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Differentiable unconstrained minimization

minimize, f(x)

subject to x € R"

e f (objective or cost function) is differentiable
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Iterative descent algorithms

Start with a point °, and construct a sequence {x'} s.t.

(™) < f(ah), t=0,1,---

e d is said to be a descent direction at x if

f@+7d) — f(z)

f(z;d) := lim

_ T
lim = Vi) Td<0

directional derivative

Gradient methods (unconstrained case)

(2.1)
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Iterative descent algorithms

Start with a point °, and construct a sequence {x'} s.t.

(™) < f(ah), t=0,1,---

e In each iteration, search in descent direction
$t+1 = a:t + Utdt

where d': descent direction at x!: 1y > 0: stepsize

Gradient methods (unconstrained case)
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Gradient descent (GD)

One of the most important examples of (2.2): gradient descent

2 = ot~ V(@)

(2:3)
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Gradient descent (GD)

One of the most important examples of (2.2): gradient descent

e =a' — V() (2:3)

e descent direction: d' = —V f(x!)

e a.k.a. steepest descent, since from (2.1) and Cauchy-Schwarz,

Tg—_
argdnrgll'gqu( d)—argdﬁlllgqvf( z) d=—|Vf(z)2

direction with the greatest rate of objective value improvement
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Quadratic minimization problems



Quadratic minimization

To get a sense of the convergence rate of GD, let's begin with
quadratic objective functions

minimize, f(x) := %(ZB — ") Q(x — z¥)

for some n x n matrix Q >~ 0, where Vf(x) = Q(x — =*)

Gradient methods (unconstrained case)
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Convergence for constant stepsizes

Convergence rate: if n, =n= m, then

AﬂQ)—&xQ»q@o_mw
M(Q) +M(Q) ’

where A1(Q) (resp. \,(Q)) is the largest (resp. smallest) eigenvalue
of Q

ot~ [l < (

e as we will see, 77 is chosen s.t. |1 — nA,(Q)] = |1 — A1 (Q)|
e the convergence rate is dictated by the condition number ii((g))

of Q, or equivalently, %m
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Convergence for constant stepsizes

Convergence rate: if n, =n= m, then

AﬂQ)—&xQ»qwo_mw
M(Q) +M(Q) ’

where A1(Q) (resp. \,(Q)) is the largest (resp. smallest) eigenvalue
of Q

ot~ [l < (

e often called linear convergence or geometric convergence

o since the error lies below a line on a log-linear plot of error
vs. iteration count
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Convergence for constant stepsizes

Proof: According to the GD update rule,

't —at =a' —a* - Vf(2') =T -nQ)(a" — x¥)

=l a2 < [ - nQflx’ — 2|2
The claim then follows by observing that

[T —nQ| = max{|l — n: A1 (Q)], 1 — n:An(Q)[}

remark: optimal choice is n:=

@@
2@ M(Q) - M(Q)
)\1 (Q) + )\n(Q) )\1 (Q) + )\n(Q)

Apply the above bound recursively to complete the proof

—1-

Gradient methods (unconstrained case)
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Exact line search

The stepsize rule n; = n = m relies on the spectrum of Q,
which requires preliminary experimentation

Another more practical strategy is the exact line search rule

7; = arg min f(a:t — an(:L't)) (2.4)
n=>0
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Convergence for exact line search

Convergence rate: if 7, = argmin,>o f(z' — nV f(z')), then

B 2
e - 1) < (A1 D) (@) - )

e stated in terms of the objective values

e convergence rate not faster than the constant stepsize rule

Gradient methods (unconstrained case)
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Convergence for exact line search

Proof: For notational simplicity, let g' = Vf(z!) = Q(z' — x*). It can be
verified that exact line search gives

= gtTgt
' g7 Qg
This gives
1
flaith) = §($t gt — w*)TQ(mt — gt — :c*)
1 2
= 5@ =) Q" — ") —mllg'l; + 9" Qg'
1 AT (ot o lg*1l3
BEL R 7

