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Proximal gradient descent for composite
functions



Composite models

minimize, F(x) := f(x) + h(x)
subject to x € R"

e f: convex and smooth

e h: convex (may not be differentiable)

let F°P* := min, F'(x) be the optimal cost
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Examples

e /1 regularized minimization

minimize, f(x)+ ||z|1
——
h(x): £1norm

o use {1 regularization to promote sparsity
e nuclear norm regularized minimization

minimizex f(X) + | X[«
——
h(X): nuclear norm

o use nuclear norm regularization to promote low-rank structure
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A proximal view of gradient descent

To motivate proximal gradient methods, we first revisit gradient
descent

e = — V()
)

1
xttl = arg min f&)+(Vf(x'),z —a') + THIB - CBt’%}
Tt

proximal term

first-order approximation
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A proximal view of gradient descent

1
't = arg rrgn {f(wt) +(Vfx'), - ') + 7277 |z — wt’%}
¢

By the optimality condition, ‘*! is the point where
f(@") +(Vf(z'),z —a') and -5 ||& — ="||3 have the same slope
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How about projected gradient descent?

't = Pe(x' — V()
i

2+ = argngn{f(wt) (Tf(@ e - ) + 5o - + nc<w>}
= argmmin {;Hm — (x! — Utvf(mt))H; + ]lc(a:)} (6.1)

0, ifxeC

oo, else

where 1¢(x) = {
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Proximal operator

Define the proximal operator

1
prox; (x) := argn1zin{2|]z—m||§+h(z)}

for any convex function h

This allows one to express projected GD update (6.1) as

:BtJrl

= prox,, 1, (' — ;i V f(xh)) (6.2)
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Proximal gradient methods

One can generalize (6.2) to accommodate more general h

Algorithm 6.1 Proximal gradient algorithm
1: fort =0,1,--- do
20 &'t = prox,,, (&' — 0V f(x!))

e alternates between gradient updates on f and proximal
minimization on h

e useful if prox;, is inexpensive
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Proximal mapping / operator



Why consider proximal operators?

. (1
prox, (x) := argrrgn{2]]z—w\|§+h(z)}

o well-defined under very general conditions (including nonsmooth
convex functions)

e can be evaluated efficiently for many widely used functions (in
particular, regularizers)

e this abstraction is conceptually and mathematically simple, and
covers many well-known optimization algorithms
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Example: indicator functions

~4llz—a'lf +c

then
prox, (x) = arg micn |z —x||2 (Euclidean projection)
zE
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Example:

/1 norm

—gllz — '3 +c

If h(xz) = A||z||1, then

(Proxy,(2))i = st (w5 A)

r—A, ifz>A
where g (x) = x4+ A, ifz < =)\
0, else

Proximal gradient methods

—gllz—a'3+c

(soft-thresholding)

t+1
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Basic rules

o If f(x) =ag(x)+ b with a > 0, then
prox ¢ () = prox,,(x)
e affine addition: if f(x) = g(x) +a'x + b, then

prox ¢(x) = prox,(z — a)

Proximal gradient methods
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Basic rules

e quadratic addition: if f(z) = g(x) + 5|l@ — a||3, then

@) (7o 1559)
roxX () = Prox £ a
proxs P s \1 4, " T 14,

e scaling and translation: if f(x) = g(ax + b) with a # 0, then
1

proxs(x) = - (proxazg(aaz +b) — b) (homework)
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Proof for quadratic addition

1 P
prox; (@) —argmm{2||z—m|12+g<> 2= - al3}

{ 1+
= arg mln

2123 - <z,w+pa> +g<z>}

1\\\ (e pa) + o)}
= ar mln *Z Z:B a o m—
g Sl=13 — pa) + 1 o(=
1 p )2 1
= ar m1 — @x + a + —q(z
& {2 1—|—p T2, T T )}
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Basic rules

e orthogonal mapping: if f(x) = g(Qx) with Q orthogonal
(QQR" =QTQ =1), then
prox ¢(x) = QTproxg(Qaz) (homework)

e orthogonal affine mapping: if f(x) = g(Qx + b) with
QQT =a7'I , then
| A —

does not require QT Q=a—1T

proxs(z) = (I — aQTQ> z+aQ' (proxa_lg(Qa: +b) — b)

o for general Q, it is not easy to derive prox; from prox,
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Basic rules

e norm composition: if f(x) = g(||z|/2) with
domain(g) = [0, 00), then

Zr
roxX () = prox xr _—

Proximal gradient methods
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Proof for norm composition

Observe that
1
win{ 12) + 512 ~ ol
z 2
o LTIRTE SIS SRR ST
= min ¢ g(llz]l2) + 5llzlz — 2 = + 5|l
=min min {g(a)+1a2—sz+1|:c||§}
a>0 z:||z]|2=« 2 2

1 1
= min {g(oz) + §oz2 —allxl2 + 2||w||§} (Cauchy-Schwarz)

