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A proximal viewpoint of projected GD

1
2! = argmin {MJr (Vi) z—2') + —lz - ait\%}
zeC 2n

linear approximation
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A proximal viewpoint of projected GD

_ 1
2n¢

1
2t = argmin ¢ fla’) + (Vf(z'), @ — a') + o[z — |3
xzeC 2n:

linear approximation .Y
proximity term

Iz — |3

e the quadratic proximal term is used by GD to monitor the
discrepancy between f(-) and its first-order approximation
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Inhomoneneous / non-Euclidean geometry

The quadratic proximity term is based on certain “prior belief":

e the discrepancy between f(-) and its linear approximation is
locally well approximated by the homogeneous penalty
-1 2
(20) " |l — 2|3

squared Euclidean penalty

Issues: the local geometry might sometimes be highly
inhomogeneous, or even non-Euclidean
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Example: quadratic minimization

minimizegern  f(x) = %(a: —z") Q(x — x*)

where @Q = 0 is a diagonal matrix with large x = % >1

e gradient descent ™! = x! — 1,Q(x! — =*) is slow, since the iteration
complexity is O(rlog 1)

e doesn't fit the curvature of f(-) well
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Example: quadratic minimization

minimizegern  f(x) = %(a: —z") Q(x — x*)

where Q = 0 is a diagonal matrix with large r = Z2XiQii 5 1

min; Qi
e one can significantly accelerate it by rescaling the gradient
(41 -1 t
et =t -0, Q7' Vf(x') = &' —ni(x' — %)
—_————

reaches ™ in 1 iteration with ;=1

t+1 s t ot L oAty T _ ot
= =z argmrxel%I}L{<Vf(m),m a:>—|—2nt(w ) Q(x—x")

fits geometry better
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Example: probability simplex

I

total-variation distance

minimizezea f(x)
where A := {& € R} | 17 = 1} is probability simplex

e Euclidean distance is in general not recommended for measuring the
distance between probability vectors

e may prefer probability divergence metrics, e.g. Kullback-Leibler

divergence, total-variation distance, x? divergence
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Mirror descent: adjust gradient updates to fit problem geometry

— Nemirovski & Yudin, '1983



Mirror descent (MD)

Replace the quadratic proximity ||z — (|2 with distance-like metric
D
©

@)+ (V@) z - )

_LDLP(
m 1
2! = argmin {f(a:t) +(Vf(x'),z—z')+ = Dy(z,x)
xeC it N——

Bregman divergence

where Dy (x, z) := p(x) — ¢(2) — (Vp(z),x — 2) for convex and
differentiable ¢
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Mirror descent (MD)

or more generally,

1
xitt = argmircl {M—F (g',x — ') + —Dy(z, wt)} (5.1)
xe uiz

with g € 9f(x!)

e monitor local geometry via appropriate Bregman divergence
metrics

o generalization of squared Euclidean distance

o e.g. squared Mahalanobis distance, KL divergence
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Principles in choosing Bregman divergence

e fits the local curvature of f(-)
e fits the geometry of the constraint set C

e makes sure the Bregman projection (defined later) is inexpensive
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Bregman divergence

Let ¢ : C — R be strictly convex and differentiable on C, then
Dy(x,2) = p(x) — 0(2) = (Vo(2),2 - 2)

e shares a few similarities with squared Euclidean distance

e a locally quadratic measure: think of it as
Dy(x,2) = (x — 2) V(&) (z - 2)

for some & depending on « and z
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Example: squared Mahalanobis distance

Let Dy(x,z) = 2 (x — 2)"Q(z — z) for Q =~ 0, which is generated by

o(x) = %wTQw

Proof: Dy(x,z) = p(x) — o(z) = (Vp(2), — 2)

= %azTQaz — %zTQz —2'Q(x — 2)
= (@27 Qz ~2)
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Example: squared Mahalanobis distance

When Dy(z,2z) = 1(x — 2) "Q(x — z), C =R", and f differentiable,
MD has a closed-form expression

™ =2’ - Q' Vf(a!)

In general,

1
- arg min {nt(gt, x)+ = (x— act)TQ(:c — a:t)}
xeC 2

_ 1T t —1 .t L i1yt
_argrwnelg{Q:c Qac—<Q(m - Q g),:v>+—a: T

= arg min {;(m —(x' — nthlgt))TQ(x — (x' — nthgt))}

xeC

projection of &t—n;Q—1g? based on the weighted ¢5 distance ||z||% := 2 Qz
n Q
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Example: KL divergence

Let Dy(x,z) = KL(z || 2) := X; zilog Z¢, which is generated by
= Z::UZ log x; (negative entropy)
i

if C=A:={xcR}|>,x; =1} is the probability simplex

Proof: D, (xz,z) = ¢(x) — p(2z) — (Vo(z),x — z)