_ 1— ||gt||421 f(ar:t)
(gtTQgt) (gtTQflgt)
where the last line uses f(x') = £ (' — w*)TQ(mt —z*) =3g""Q g’
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Convergence for exact line search

Proof (cont.): From Kantorovich's inequality

N () ()
(¥TQY)(¥7Q'y) ~ (M(Q) + Q)

we arrive at

(")

e §<1_ A(QM(Q) )
) (M(Q) + (@)

_ (M@ M@
- (Mar@) 1=

This concludes the proof since f(z*) = min, f(x) =0 O
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Strongly convex and smooth problems

Let's now generalize quadratic minimization to a broader class of
problems

minimize,  f(x)

where f(-) is strongly convex and smooth

e a twice-differentiable function f is said to be pu-strongly convex
and L-smooth if

0=<pul XV°f(x) < LI, Vax
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Convergence rate for strongly convex and smooth
problems

Theorem 2.1 (GD for strongly convex and smooth functions)

Let f be p-strongly convex and L-smooth. If ny =n = ;H%L then
t
) la® = ']

where k := L/ is condition number; x* is the minimizer

k—1
k+1

ot~ ]l <

e generalization of quadratic minimization problems

o stepsize: 1 = HJ%L (vs. n = m)

o contraction rate: ZH (vs. 7;\\128;;?:58;)
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Convergence rate for strongly convex and smooth
problems

Theorem 2.1 (GD for strongly convex and smooth functions)

Let f be p-strongly convex and L-smooth. If ny =n = ;H%L then
t
) la® = ']

where k := L/ is condition number; x* is the minimizer

k—1
k+1

ot~ ]l <

. . . . . log 1 . .
e dimension-free: iteration complexity is O : gﬁi , Which is

Kk—1
independent of the problem size n if k does not depend on n
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Convergence rate for strongly convex and smooth
problems

Theorem 2.1 (GD for strongly convex and smooth functions)

Let f be p-strongly convex and L-smooth. If ny =n = ;H%L then
t
) la® = ']

where k := L/ is condition number; x* is the minimizer

k—1
k+1

ot~ ]l <

e a direct consequence of Theorem 2.1 (using smoothness):

o — 1)\ 2t
fah) - @) < 5 () e a3
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Proof of Theorem 2.1

It is seen from the fundamental theorem of calculus that

V(') = V(') - w = (/01 VQf(wT)dT> (z" —27),

where ., := x' + 7(x* — x'). Here, {z;}o<,<1 forms a line segment
between ! and x*. Therefore,

[ — 2"y = 2" — 2" — 9V f(a")]

o o)

sup ||[I—nV?f(z,)| [|o" — "l
0<r<1

IN

[Ea P

Repeat this argument for all iterations to conclude the proof

Gradient methods (unconstrained case)
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More on strong convexity

f(-) is said to be p-strongly convex if

() f@) = {@+V@) (y—a)+Lle—yl Vay

first-order Taylor expansion

Equivalent first-order characterizations

(i) For all z and y and all 0 < A <1,
FOz+(1=Ny) <A (@) + 1= Nf(y) - 520 =Nz —yll3

(i) (Vf(x) = Vf(y),z—y)>plle—yl3 Vzy
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More on strong convexity

f(-) is said to be p-strongly convex if

() f@) = {@+V@) (y—a)+Lle—yl Vay

first-order Taylor expansion

Equivalent second-order characterization
(iv) V2f(x) = uI, Vx (for twice differentiable functions)

Gradient methods (unconstrained case)
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More on smoothness

A convex function f(-) is said to be L-smooth if

() f) < f@)+ Vi@ o)+ Sl -y} vay

first-order Taylor expansion

Equivalent first-order characterizations (for convex functions)
(i) For all z and y and all 0 < A < 1,

fOz+ (1= Ny) > Af(@) + (1= N f(y) — EA0 = N)[|z - ylf3

(i) (Vi) = Viy),z-y) > |Vi@) - ViWE Yoy
(iv) [|[Vf(x)=Vf(y)ll2 < L|jx—yll2, Yo,y (L-Lipschitz gradient)
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More on smoothness

