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Constrained convex problems

minimize,  f(x)

subjectto x €C

e f(-): convex function

e C C R™: closed convex set
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Feasible direction methods

Generate a feasible sequence {x'} C C with iterations

mt—i—l — th + ntdt

where d' is a feasible direction (s.t. ! + n;d! € C)

e Question: can we guarantee feasibility while enforcing cost
improvement?
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Frank-Wolfe algorithm

Frank-Wolfe algorithm was developed by Philip Wolfe and Marguerite
Frank when they worked at / visited Princeton



Frank-Wolfe / conditional gradient algorithm

Algorithm 3.1 Frank-wolfe (a.k.a. conditional gradient) algorithm
1: fort=0,1,--- do

2. y':=argmingec (Vf(z!), x) (direction finding)
32z =(1—n)xt + nyt (line search and update)
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Frank-Wolfe / conditional gradient algorithm

Algorithm 3.2 Frank-wolfe (a.k.a. conditional gradient) algorithm
1: fort=0,1,--- do
2. y':=argmingec (Vf(z!), x) (direction finding)
32z =(1—n)xt + nyt (line search and update)

e main step: linearization of the objective function (equivalent to
f@) + (V') z —x'))

= linear optimization over a convex set

e appealing when linear optimization is cheap

2
e stepsize 7; determined by line search, or 7, = P

bias towards x? for large ¢
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Frank-Wolfe can also be applied to nonconvex
problems

Example (Luss & Teboulle '13)
minimize, — ' Qx subject to ||z|]2 <1 (3.1)

for some Q >~ 0
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Frank-Wolfe can also be applied to nonconvex
problems

We now apply Frank-Wolfe to solve (3.1). Clearly,

t_ . t _ V(') _ Qx'
y =ag i (V@2 = ik~ Qe

= 2 =(1-n)z’ + Q" /(|Qx’||2

Set 7 = argminp<y<1 f((l —n)xt + n%) =1 (check). This
gives

2 = Qut /| Qx|

which is essentially power method for finding leading eigenvector of Q
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Convergence for convex and smooth problems

Theorem 3.1 (Frank-Wolfe for convex and smooth problems,
Jaggi'13)

Let f be convex and L-smooth. With n; = H% one has
2Ld>3
ty _ * < C
fah) - @) < 7o

where de = SUDPy yec |z — yll2

e for compact constraint sets, Frank-Wolfe attains e-accuracy
within O(%) iterations
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Proof of Theorem 3.1

By smoothness,
F@ )~ fa) < Vi) (@ —a) + 2 2 =o'
= (y'—z") =n; ly* —="[|3<n?dg
<mVf(@) (y' —a')+ Lm d¢
< V) (" —xt) + Lnt d%  (since y' is minimizer)
<n(fa) ~ Jlat) + %n?dc (by convesity)

Letting A := f(x!) — f(x*) we get
Ld>
Appr < (T—m)As + Tcﬁ?

We then complete the proof by induction (which we omit here)
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Strongly convex problems?

Can we hope to improve convergence guarantees of Frank-Wolfe in
the presence of strong convexity?

e in general, NO

e maybe improvable under additional conditions
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A negative result

Example:
1
minimize,cgn §$TQ:1: +b'z (3.2)
subject to x = [ai, - ,ai|v, v >0, 1Tv=1 (=:Q)

x € convex-hull{a1,,ax}

e suppose interior(€2) # ()

e suppose the optimal point x* lies on the boundary of 2 and is
not an extreme point
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A negative result

Theorem 3.2 (Canon & Cullum, '68)

Let {x'} be Frank-Wolfe iterates with exact line search for solving
(3.2). Then 3 an initial point x° s.t. for every ¢ > 0,

1
flx') = f(z*) > e for infinitely many t

e example: choose x” € interior(Q2) obeying f(x°) < min; f(a;)

e in general, cannot improve O(1/t) convergence guarantees
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Positive results?