= er:ilog:cZ Zzzlogzz Z (log zi + 1) (z; — 2i)

7

= _Z-Tz‘i‘zzz“‘zleog* = KL(sz)

\\/-/ \V-’
=1 =1
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Example: KL divergence

When Dy(x,z) = KL(z || 2), C = A, and f differentiable, MD has
closed-form (homework)

o shen (= mlVIEh))

1 <1<
LTS e (—nVi@y) "

e often called exponentiated gradient descent or entropic descent
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Example: generalized KL divergence

If C = R% (positive orthant), then the negative entropy
o(x) = >, x;log x; generates

T
Dy(x,z) =KL(z || 2) := Xl:xz log o i + %
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Example: von Neumann divergence

If C =S (positive-definite cone), then the generalized negative
entropy of eigenvalues

Z)\ Y log \i(X) — \i(X) =: Tr(X log X — X)

generates the von Neumann divergence (commonly used in quantum
mechanics)

\i(Z)
= Tr(X(logX —logZ) - X + Z)

= Z/\i(X)log MlX) Ai(X) + Ai(Z)
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Common families of Bregman divergence

Function Name o(x) dom ¢ Dy (2:y)
Squared norm %TQ (=00, +0) %(T -y)?
Shannon entropy zlogr —x [0, +00) zlog % —z+y
Bit entropy zlogz + (1 —x)log(l — x) [0,1] zlog ¥ + (1 —x)log i:;
Burg entropy —logx (0, +00) i —log f -1
Hellinger 1 —2a2 -1,1] (1 —ay)(1 —y?)~1V2 = (1 —22)1/?
£, quasi-norm —aP (0<p<1) [0, +00) —aP +payPt — (p—1)yP
£, norm ||? (1<p<oo) (=00, +00) | |z = pasgnyly’ ™ + (p — 1) |y’
Exponential exp r (=00, +0) expr — (x —y+1)expy
Inverse 1/z (0, +00) 1z +ax/y? —2/y
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Basic properties of Bregman divergence

Let ¢ : C — R be p-strongly convex and differentiable on C

e non-negativity: Dy(x,z) >0, and D, (x,2) =0iffx =z
o in fact, Dy(x, z) > L]z — z||3  (by strong convextiy of ¢)

e convexity: D,(x,z)is convex in &, but not necessarily
—_——
by defn, since ¢ is cvx

convex in z

e lack of symmetry: in general, D,(x,2) # D (2, x)
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Basic properties of Bregman divergence

Let ¢ : C — R be p-strongly convex and differentiable on C

e linearity: for (1, @9 strictly convex and A > 0,

D<P1+>\go2 (x,2) = Dy, (x,z) + ADy, (z, z)

e unaffected by linear terms: let po(x) = ¢1(x) +a'x +b,

then D, = D,
e gradient: VD (x,2) = Vo(x) — Vo(z)
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Three-point lemma

xTr
Dyl.y) g llz-yl3
)
xyz
Dy(z,2) Yy B )
I N PR
- 2
Dv(y,z)
P z

Fact 5.1

For every three points x, vy, z,
Dy(,z) = Dy(x,y) + Dy(y, z) — (Vo(2) = Vo(y), z — y)

e for Euclidean case with ¢(x) = ||z||3, this is the law of cosine
le =zl =z —yli+lly—23-2 (z-yz—y)
—_————

i |z—yll2||z—y]|2 cos Lzyx
Mirror descent
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Proof of the three-point lemma

Dw(mvy) + Dw(ya Z) - Dtp(m> Z)

= (@) — p(y) = (Veo(y),z —y) + p(y) — p(2) — (Vp(z),y — 2)

—{p(@) — p(2) = (Vo(z),z — 2)}
= —(Vo(y),z —y) — (Vo(2),y — 2) + (Vp(2), T — 2)
= (Vo(z) — Ve(y),z —y)
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(Optional) connection with exponential families

Exponential family: a family of distributions with probability density
(parametrized by 6)

Po(w | 8) = exp {(x,0) — () — h(z)}

for some cumulant function ¢ and some function h

e example (spherical Gaussian)

x — 0|3 -
pso(m | ) x exp {—‘20”2} = exp {<m 6) — 7”9”2 | 2”2}

W—/
=:p(0)
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(Optional) connection with exponential families

For exponential families, under mild conditions, dfunction g+ s.t.

Po(® | 0) = exp{—Dy=(x, 11(0))} g~ (2) (5-2)

where ©*(0) := sup,{(x,8) — ¢(x)} is the Fenchel conjugate of ¢,
and p(0) := Eg[x]

e J unique Bregman divergence associated with every member of
exponential family

z — ul2
pcp(a:|9)ocexp{—||2u‘|2}

—_—
Dcp* (z,1)
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(Optional) connection with exponential families

For exponential families, under mild conditions, dfunction g+ s.t.

