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Dual proximal gradient method



Constrained convex optimization

minimizex f(x)
subject to Ax+ b ∈ C

where f is convex, and C is convex set

• projection onto such a feasible set could sometimes be highly
nontrivial (even when projection onto C is easy)
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Constrained convex optimization

More generally, consider

minimizex f(x) + h(Ax)

where f and h are convex

• computing the proximal operator w.r.t. h̃(x) := h(Ax) could be
difficult (even when proxh is inexpensive)
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A possible route: dual formulation

minimizex f(x) + h(Ax)

m add auxiliary variable z

minimizex,z f(x) + h(z)
subject to Ax = z

dual formulation:

maximizeλ min
x,z

f(x) + h(z) + 〈λ,Ax− z〉︸ ︷︷ ︸
=:L(x,z,λ) (Lagrangian)
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A possible route: dual formulation

maximizeλ min
x,z

f(x) + h(z) + 〈λ,Ax− z〉

m decouple x and z

maximizeλ min
x

{
〈A>λ,x〉+ f(x)

}
+ min

z

{
h(z)− 〈λ, z〉

}
m

maximizeλ − f∗(−A>λ)− h∗(λ)

where f∗ (resp. h∗) is the Fenchel conjugate of f (resp. h)
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Primal vs. dual problems

(primal) minimizex f(x) + h(Ax)
(dual) minimizeλ f∗(−A>λ) + h∗(λ)

Dual formulation is useful if
• the proximal operator w.r.t. h is cheap (then we can use the

Moreau decomposition proxh∗(x) = x− proxh(x))

• f∗ is smooth (or if f is strongly convex)
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Dual proximal gradient methods

Apply proximal gradient methods to the dual problem:

Algorithm 9.1 Dual proximal gradient algorithm
1: for t = 0, 1, · · · do
2: λt+1 = proxηth∗

(
λt + ηtA∇f∗

(
−A>λt

))

• let Q(λ) := −f∗(−A>λ)− h∗(λ) and Qopt = maxλQ(λ), then

Qopt −Q(λt) . 1
t

(9.1)
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Primal representation of dual proximal gradient
methods

Algorithm 9.1 admits a more explicit primal representation

Algorithm 9.2 Dual proximal gradient algorithm (primal representa-
tion)

1: for t = 0, 1, · · · do
2: xt = arg minx

{
f(x) + 〈A>λt,x〉

}
3: λt+1 = λt + ηtAx

t − ηtproxη−1
t h

(
η−1
t λ

t +Axt
)

• {xt} is a primal sequence, which is nonetheless not always
feasible
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Justification of the primal representation

By definition of xt,
−A>λt ∈ ∂f(xt)

This together with the conjugate subgradient theorem and the
smoothness of f∗ yields

xt = ∇f∗(−A>λt)

Therefore, the dual proximal gradient update rule can be rewritten as

λt+1 = proxηth∗
(
λt + ηtAx

t) (9.2)
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Justification of primal representation (cont.)

Moreover, from the extended Moreau decomposition, we know

proxηth∗
(
λt + ηtAx

t) = λt + ηtAx
t − ηtproxη−1

t h

(
η−1
t λ

t +Axt
)

=⇒ λt+1 = λt + ηtAx
t − ηtproxη−1

t h

(
η−1
t λ

t +Axt
)
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Accuracy of the primal sequence

One can control the primal accuracy via the dual accuracy:

Lemma 9.1

Let xλ := arg minx
{
f(x) + 〈A>λ,x〉

}
. Suppose f is µ-strongly

convex. Then
‖x∗ − xλ‖22 ≤

2
(
Qopt −Q(λ)

)
µ

• consequence: ‖x∗ − xt‖22 . 1/t (using (9.1))
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Proof of Lemma 9.1
Recall that Lagrangian is given by

L(x, z,λ) := f(x) + 〈A>λ,x〉︸ ︷︷ ︸
=:f̃(x,λ)

+ h(z)− 〈λ, z〉︸ ︷︷ ︸
=:h̃(z,λ)

For any λ, define xλ := arg minx f̃(x,λ) and zλ := arg minz h̃(z,λ)
(non-rigorous). Then by strong convexity,

L(x∗, z∗,λ)− L(xλ, zλ,λ) ≥ f̃(x∗,λ)− f̃(xλ,λ) ≥ 1
2µ‖x

∗ − xλ‖2
2

In addition, since Ax∗ = z∗, one has

L(x∗, z∗,λ) = f(x∗) + h(z∗) + 〈λ,Ax∗ − z∗〉 = f(x∗) + h(Ax∗)