>0
= min $g(0) + 3 (o — zllo)*
=i ale) + 3 (0l
From the above calculation, we know the optimal point is
* * * T €T
o™ = prox, ([|z||2) and Z'=a« m = proxg(H:cHg)m7

thus concluding proof
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6-20



Nonexpansiveness of proximal operators

Recall that when h(x) = 1¢(x), prox,(zx) is the Euclidean projection
Pc onto C, which is nonexpansive for convex C:

|Pc(x1) — Pe(x2)|l2 < ||zt — 2|2
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Nonexpansiveness of proximal operators

femmoemos ~ 4o - @l + 2 _
IN sOme sense,

proximal operator
behaves like projection

—sllz =213 + e
prox;, (1)

Fact 6.1
e (firm nonexpansiveness)

(prox;,(w1) — prox;,(2), @1 — @2) > ||prox;, (1) — prox;,(x2)]3

e (nonexpansiveness)

[[prox (1) — proxp,(x2)[l2 < [|z1 — ®2l|2
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Proof of Fact 6.1

Let 21 = prox; (x1) and z2 = prox;,(x2). Subgradient
characterizations of z; and z9 read

X1 — 21 € Oh(z1) and xy — z9 € Oh(z9)
The nonexpansiveness claim ||z1 — z2||2 < ||[x1 — @2]|2 would follow if

(1 —@2) (21 — 22) > |21 — 22> (together with Cauchy-Schwarz)

firm nonexpansiveness
T >
<— (331—21—$2—|-22) (21—22)_0

h(z2) > h(z1) + (1 — 21, 22 — 21)

add these inequalities €0h(z1)
h(zl) > h(ZQ) + <:132 — 29, 21 — Z2>

——

€0h(z2)
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Resolvent of subdifferential operator

One can interpret prox via the resolvant of subdifferential operator

Fact 6.2

Suppose that f is convex. Then one can write
z = proxs(x) = z= (T+0f)™' (x)
—_——

resolvent of operator O f

where I is the identity mapping
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Justification of Fact 6.2

1
2 = angmin { (w) + 5w - 23}
— 0€0f(z)+z—= (optimality condition)
— x€(T+09f)(2)

— =T+ (@)

Proximal gradient methods
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Moreau decomposition

Fact 6.3

Suppose f is closed convex, and f*(x) := sup,{(x,z) — f(z)} is
convex conjugate of f. Then
x = prox () + prox s« (x)

e key relationship between proximal mapping and duality

e generalization of orthogonal decomposition
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Moreau decomposition for convex cones

’CJ_

P)CL (m) A

When K is a closed convex cone, (1x)*(x) = Lio(x) (exercise) with
K :={x | (x,z) <0,Vz € K} polar cone of IC. This gives

x = Pr(x) + Pre(x)
e a special case: if I is a subspace, then K° = K+, and hence

x = Pr(x) + Prr(x)
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Proof of Fact 6.3

Let u = prox¢(x), then from the optimality condition we know that
x—uc€df(u).
This together with conjugate subgradient theorem (homework) yields
u € of(x —u)
In view of the optimality condition, this means
T — u = prox;. ()

= x =u+ (x — u) = proxs(x) + prox s« (x)
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Example: prox of support function

For any closed and convex set C, the support function
Sc is defined as S¢(x) = sup,cc(x, z). Then

proxg, (z) = © — Pc(x) (6.3)

Proof: First of all, it is easy to verify that (exercise)
Sc(x) = (=)
Then the Moreau decomposition gives
proxg, (¢) = & — proxg: ()

= — proxy ()
=z — Pc(x)
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Example: /., norm

prox| . (®) = = — Pp, |, (z)

where By, := {z | [|z[l1 < 1} is unit ¢; ball

Remark: projection onto ¢; ball can be computed efficiently
Proof: Since |[x([oc = sup,,|,<1{®, z) = S, (%), we can invoke
(6.3) to arrive at

prox.|. (@) = proxs, () =z —Pg (x)
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Example: max function

Let g(x) = max{xz1, -+ ,z,}, then
prox,(z) =  — Pa(x)

where A := {z € R | 17z = 1} is probability simplex

Remark: projection onto A can be computed efficiently

Proof: Since g(x) = max{z1, - ,z,} = Sa(x) (support function
of A), we can invoke (6.3) to reach

prox,(z) =  — Pa(x)
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Extended Moreau decomposition

A useful extension (homework):
Fact 6.4

Suppose f is closed and convex, and A > 0. Then
@ = prox s (x) + Aprox 1 . (@ /)
A

Proximal gradient methods
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Convergence analysis



Cost monotonicity

The objective value is non-increasing in t:
Lemma 6.5

Suppose f is convex and L-smooth. If n, = 1/L, then

F(xt—i-l) < F(wt)

e different from subgradient methods (for which objective value
might be non-monotonic in )

e constant stepsize rule is recommended when f is convex and
smooth
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Proof of cost monotonicity

Main pillar: a fundamental inequality

Lemma 6.6

Let y* = prox1, (y — £ V./(y)), then

L L
F(y") - F(z) < 5 lle— yl3 — Sz — yiE - =y

>0 by convexity

where g(x,y) = f(x) — f(y) — (Vf(y),z —y)