A convex function f(-) is said to be L-smooth if

() f) < f@)+ Vi@ y-2)+ Sl -y} vay

first-order Taylor expansion

Equivalent second-order characterization

(v) |V2f(x)|]2 < L, Vz (for twice differentiable functions)
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Backtracking line search

Practically, one often performs line searches rather than adopting
constant stepsizes. Most line searches in practice are, however,
inexact

A simple and effective scheme: backtracking line search
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Backtracking line search

4 f(wt - an(wt))

acceptable

Armijo condition: for some 0 < o < 1
f@' =V f(@") < f(a") —anl|Vf(=")]3 (2.5)
o f(x!) —an||Vf(x)||3 lies above f(z! — nV f(x!)) for small n

e ensures sufficient decrease of objective values
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Backtracking line search

A f(wt - nvf(wt))
’ ‘k'\- .......... ,'l
el f(@!) — anl V()]
f@)-nvieil

acceptable

Algorithm 2.2 Backtracking line search for GD

L Initializen =1, 0<a<1/2,0< 8 < 1
2: while f(z! —nVf(z!)) > f(z!) — an|Vf(z")|3 do
3 N pn

Gradient methods (unconstrained case)
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Backtracking line search

upper bound f(a") — nl|V f(z) [} + 4~V (2}

A

t t

\ f(fL' —nVf(z ))
\\ ’

By

£ /

\52 ..... r’,’

i S
IRU ST S
Pt f(@) - an| V()3
0 i i K

Practically, backtracking line search often (but not always) provides
good estimates on the local Lipschitz constants of gradients
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Convergence for backtracking line search

Theorem 2.2 (Boyd, Vandenberghe '04)

Let f be p-strongly convex and L-smooth. With backtracking line
search,

fa') — f(@*) < (1—min {200, 220})" (£(a0) — f(a*))

where x* is the minimizer
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Is strong convexity necessary for linear convergence?

So far we have established linear convergence under strong convexity
and smoothness

Strong convexity requirement can often be relaxed
e local strong convexity
e regularity condition

e Polyak-Lojasiewicz condition
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Example: logistic regression

Suppose we obtain m independent binary samples
1 ith prob. ——+——
) with pro o (faz'wh)

Yi =
-1 ith prob. ————~
» Wi pro 1+exp (ajwh)

where {a;}: known design vectors; 2 € R™: unknown parameters
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Example: logistic regression

The maximum likelihood estimate (MLE) is given by (after a little
manipulation)

minimize,crn Z log ( + exp( yia;ra:))
—aal
. V()= &3 ORBAE) 7 ey g
i=1 (1 + exp(—yia; x))
—0 if z—o0
= f is O-strongly convex

e Does it mean we no longer have linear convergence?
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Local strong convexity

Theorem 2.3 (GD for locally strongly convex and smooth
functions)

Let f be locally u-strongly convex and L-smooth such that
pI < V2f(x) < LI, Vzx € B

where By := {z : ||z — x*|| < ||z — x*||2} and =* is the minimizer.
Then Theorem 2.1 continues to hold

Gradient methods (unconstrained case) 2-27




Local strong convexity

{z:[lz — 22 < 27 — x*||2}

xr
(130

e Suppose x! € By. Then repeating our previous analysis yields
2"+t — 2* (|2 < £pllat — a7l

e This also means x'*! € By, so the above bound continues to
hold for the next iteration ...

Gradient methods (unconstrained case)



Local strong convexity

Back to the logistic regression example, the local strong convexity
parameter is given by

. 1 & exp(—yia; ) T
inf Amin | — sa;a; | (2.6)
o:[|z—z* |2 <20z~ |2 m = (1 +exp(—y;a, x))

which is often stricly bounded away from 0,! thus enabling linear
convergence

'For example, when * = 0 and a; e N(0, I,,), one often has (2.6) > ¢ for
some universal constant c¢o > 0 with high prob if m/n > 2 (Sur et al.'17)
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Regularity condition

*

'
1

|
wl
<
g
8 %
~
/" -—
8% 8

Another way is to replace strong convexity and smoothness by the
following regularity condition:

o o M « 1
(Vf(x),z—x") > 5!\%—% H%Jrillvf(w)llg, Va

(2.7)