Po(® | 0) = exp{—Dy=(x, 11(0))} g~ (2) (5-2)

where ©*(0) := sup,{(x,8) — ¢(x)} is the Fenchel conjugate of ¢,
and p(0) := Eg[x]

e example (spherical Gaussian): since ¢*(z) = 3| z||3, we have
Dy« (x, 1) = %H:c — i||3, which implies

z — ul2
pcp(a:|9)ocexp{—||2u‘|2}

—_—
Dcp* (z,1)
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Proof of (5.2)

pal | 6) = exp{ (. 0) — () — h(z)}
D exp {" (1) + (@& — p, Vo' (1)) — h(x)}

=exp{ — " (@) + " (u) + (& — p, Vo' (u)) } exp{e*(x) — h(x)}
= exp(—Dg-(z, p)) exp{¢* () — h(x)}

=:g,* (@)

—

Here, (i) follows since (a) in exponential families, one has . = V¢ (8) and
Vo (1) = 6, and (b) (15,8) = (8) + " (1) (homework)



Bregman projection

Given a point x, define
Pec,o(x) := argmin Dy (z, x)

zeC

as the Bregman projection of « onto C

e as we shall see, MD is useful when Bregman projection requires
little computational effort
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Generalized Pythagorean Theorem

T

Dy(ac p, ) |1" - wC”Q
\wcw
Dy(z,x)
& — =[|3 lzc — 2|13
Dy(z,2c,p)
2 cC

Fact 5.2

If xc , = Pc,(x), then
Dy(z,x) > Dy(2z,xc,) + Dy(xc,p, ) Vz eC

e in the squared Euclidean case, it means the angle Zzx¢ ,x is
obtuse
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Generalized Pythagorean Theorem

v IIw - zcll3

D~p<mC,wm)
y \wc.w
Dy(z,z
& — =[|3 lzc — 2|13
Dy(z,2c,p)

Fact 5.2

2 cC

If xc , = Pc,(x), then

Dy(z,x) > Dy(2z,xc,) + Dy(xc,p, ) Vz eC

o ifC

Mirror descent

is an affine plane, then

Dy(z,x) = Dy(2,2c,p) + Dyp(Tc,p, ) Vzel
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Proof of Fact 5.2

Let
g = VZDSD(Z7 33)

= Vo(xe,,) — Vo(x)

z=xC

Since x¢ , = argmin,cc D, (2, x), the optimality condition for
constrained convex optimization gives (see Bertsekas'16)

(9,2 —xcp) >0 Vzel
Therefore, for all z € C,

02> (g, zcp—2) = (Vo(x) — Vo(zcy), 2 — Tc,p)
= Dy(z,xc) + Dyo(xe,p, ) — Dyp(2, )

as claimed, where the last line comes from Fact 5.1
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Alternative forms of mirror descent



An alternative form of MD

Using the Bregman divergence, one can also describe MD as

Vo(y'™) = Ve(z!) — g’ with g' € 9f (=) (5.3a)
't e Pe,(y't) = arg min Dy(z, 9" (5.3b)

e performs gradient descent in certain “dual” space
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An alternative form of MD

The equivalence can be seen by looking at the optimality conditions

e the optimality condition of (5.3b) gives

0 € Vo(z'h) — Vep(y't) + Ne(z'1)  (see Bertsekas '16)
—_———
normal cone

= p(x") = Vo(x') + nig’ + Ne(«") (5.3a)

e the optimality condition of (5.1) reads
1
0¢ gt+17— {Vgp(m“’l) - Vgo(:ct)}+Nc (1) (see Bertsekas'16)
¢

e these two conditions are clearly identical
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Another form of MD

For simplicity, assume C = R", then another form is
!t = Ve* (Vgp(azt) — ngt> (5.4)

where ¢*(x) := sup,{(z,x) — p(z)} is the Fenchel-conjugate of ¢

e this is the version originally proposed in Nemirovski &
Yudin '1983
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Another form of MD

When C = R", (5.3a)-(5.3b) simplifies to

2! =yt = (Vo) (Ve(a') - ng')

It thus sufficies to show

(Vo)™ = (Vo) (5.5)
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Proof of Claim (5.5)

Suppose y = V(x). From the conjugate subgradient theorem, this
is equivalent to (homework)

p(x) + ¢ (y) = (z,y)
Since ™ = ¢, we further have
e (y) + ¢ (x) = (z,y),

which combined with the conjugate subgradient theorem yields
x = Vy*(y). This means

x =V (y) = Ve (Ve(x))

and hence Vy* = (Vi) !
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Convergence analysis