Take = y = x' (and hence y* = z!™!) to complete the proof
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Monotonicity in estimation error

Proximal gradient iterates are not only monotonic w.r.t. cost, but also
monotonic in estimation error

Lemma 6.7

Suppose f is convex and L-smooth. If n, = 1/L, then

lz ! — 22 < 2’ — "2

Proof: from Lemma 6.6, taking x = z*, y = ' (and hence
yt = x!t!) yields

L L
Fa™h) = F(z") +g(x,y) < 5[l — 2[5 - 5 2" — 23
>0 >0

which immediately concludes the proof
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Proof of Lemma 6.6

Define
8(2) = F(y) + (V)2 —u) + 5z yl3 + h(z)

It is easily seen that y™ = argmin, ¢(z). Two important properties:
e Since ¢(z) is L-strongly convex, one has

o) > 6ly™) + ¢z — 1B

Remark: we are propergating smoothness of f to strong
convexity of another function ¢

e From smoothness,

S*) = )+ (VFW).y* —9) + =yt —yl + Ay
upper bound on f(y™)
> f(y")+h(y") = F(y")
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Proof of Lemma 6.6 (cont.)

Taken collectively, these yield
o L +112
dx) 2 F(y™) + Sl —y7ll2,
which together with the definition of ¢(x) gives

F() + (VS ()e —y) + hie) + 5 o~ yli > Fly™) + e~ y* I3

=f(z)+h(z)—g(z,y)=F(z)—g(x,y)

which finishes the proof
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Convergence for convex problems

Theorem 6.8 (Convergence of proximal gradient methods for
convex problems)

Suppose f is convex and L-smooth. If n, = 1/L, then

_ Le® - |3

F ty _ Fopt
(@) = 21

e achieves better iteration complexity (i.e. O(1/¢)) than
subgradient method (i.e. O(1/¢2))

e fast if prox can be efficiently implemented
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Proof of Theorem 6.8

With Lemma 6.6 in mind, set x = *, y = x! to obtain

F(ax'™h) = F(z") < Jllz' — a3 - S« — 2|5 - g(z" 2"
2 2 A/

>0 by convexity

L L
< St — [} - Sll2tt - 2]

Apply it recursively and add up all inequalities to get

t—1 L L
> (FE@) — Fa") < Flla” — 2|3 - lla’ — =3
k=0

This combined with monotonicity of F(x!) (cf. Lemma 6.6) yields

L0 _ *HQ
() - F(z") < 2522
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Convergence for strongly convex problems

Theorem 6.9 (Convergence of proximal gradient methods for
strongly convex problems)

Suppose f is u-strongly convex and L-smooth. If ny = 1/L, then

t_ax)2 < 1_ﬁt 0 %2
" — ™[z < 7) e =7l

e linear convergence: attains € accuracy within O(log %) iterations
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Proof of Theorem 6.9

Taking € = *, y = «' (and hence y* = z!™!) in Lemma 6.6 gives

L L
Fa*) - F@’) < S lla* -2} - Sl -2} - gla”,a!)
——
Z%Hm*_mﬂrl“g
< 52’ a3 - Sl - 2|3

This taken collectively with F'(z'™!) — F(z*) > 0 yields
* M *
ot a3 < (1- 1) ot - 273

Applying it recursively concludes the proof
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Numerical example: LASSO

taken from UCLA EE236C

1
minimize, /(@) = 3] 4@ - bl + [l

with i.i.d. Gaussian A € R2000x1000 ) — 1/ [ = Apax (AT A)
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Numerical example: LASSO

taken from UCLA EE236C

fbest,t _ fopt

0 10 20 30 40 50 60 70 80 90 100

t
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Backtracking line search

Recall that for the unconstrained case, backtracking line search is
based on a sufficient decrease criterion

f(@' —nVf@") < f(a") = 2V ()3

Proximal gradient methods

6-44



Backtracking line search

Recall that for the unconstrained case, backtracking line search is
based on a sufficient decrease criterion

f(@' —nVf@") < f(a") = 2V ()3

As a result, this is equivalent to updating 1, = 1/L; until

fl@ — Vi) < fa) - L1t<Vf(wt), V() + ;Ltuvmt)u%

L
= f(@") = (Vf(z'),2' — ") + {IIth — a3
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Backtracking line search

Let 71(x) := prox%h(:c — 1V f(x)):

Algorithm 6.2 Backtracking line search for proximal gradient methods

L Initializen =1, 0<a<1/2,0< 8 < 1

2: while f(Tz,(2")) > f(@') = (Vf(a'), 2" - To,(x")) + 5| T, (2") — 2’|
do
3: Ly + %Lt (or L% — BL%)

2
2

1 t : t+1
e here, ;- corresponds to 7, and 7f, (x') generalizes z'*
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Summary: proximal gradient methods

stepsize | convergence iteration
rule rate complexity
convex & smooth (w.r.t. f) o 1 1
problems =T 0 (f> O (5)
strongly convex &
m=1 | 0(1=1)) | O(xlog?)

smooth (w.r.t. f) problems
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