Gradient methods (unconstrained case)
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Regularity condition

»
8
*

'

1
1
1
1

|

=~

4

=

8 A
~
/’ —_—

¥

(Vi@) - Vi), -a%) > blo—a B+ o IV (@) - VI3, Ve

e compared to strong convexity (which involves any pair (z,y)),
we only restrict ourselves to (x, x*)

Gradient methods (unconstrained case)
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Convergence under regularity condition

Theorem 2.4
Suppose f satisfies (2.7). If n, =n = +, then
%2 I AT R
le* 2|3 < (1-7) o - a3

2-31
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Proof of Theorem 2.4

It follows that

1 2
t+1 %2 t ok = t
le ! — 2"} = ||a’ — 2" ~ V(")
= o' — "} + V(@3 - - (@' — 2", Vf(a")
(i)
< lla* 2|3 - Ll — 2”1
—(1-2) et~ =18

where (i) comes from (2.7)

Apply it recursively to complete the proof
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Polyak-Lojasiewicz condition

Another alternative is the Polyak-Lojasiewicz (PL) condition

IVF(@)I5 > 2p(f(x) — f(&), Va (2.8)

minimizer
e guarantees that gradient grows fast as we move away from the

optimal objective value

e guarantees that every stationary point is a global minimum
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Convergence under PL condition

Theorem 2.5

Suppose f satisfies (2.8) and is L-smooth. If n, =n = % then

fa) — ) < (1- 2 (7@ - f@))

e guarantees linear convergence to the optimal objective value
e does NOT imply the uniqueness of global minima

e proof deferred to Page 2-45

Gradient methods (unconstrained case)
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Example: over-parameterized linear regression

e m data samples {a; € R",y; € R}i1<i<pm,

e linear regression: find a linear model that best fits the data
1 m
minimize - a T —
xeR" 2 Z yl

Over-parameterization: model dimension > sample size
(i.e. m >m)

— a regime of particular importance in deep learning
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Example: over-parametrized linear regression

While this is a convex problem, it is not strongly convex, since

Vif(x) = zzaiazT is rank-deficient if n > m
i=1

But for most “non-degenerate” cases, one has f(z*) = 0 (why?) and
the PL condition is met, and hence GD converges linearly
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Example: over-parametrized linear regression

Fact 2.6

Suppose that A = [a1,- -+ ,a,,]" € R™*" has rank m, and that
m=n= ﬁ. Then GD obeys
Amin(AAT)Y'
ty _ ) < _ Z\min 0y _ *
flah) - f(a) < (1 - AT>> (@) - fla®), v

e very mild assumption on {a;}

e no assumption on {yz}
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Example: over-parametrized linear regression

Fact 2.6

Suppose that A = [a1,- -+ ,a,,]" € R™*" has rank m, and that
m=n= ﬁ. Then GD obeys
Amin(AAT)Y'
ty _ ) < _ Z\min 0y _ *
flah) - f(a) < (1 - AT>> (@) - fla®), v

e (aside) while there are many global minima for this
over-parametrized problem, GD has implicit bias

o GD converges to a global min closest to initialization x°!
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Proof of Fact 2.6

Everything boils down to showing the PL condition
IVF(@)]3 = 2Amin(AAT) f() (2.9)

If this holds, then the claim follows immediately from Theorem 2.5
and the fact f(x*) =0

To prove (2.9), let y = [yi]1<i<m. and observe
Vf(x)=AT(Ax —y). Then
IVF(@)]3 = (Az —y) T AAT (Az —y)
> Amin(AA")[[ Az — y3
= 2)\min(AAT)f($)7

which satisfies the PL condition (2.9) with 1 = Apin(AAT)
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Convex and smooth problems



Dropping strong convexity

What happens if we completely drop (local) strong convexity?

minimizeg,  f(x)

e f(x) is convex and smooth

Gradient methods (unconstrained case)
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Dropping strong convexity

Without strong convexity, it may often be better to focus on objective
improvement (rather than improvement on estimation error)

A

f@) = 1/a

xT

Example: consider f(z) = 1/x (z > 0). GD iterates {z'} might
never converge to z* = oco. In comparison, f(x!) might approach
f(x*) =0 rapidly
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Objective improvement and stepsize

Question:

e can we ensure reduction of the objective value
(i.e. f(ztT1) < f(x')) without strong convexity?

e what stepsizes guarantee sufficient decrease?