= F opt duality= Qopt

This combined with L(xλ, zλ,λ) = Q(λ) gives

Qopt −Q(λ) ≥ 1
2µ‖x

∗ − xλ‖2
2

as claimed
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Accelerated dual proximal gradient methods

One can apply FISTA to dual problem to improve convergence:

Algorithm 9.3 Accelerated dual proximal gradient algorithm
1: for t = 0, 1, · · · do
2: λt+1 = proxηth∗

(
wt + ηtA∇f∗

(
−A>wt

))
3: θt+1 = 1+

√
1+4θ2

t

2
4: wt+1 = λt+1 + θt−1

θt+1

(
λt+1 − λt

)

• apply FISTA theory and Lemma 9.1 to get

Qopt −Q(λt) . 1
t2

and ‖x∗ − xt‖22 .
1
t2
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Primal representation of accelerated dual proximal
gradient methods

Algorithm 9.3 admits more explicit primal representation

Algorithm 9.4 Accelerated dual proximal gradient algorithm (primal
representation)

1: for t = 0, 1, · · · do
2: xt = arg minx f(x) + 〈A>wt,x〉
3: λt+1 = wt + ηtAx

t − ηtproxη−1
t h

(
η−1
t w

t +Axt
)

4: θt+1 = 1+
√

1+4θ2
t

2
5: wt+1 = λt+1 + θt−1

θt+1

(
λt+1 − λt

)
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Primal-dual proximal gradient method



Nonsmooth optimization

minimizex f(x) + h(Ax)

where f and h are closed and convex

• both f and h might be non-smooth

• both f and h might have inexpensive proximal operators
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Primal-dual approaches?

minimizex f(x) + h(Ax)

So far we have discussed proximal methods (resp. dual proximal
methods), which essentially updates only primal (resp. dual) variables

Question: can we update both primal and dual variables
simultaneously and take advantage of both proxf and proxh?
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A saddle-point formulation
To this end, we first derive a saddle-point formulation that includes
both primal and dual variables

minimizex f(x) + h(Ax)
m add an auxiliary variable z

minimizex,z f(x) + h(z) subject to Ax = z

m

maximizeλ minx,z f(x) + h(z) + 〈λ,Ax− z〉
m

maximizeλ minx f(x) + 〈λ,Ax〉 − h∗(λ)
m

minimizex maxλ f(x) + 〈λ,Ax〉 − h∗(λ) (saddle-point problem)
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A saddle-point formulation

minimizex maxλ f(x) + 〈λ,Ax〉 − h∗(λ) (9.3)

• one can then consider updating the primal variable x and the
dual variable λ simultaneously

• we’ll first examine the optimality condition for (9.3), which in
turn gives ideas about how to jointly update primal and dual
variables
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Optimality condition

minimizex maxλ f(x) + 〈λ,Ax〉 − h∗(λ)

optimality condition: {
0 ∈ ∂f(x) +A>λ
0 ∈ −Ax+ ∂h∗(λ)

⇐⇒ 0 ∈
[

A>

−A

] [
x
λ

]
+
[
∂f(x)
∂h∗(λ)

]
=: F(x,λ) (9.4)

key idea: iteratively update (x,λ) to reach a point obeying
0 ∈ F(x,λ)
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How to solve 0 ∈ F(x) in general?

In general, finding solution to

0 ∈ F(x)︸ ︷︷ ︸
called “monotone inclusion problem” if F is maximal monotone

⇐⇒ x ∈ (I + F)(x)

is equivalent to finding fixed points of (I + ηF)−1︸ ︷︷ ︸
resolvent of F

, i.e. solutions to

x = (I + ηF)−1(x)

This suggests a natural fixed-point iteration / resolvent iteration:

xt+1 = (I + ηF)−1(xt), t = 0, 1, · · ·
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Aside: monotone operators
— Ryu, Boyd ’16

E.K. RYU, S. BOYD: A PRIMER ON MONOTONE OPERATOR ... 11

For a CCP functions, strong convexity and strong smoothness are dual properties; a CCP f is
strongly convex with parameter m if and only if f⋆ is strongly smooth with parameter L = 1/m,
and vice versa. We discuss these claims in the appendix.

For example, f(x) = x2/2 + |x|, where x ∈ R, is strongly convex with parameter 1 but not
strongly smooth. Its conjugate is f∗(x) = ((|x| − 1)+)2/2, where (·)+ denotes the positive part,
and is strongly smooth with parameter 1 but not strongly convex. See Fig. 4.

Figure 4. Example of f and its conjugate f⋆.

4.3. Examples

Relations on R. We describe this informally. A relation on R is monotone if it is a curve in
R2 that is always nondecreasing; it can have horizontal (flat) portions and also vertical (infinite
slope) portions. If it is a continuous curve with no end points, then it is maximal monotone. It
is strongly monotone with parameter m if it maintains a minimum slope m everywhere; it has
Lipschitz constant L if its slope is never more than L. See Fig. 5.

