

2 properties:
• g + µd is µ-strongly convex =⇒ fµ is 1

µ -smooth
• fµ(x) ≤ f(x) ≤ fµ(x) + µD with D := supx d(x)

=⇒ fµ is a 1
µ

-smooth approximation of f with parameters (1, D)
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Example: |x|

Recall that
|x| = sup

|z|≤1
zx

If we take d(z) = 1
2z

2, then smoothing via conjugation gives

fµ(x) = sup
|z|≤1

{
zx− µ

2 z
2
}

=
{
x2/2µ, |x| ≤ µ
|x| − µ/2, else

which is exactly the Huber function
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Example: |x|

Another way of conjugation:

|x| = sup
z1,z2≥0,z1+z2=1

(z1 − z2)x

If we take d(z) = z1 log z1 + z2 log z2 + log 2, then smoothing via
conjugation gives

fµ(x) = µ log
(

cosh(x/µ)
)

where cosh x = ex+e−x

2
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Example: norm

Consider ‖x‖ = sup‖z‖∗≤1〈z,x〉, then smoothing via conjugation
gives

fµ(x) = sup
‖z‖∗≤1

{〈z,x〉 − µd(z)}
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Algorithm and convergence analysis



Algorithm

minimizex F (x) = f(x) + h(x)

• f is convex and (α, β)-smoothable
• h is convex but may not be differentiable
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Algorithm

Build fµ — 1
µ -smooth approximation of f with parameters (α, β)

xt+1 = proxηth
(
yt − ηt∇fµ(yt)

)

yt+1 = xt+1 + θt − 1
θt+1

(xt+1 − xt)

where y0 = x0, θ0 = 1 and θt+1 = 1+
√

1+4θ2
t

2
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Convergence

Theorem 8.1 (informal)
Take µ = ε

2β . Then one has F (xt)− F opt ≤ ε for any

t &

√
αβ

ε

• iteration complexity: O(1/ε), which improves upon that of
subgradient methods O(1/ε2)
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Proof sketch

• convergence rate for smooth problem: to attain ε
2 -accuracy

for minimizing Fµ(x) := fµ(x) + h(x), one needs O
(√

α
µ · 1√

ε

)

iterations

• approximation error: set βµ = ε
2 to ensure |f(x)− fµ(x)| ≤ ε

2

• since F (xt)− F (xopt) ≤
∣∣f(xt)− fµ(xt)

∣∣
︸ ︷︷ ︸

≤ ε/2

+ (Fµ(xt)− F opt
µ )

︸ ︷︷ ︸
≤ ε/2

,

the iteration complexity is

O

(√
α

µ
· 1√

ε

)
= O



√
αβ

ε
· 1√

ε


 = O

(√
αβ

ε

)
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