Key idea: majorization-minimization

e find a simple majorizing function of f(x) and optimize it instead
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Objective improvement and stepsize

From the smoothness assumption,
t+1 t T (o t+1 t L. i )2
f@) = f(&") < V(') (= —m)+§\|w —z'|5

2
n; L
= —nt||Vf(:ct)||%+—t2 IV ()3

majorizing function of objective reduction due to smoothness

(pick 7, = 1/L to minimize the majorizing function)

_1 ;
= — 521973
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Objective improvement

Fact 2.7

Suppose f is L-smooth. Then GD with n, = 1/L obeys

F@) < fat) - S IV TR

e for n; sufficiently small, GD results in improvement in the
objective value

e does NOT rely on convexity!
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A byproduct: proof of Theorem 2.5

t * (0 t * 1 t
F@) = f@) < f(@") = f&") = 7 IV f(=)]l3

= (1- 1) ) - s@)

where (i) follows from Fact 2.7, and (ii) comes from the PL condition
(2.8)

Apply it recursively to complete the proof
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Improvement in estimation accuracy

GD is not only improving the objective value, but is also dragging the
iterates towards minimizer(s), as long as 1 is not too large

|x! — x*||2 is monotonically
nonincreasing in ¢

Treating f as 0-strongly convex, we can see from our previous
analysis for strongly convex problems that

lz ! — 272 < 2" — "2
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Improvement in estimation accuracy

One can further show that ||x! — x*||2 is strictly decreasing unless x!
is already the minimizer

Fact 2.8

Let f be convex and L-smooth. If n, =n = 1/L, then

le*t =23 < =" - 27||3 - LQHVf )5

where x* is any minimizer of f(-)
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Proof of Fact 2.8

It follows that

2t — 2*|3 = [t — " —n(Vf(2') — V)|
=0
(@' — 2", Vf(2') - V(@) +7°||V (") - V)|
> 22|V f(at) =V f(z*)]|3 (smooth+cvx)
< o — 2|} = 229 (@)~ Vi) E + Vi) - Vi)
= |jz" - H2 Lszf Vf(:c*)”i (sincen=1/L)
=0
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Convergence rate for convex and smooth problems

However, without strong convexity, convergence is typically much
slower than linear (or geometric) convergence

Theorem 2.9 (GD for convex and smooth problems)

Let f be convex and L-smooth. If ny =n = 1/L, then GD obeys

fla') = f(z")

< 2L\|m0 —x* |%

t

where x* is any minimizer of f(-)

e attains e-accuracy within O(1/e) iterations (vs. O(log 1)
iterations for linear convergence)
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Proof of Theorem 2.9 (cont.)

From Fact 2.7,
1
fE™h) = f(a) < —ﬁllvf(wt)llg

To infer f(x') recursively, it is often easier to replace ||V f(z!)||2 with
simpler functions of f(x'). Use convexity and Cauchy-Schwarz to get

fl@*) = f(a") > V(@) (z" —a') > —|Vf(@)|2]| 2" — 2|,
fa) — fa*) P28 f(a) - f(a*)

- Vf(xh)e >
B T =
Setting A; := f(x!) — f(x*) and combining the above bounds yield

1 1
A — A < —— A2~ A2 2.10
t+1 t > ZLHCUO —CC*H% t wo t ( )
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Proof of Theorem 2.9 (cont.)