To achieve faster convergence, one needs additional assumptions

e example: strongly convex feasible set C

e active research topics
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An example of positive results

A set C is said to be p-strongly convex if VA € [0,1] and Ve, z € C:
B(Az+(1- M)z, %/\(1 ~ Nz - z[3) €,

where B(a,r) :={y | |ly —al2 < r}

e example: /5 ball

Theorem 3.3 (Levitin & Polyak '66)

Suppose f is convex and L-smooth, and C is p-strongly convex.
Suppose ||V f(x)||2 > ¢ > 0 for all x € C. Then under mild
conditions, Frank-Wolfe with exact line search converges linearly
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Projected gradient methods



Projected gradient descent

works well if projection
onto C can be
computed efficiently

thrl — Pc(il?t o ntvf(wt))

where P¢(x) := argmin, ¢ || — z||3 is Euclidean projection onto C

quadratic minimization
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Descent direction

Fact 3.4 (Projection theorem)

Let C be closed & convex. Then x¢ is the projection of x onto C iff

(& —xc)" (2 —xc) <0, Vzel
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Descent direction

From the above figure, we know

—Vf(mt)T(ict+1 _ mt) >0

x!Tt — 2! is positively correlated with the steepest descent direction J
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Strongly convex and smooth problems

minimize,  f(x)

subjectto x €C

e f(-): p-strongly convex and L-smooth

e C C R™: closed and convex
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Convergence for strongly convex and smooth
problems

8@

Let's start with the simple case when x* lies in the interior of C (so
that Vf(z*) = 0)
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Convergence for strongly convex and smooth
problems

Theorem 3.5

Suppose x* € int(C), and let f be u-strongly convex and L-smooth.
If g, = /HLL then
k—1

k+1

t
et — > < ( ) a2 — 2|l

where k = L/ is condition number

e the same convergence rate as for the unconstrained case
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Aside: nonexpansiveness of projection operator

Fact 3.6 (Nonexpansivness of projection)

For any x and z, one has ||Pc(x) — Pc(2z)|]2 < || — 2|2
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Proof of Theorem 3.5

We have shown for the unconstrained case that
k—1
' =V f(x") — "z < f\\wt — x|

From the nonexpansiveness of P¢, we know

&t — &2 = [Pea’ — eV f(@)) — Pe(a)ll
< |lat — 0V () — 2
k—1

IN

" — 2|2

Apply it recursively to conclude the proof
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Convergence for strongly convex and smooth
problems

Se

What happens if we don’'t know whether * € int(C)?

e main issue: V f(x*) may not be 0 (so prior analysis might fail)
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Convergence for strongly convex and smooth
problems

Theorem 3.7 (projected GD for strongly convex and smooth
problems)

Let f be u-strongly convex and L-smooth. If g =n = % then

t
k /’[/ *
ot [} < (1= %) 2 - o3

e slightly weaker convergence guarantees than Theorem 3.5
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Proof of Theorem 3.7

Let * := Pe(x — £V f(z)) and ge(x) := %(az —xT)=L(x—x")

negative descent direction

e gc(x) generalizes V f(x) and obeys g¢(z*) =0
Main pillar:
ERP NS H X2 i 2 3.3
(ge(x), x —x7) = Tlle — x5 + o+ llge()|2 (3.3)
2 2L
e this generalizes the regularity condition for GD

With (3.3) in place, repeating GD analysis under the regularity
condition gives

ot -2 < (1- 2) ot - o3

which immediately establishes Theorem 3.7
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Proof of Theorem 3.7 (cont.)