Figure 5. Examples of operators on R.

Continuous functions. A continuous monotone function F : Rn → Rn (with domF = Rn)
is maximal.

Let us show this. Assume for contradiction that there is a pair (x̃, ũ) /∈ F , such that

(ũ − F (x))T (x̃ − x) ≥ 0

• a relation F is called monotone if
〈u− v,x− y〉 ≥ 0, ∀(x,u), (y,v) ∈ F

• relation F is called maximal monotone if there is no monotone
operator that contains it
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Proximal point method

xt+1 = (I + ηtF)−1(xt), t = 0, 1, · · ·

If F = ∂f for some convex function f , then this proximal point
method becomes

xt+1 = proxηtf (xt), t = 0, 1, · · ·

• useful when proxηtf is cheap
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Back to primal-dual approaches

Recall that we want to solve

0 ∈
[

A>

−A

] [
x
λ

]
+
[
∂f(x)
∂h∗(λ)

]
=: F(x,λ)

the issue of proximal point methods: computing (I + ηF)−1 is in
general difficult
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Back to primal-dual approaches

observation: practically we may often consider splitting F into two
operators

0 ∈ A(x,λ) + B(x,λ)

with A(x,λ) =
[

A
−A>

] [
x
λ

]
, B(x,λ) =

[
∂f(x)
∂h∗(λ)

]
(9.5)

• (I + ηA)−1 can be computed by solving linear systems

• (I + ηB)−1 is easy if proxf and proxh∗ are both inexpensive

solution: design update rules based on (I + ηA)−1 and (I + ηB)−1

instead of (I + ηF)−1
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Operator splitting via Cayley operators

We now introduce a principled approach based on operator splitting

find x s.t. 0 ∈ F(x) = A(x) + B(x)︸ ︷︷ ︸
operator splitting

let RA := (I + ηA)−1 and RB := (I + ηB)−1 be the resolvents, and
CA := 2RA − I and CB := 2RB − I be the Cayley operators

Lemma 9.2

0 ∈ A(x) + B(x)︸ ︷︷ ︸
x∈RA+B(x)

⇐⇒ CACB(z) = z with x = RB(z)︸ ︷︷ ︸
it comes down to finding fixed points of CACB

(9.6)
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Operator splitting via Cayley operators

x ∈ RA+B(x) ⇐⇒ CACB(z) = z

• advantage: allows us to apply CA (resp. RA) and CB (resp. RB)
sequentially (instead of computing RA+B directly)
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Proof of Lemma 9.2

CACB(z) = z

x = RB(z) (9.7a)
⇐⇒ z̃ = 2x− z (9.7b)

x̃ = RA(z̃) (9.7c)
z = 2x̃− z̃ (9.7d)

From (9.7b) and (9.7d), we see that

x̃ = x

which together with (9.7d) gives

2x = z + z̃ (9.8)
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Proof of Lemma 9.2 (cont.)

Recall that

z ∈ x+ ηB(x) and z̃ ∈ x+ ηA(x)

Adding these two facts and using (9.8), we get

2x = z + z̃ ∈ 2x+ ηB(x) + ηA(x)

⇐⇒ 0 ∈ A(x) + B(x)
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Douglas-Rachford splitting

How to find points obeying x = CACB(x)?

• First attempt: fixed-point iteration

zt+1 = CACB(zt)

unfortunately, it may not converge in general

• Douglas-Rachford splitting: damped fixed-point iteration

zt+1 = 1
2
(
I + CACB

)
(zt)

converges when a solution to 0 ∈ A(x) + B(x) exists!
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More explicit expression for D-R splitting

Douglas-Rachford splitting update rule zt+1 = 1
2
(
I + CACB

)
(zt) is

essentially:

xt+
1
2 = RB(zt)

zt+
1
2 = 2xt+

1
2 − zt

xt+1 = RA
(
zt+

1
2
)

zt+1 = 1
2
(
zt + 2xt+1 − zt+

1
2
)

= zt + xt+1 − xt+
1
2

where xt+ 1
2 and zt+ 1

2 are auxiliary variables

or equivalently,

xt+
1
2 = RB(zt)

xt+1 = RA
(
2xt+

1
2 − zt

)
zt+1 = zt + xt+1 − xt+

1
2
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More explicit expression for D-R splitting

Douglas-Rachford splitting update rule zt+1 = 1
2
(
I + CACB

)
(zt) is

essentially:

xt+
1
2 = RB(zt)

zt+
1
2 = 2xt+

1
2 − zt

xt+1 = RA
(
zt+

1
2
)

zt+1 = 1
2
(
zt + 2xt+1 − zt+

1
2
)