Convex and Lipschitz problems

minimizeg,  f(x)
subjectto x €C

e f is convex and Lipschitz continuous

o  is p-strongly convex w.r.t. a certain norm || - ||

o |lgll« < Ly for any subgradient g € 9f(x) at any point &, where
Il - ||« is the dual norm of || - ||

5-36
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Convergence analysis

Theorem 5.3

Suppose f is convex and Lipschitz continuous (in the sense
that ||g||« < Ly for any subgradient g of f) on C. Suppose ¢ is
p-strongly convex w.r.t. || -||. Then

L2
! 0 t 2
supzec Do (@, @) + 57 30 i

best,t opt
f = f P S t
> k=0 "k

o Ifn = Y2E L \ith R := supgec Do (z, 2Y), then

Ly
LNElogt)
VeVt

S

fbest,t _ fopt < 9] (

o one can further remove the logt factor
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Example: optimization over probability simplex

Suppose C = A is the probability simplex, and pick = = n~'1

(1) set p(x) = L[|x[|3, which is 1-strongly convex w.r.t. || - ||2. Then

1 1
D 0 -1

Then Theorem 5.3 says

logt
best,t opt < 9] (L )
f f f’ ﬁ

if any subgradient g obeys ||g|l2 < L¢2
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Example: optimization over probability simplex

Suppose C = A is the probability simplex, and pick = = n~'1

(2) set ¢p(x) = — >, x;log x;, which is 1-strongly convex
w.rt. | - |[1. Then

n
1
sup Dy (z,z°) = sup KL(z || £°) = sup E x;logx; — E x;log —
x€A zeA ;7 i n

= logn + sup Z x;logx; <logn
xTEA

Then Theorem 5.3 says
logt
fhestt _ ot < 0 <Lf7oox/log n—(\)/gZ )

if any subgradient g obeys ||g|loc < Lo
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Example: optimization over probability simplex

Comparing these two choices and ignoring log terms, we have

L Lo
Euclidean: O (j;) vs. KL O (\%)

Since [|gllco < llgll2 < v/llglloc, one has

L<Lf7700<1

\/ﬁ_ Lf72 -

and hence the KL version often yields much better performance
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Numerical example: robust regression

taken from Stanford EE364B

m
minimize, f(x) = Z la] x — b
i=1
subjectto z€ A={xcR? 1Tz =1}

with @; ~ N(0, Iix,) and b; = 221792 1 AF(0,1072), m = 20,
n = 3000
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Numerical example: robust regression

Mirror descent

fbest,t _ fopt

taken from Stanford EE364B

— Entropy
— Gradient ]

102 F

107 |

10% ¢




Fundamental inequality for mirror descent

Lemma 5.4

o D, (z* ') —

sum later

Mirror descent
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Proof of Lemma 5.4

f(x) — f(z*) < (g 2" —a*) (property of subgradient)
= %<V<P($t) - V@(ytﬂ)ﬂﬂt —x") (MD update rule)
t

= nl {D,(z*,x") + Dy(z',y"*") — Dy(z*,y""")}  (three point lemma)
¢

< L (0.0 + Do) - Dee ) - D)
(Pythagorean)

1 1
= o ADe(@", @) = Dp(a, =)} 4 - {Dy (a',4™™) = Do, y") }

so we need to first bound the 2nd term of the last line
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Proof of Lemma 5.4 (cont.)

We claim that

2
Dw(wt,ytﬂ) _ D¢(mt+1’yt+1) < (ntQLpf) (5.6)

This gives

ui (f(wt) - f(a:*)) < {Dv(w*,azt) - DW(m*’th)} + (77’5;’;)2

as claimed
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Proof of Lemma 5.4 (cont.)

Finally, we justify (5.6):

D(at ) = D (e )

g0(:1315) _ @($t+1) _ <v¢(yt+1)’wt _ wt+1>

(Ve(a').a' —a'h) — {2’ —a' " —(Vo(y™").a' — ')
(strong convexity of ¢)

— (Vo(a!) - Vo(y™).a! — att) - Lot ot

IN

= (g &’ — 2" - gH-’Bt - IBtHHQ (MD update rule)

<nmLyg|a' — x| - g”:ct - :ct+1H2 (Cauchy-Schwarz)
L 2

< (77t2 ) (optimize quadratic function in [lz' — x'*!|))
p

Mirror descent



Proof of Theorem 5.3

From Lemma 5.4, one has

212
; \ niL
e (F(@) = 1) < Dol ab) = Dl 2+ + 20

Taking this inequality for K = 0,--- ,t and summing them up give

L2 t, 2
Z M ( fOPt) < Dy (z*, x¥) — Dso(as*,a:tﬂ) + M
2p
L2 t_ 2
xeC 2/)
opt
This together with fPestt — fopt < Zie 07;‘:( /) concludes the
Tk
proof =
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