It remains to justify (3.3). To this end, it is seen that
0< f(=") = f(z") = fla¥) - flz) + fz) — f(x")
< Vi@ (@ ~2)+ Sllet - 2lf+ Vi@ (@ - ) - Lo - o3

smoothness strong convexity

sy L 1 .
= V@) (@ ) + rllec@Ii — bllw -3,
which would establish (3.3) if

Vi) (xt—2*) < ge(x)  (xT —x*)  (projection only makes it better)

=gc(®)T (x—z*)— 1 llge (2|3
(3.4)
This inequality is equivalent to

(zt — (m—L_1Vf(w)))T(:c+ —x*) <0 (3.5)
This fact (3.5) follows directly from Fact 3.4
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Remark

*

x— LV f(x) “’
R
Yy
C
xr

One can easily generalize (3.4) to (via the same proof)

Vi) (@t —y) <gel(@) (" —y), vyeC
This proves useful for subsequent analysis
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Convex and smooth problems

minimize,  f(x)

subjectto x €C

e f(-): convex and L-smooth

e C C R™: closed and convex
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Convergence for convex and smooth problems

Theorem 3.8 (projected GD for convex and smooth problems)

Let f be convex and L-smooth. If n, =n = % then

_ 3L]2® — &3+ f(=°) — f(")

f(@) - f(@") -

e similar convergence rate as for the unconstrained case
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Proof of Theorem 3.8

We first recall our main steps when handling the unconstrained case

Step 1: show cost improvement
1
F@™h) < f@) = IV

Step 2: connect ||V f(z")|]2 with f(x?)

fat) ~ f) _ fla') — fa)

@t —a*lla — [l2° — @[l

V()2 =

Step 3: let A, := f(x!) — f(x*) to get

A

Ay — Ay < ————t
LTS L0 — 23

and complete the proof by induction
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Proof of Theorem 3.8 (cont.)

We then modify these steps for the constrained case. As before, set
ge(x!) = L(x! — x!*1), which generalizes V f(x!) in constrained case

Step 1: show cost improvement
1
f@h) < f(@") = 57 llge (=)

Step 2: connect ||gc(z?)||2 with f(x?!)

f@™) — f(z*)

l* — 2|2

f(@™) — f(a*)

t
€T >
lge(")[l2 > TP

>

Step 3: let A, := f(x!) — f(z*) to get

2
A2,

Appt — Ay < —— 1
TS T oLa0 — a3

and complete the proof by induction
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Proof of Theorem 3.8 (cont.)

Main pillar: generalize smoothness condition as follows

Lemma 3.9

Suppose f is convex and L-smooth. For any x,y € C, let
™ =Pe(x — 1V f(x)) and go(x) = L(x — x*). Then

F(8) 2 f(@) + gol@) (y — @) + 57 lge(@)]B
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Proof of Theorem 3.8 (cont.)

Step 1: set £ = y = «' in Lemma 3.9 to reach

1
Fh) > f(&™) + = lge ()3

2L

as desired

Step 2: set £ = x! and y = =* in Lemma 3.9 to get

* * 1
0> f(a*) - f(a'") > ge(x") T (z" — =) + ﬁllgc(wt)llg
> ge(z') ' (2" —a')
which together with Cauchy-Schwarz yields
f@*) = f(a*)

[t — 2|2

lge(x")|l2 >
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Proof of Theorem 3.8 (cont.)

It also follows from our analysis for the strongly convex case that (by
taking = 0 in Theorem 3.7)

e’ — a2 < [|l=° — 2"
which combined with (3.7) reveals

fa™h) — f(a*)

J? — 2*[|2

lge(x")|l2 >

Step 3: letting A; = f(x!) — f(x*), the previous bounds together
give
A%

A A< -t
T e

Use induction to finish the proof (which we omit here)
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Proof of Lemma 3.9

—z|3 (by (3.6))

=+gc(z) =—r19c()

= ge(@)" (y @) + 5 e @)
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Summary

e Frank-Wolfe: projection-free

stepsize | convergence iteration
rule rate complexity
convex & smooth 1 1 1
problems "= 0 (%) 0(2)
e projected gradient descent
stepsize | convergence iteration
rule rate complexity
convex & smooth 1 1 1
problems =1 0 (%) O(31)
strongly convex & t
e m=%10(0-2") | 0(slog?)

smooth problems
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