= zt + xt+1 − xt+
1
2

where xt+ 1
2 and zt+ 1

2 are auxiliary variables

or equivalently,

xt+
1
2 = RB(zt)

xt+1 = RA
(
2xt+

1
2 − zt

)
zt+1 = zt + xt+1 − xt+

1
2

Dual and primal-dual method 9-33



Douglas-Rachford primal-dual splitting

minimizex maxλ f(x) + 〈λ,Ax〉 − h∗(λ)

Applying Douglas-Rachford splitting to (9.5) yields

xt+
1
2 = proxηf (pt)

λt+
1
2 = proxηh∗(qt)[

xt+1

λt+1

]
=
[

I ηA>

−ηA I

]−1 [
2xt+

1
2 − pt

2λt+
1
2 − qt

]
pt+1 = pt + xt+1 − xt+

1
2

qt+1 = qt + λt+1 − λt+
1
2
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Example

minimizex ‖x‖2 + γ‖Ax− b‖1
⇐⇒ minimizex f(x) + g(Ax)

with f(x) := ‖x‖2 and g(y) := γ‖y − b‖1PRIMAL-DUAL DECOMPOSITION BY OPERATOR SPLITTING 1737
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Figure 1. Relative error versus iteration number for the experiment in section 3.5.

We compare the mixed splitting approaches of section 3.3 on the test problem

minimize ∥x∥ + γ∥(B + C)x − b∥1

with n = 500 variables and square matrices B, C. This problem has the form (1) with
f(x) = ∥x∥ and g(y) = γ∥y − b∥1, so the algorithms of section 3.3 can be applied. The
problem data are generated randomly, with the components of A, B, b drawn independently
from a standard normal distribution, C = A − B, and γ = 1/100. In Figure 1 we compare
the convergence of the primal-dual mixed splitting method, the primal Douglas–Rachford
method, and ADMM (dual Douglas–Rachford method). The relative error ∥xk − x⋆∥/∥x⋆∥ is
with respect to the solution x⋆ computed using CVX [25, 24]. For each method, the three
algorithm parameters (primal and dual step sizes and overrelaxation parameter) were tuned
by trial and error to give fastest convergence. As can be seen, the primal-dual splitting method
shows a clear advantage on this problem class. We also note that ADMM is slightly slower
than the primal Douglas–Rachford method, which is consistent with the intuition that having
fewer auxiliary variables and constraints is better.

4. Image deblurring by convex optimization. In the second half of the paper we apply
the primal-dual splitting methods to image deblurring. We first discuss the blurring model
and express the deblurring problem in a general optimization problem of the form (1). Let
b be a vector containing the pixel intensities of an N × N blurry, noisy image, stored in
column-major order as a vector of length n = N2. Assume b is generated by a linear blurring
operation with additive noise, i.e.,

(29) b = Kxt + w,

where K is the blurring operator, xt ∈ Rn is the unknown true image, and w is noise. The
deblurring problem is to estimate xt from b. Since blurring operators are often very ill-

— Connor, Vandenberghe ’14
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Example
minimize ‖Kx− b‖1 + γ ‖Dx‖iso︸ ︷︷ ︸

certain `2−`1 norm

s.t. 0 ≤ x ≤ 1

⇐⇒ minimizex f(x) + g(Ax)
with f(x) := 1{0≤x≤1}(x) and g(y1,y2) := ‖y1 − b‖1 + γ‖y2‖iso1742 DANIEL O’CONNOR AND LIEVEN VANDENBERGHE
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Figure 2. Relative optimality gap versus iteration number for the experiment in section 5.1.

(a) Original image. (b) Blurry, noisy image. (c) Restored image.

Figure 3. Result for the experiment in section 5.1.

by the discrete Fourier basis matrix. The average elapsed time per iteration was 1.37 seconds
for Chambolle–Pock, 1.33 seconds for ADMM, 1.33 seconds for primal Douglas–Rachford, and
1.46 seconds for primal-dual Douglas–Rachford.

As can be seen from the convergence plots, the four methods reach a modest accuracy
quickly. After a few hundred iterations, progress slows down considerably. In this example the
algorithms based on Douglas–Rachford converge faster than the Chambolle–Pock algorithm.
The time per iteration is roughly the same for each method and is dominated by 2D fast
Fourier transforms.

The quality of the restored image is good because the L1 data fidelity is very well suited
to deal with salt and pepper noise. Using an L2 data fidelity term and omitting the interval
constraints leads to a much poorer result. To illustrate this, Figure 5 shows the result of

— Connor, Vandenberghe ’14
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