1
A1 < Ay — —AF
wo
Dividing both sides by A;A1 and rearranging terms give

1 1 i Ay
A1 — A wo Appr

= At1+1 > Alt + ;0 (since Ay > Ayyq (Fact 2.7))
S S S S
Ay 7 Ap  wo T wo
a0 _ 2L — a3
t t
as claimed
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Nonconvex problems



Nonconvex problems are everywhere

Many empirical risk minimization tasks are nonconvex

minimize,  f(x;data)

low-rank matrix completion

blind deconvolution

dictionary learning

mixture models

learning deep neural nets

Gradient methods (unconstrained case)




Challenges

e there may be bumps and local minima everywhere
o e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)

e no algorithm can solve nonconvex problems efficiently in all cases
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Typical convergence guarantees

We cannot hope for efficient global convergence to global minima in
general, but we may have

e convergence to stationary points (i.e. V f(x) = 0)
e convergence to local minima

e local convergence to global minima (i.e. when initialized suitably)
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Making gradients small

Suppose we are content with any (approximate) stationary point ...

This means that our goal is merely to find a point & with

IVf(x)|l2 <e (called s-approximate stationary point)

Question: can GD achieve this goal? If so, how fast?
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Making gradients small

Theorem 2.10

Let f be L-smooth and ni, =n = 1/L. Assume t is even.

e In general, GD obeys

Join IV £z <

VQL (f(x0) — f(x*))
t

e If f(-) is convex, then GD obeys

4L)|x0 — x* |2
m' VY k < - @ =
t/2§ll?<t|| f(ac )”2 - t

e GD finds an e-approximate stationary point in O(1/£?) iterations

e does not imply GD converges to stationary points; it only says that 3
approximate stationary point in the GD trajectory
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Proof of Theorem 2.10

From Fact 2.7, we know

S IVFENIB < fah) — ftt), vk

This leads to a telescopic sum when summed over k =ty to k=t —1:

t—1
Z IVFEIE < Y (f@h) = f(@™) = fa') - f(a!)
k to k=to

2L (f(xt0) — f(z*))
t—to

== min ||V f(z")]]2 g\/ (2.11)

to<k<t
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Proof of Theorem 2.10 (cont.)

For a general f(-), taking to = 0 immediately estalishes the claim

If f() is convex, invoke Theorem 2.9 to obtain

_ 2Ll=° — ="}

Fla) - fla) < 2T
0
Taking tp = t/2 and combining it with (2.11) give

_ 4L||x" — x*||2

0 *
r —x
2 — 2] t

. 2L
min |V f(z")]> < — e
to<k<t to(t — to)

Gradient methods (unconstrained case)



Escaping saddles

There are at least two kinds of points with vanishing gradients

global and local minimum saddle point

Saddle points look like “unstable” critical points; can we hope to at
least avoid saddle points?
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Escaping saddle points

GD cannnot always escape saddles

e c.g. if 2 happens to be a saddle, then GD gets trapped (since

can often be prevented by random initialization

Vf(z") =0)

Fortunately, under mild conditions, randomly initialized GD converges
to local (sometimes even global) minimum almost surely (Lee et al.)!
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Example

Consider a simple nonconvex quadratic minimization problem
. 1 +
minimize f(x) = 2T Ax
€T

o A=wju{ —ugug, where |[ulj2 = ||uzl2 = 1 and u{ uy =0

This problem has (at least) a saddle point: = 0 (why?)
e if ¥ = 0, then GD gets stuck at 0 (i.e. ' = 0)

e what if we initialize GD randomly? can we hope to avoid saddles?
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Example (cont.)

Fact 2.11
If x° ~ N(0,T), then with prob. approaching 1, GD with ) < 1 obeys

|||z — oo ast — oo

e Interestingly, GD (almost) never gets trapped in the saddle 0!
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Example (cont.)

Proof of Fact 2.11: Observe that
I-nA=1, +(1- n)uluir +(1+ 77)’11,211/;
where I} (=1 — ululT — U2u;. It can be easily verified that

(I-nA) =1, + (1 —n'uu] +(1+n) uug

= =T -nAz ™t =...= (I -nA)z
=I,2°+ (1 —n)'(uf %) ur + (1+ 1) (ug 2°) uy
——— ~———
=ro =: Bt

Clearly, oy — 0 as t — o0, and || — oo as long as [y # 0
N——— ~——

and hence ||zt||2—00 happens with prob. 1
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