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Dual proximal gradient method



Constrained convex optimization

minimize,  f(x)
subjectto Ax+beC

where f is convex, and C is convex set

e projection onto such a feasible set could sometimes be highly
nontrivial (even when projection onto C is easy)
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Constrained convex optimization

More generally, consider
minimize, f(x) + h(Ax)

where f and h are convex

e computing the proximal operator w.r.t. h(z) := h(Az) could be
difficult (even when prox;, is inexpensive)
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A possible route: dual formulation

minimize, f(x) + h(Ax)
ﬁ add auxiliary variable 2

minimizeg .,  f(x) + h(2)
subject to Ax ==z

dual formulation:

maximizex min f(x) + h(2) + (A, Az — z)

=:L(x,z,\) (Lagrangian)
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A possible route: dual formulation

maximizex  min f(®) +h(z)+ (X Az — 2z)
II decouple @ and 2z

maximizey  min {(AT)\, x) + f(:c)} + min {h(z) — (N, 2)}

)
maximizex — f*(=ATA) — h*(A)
where f* (resp. h*) is the Fenchel conjugate of f (resp. h)
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Primal vs. dual problems

(primal) minimize, f(x) + h(Ax)
(dual) minimizey  f*(—ATX) + h*(A)

Dual formulation is useful if

e the proximal operator w.r.t. h is cheap (then we can use the
Moreau decomposition prox,-(x) = & — prox,(x))

e f* is smooth (or if f is strongly convex)
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Dual proximal gradient methods

Apply proximal gradient methods to the dual problem:

Algorithm 9.1 Dual proximal gradient algorithm

1: fort =0,1,--- do
20 A" = prox,, - ()\t +m AV (- AT)\t))

o let Q) := —f*(—=ATX) — h*(X) and Q°P* = maxy Q(X), then

Q" - Q) £ 5
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Primal representation of dual proximal gradient
methods

Algorithm 9.1 admits a more explicit primal representation

Algorithm 9.2 Dual proximal gradient algorithm (primal representa-
tion)
1: fort=0,1,--- do
2.zt =argming {f(z)+ (ATAL x)}
32 A=A At — ntproxn_lh(nfl)\t + Ax?)
t

e {x'} is a primal sequence, which is nonetheless not always
feasible
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Justification of the primal representation

By definition of x?,
—ATX e of(xh)

This together with the conjugate subgradient theorem and the
smoothness of f* yields

.’IJt _ Vf*(—ATAt)
Therefore, the dual proximal gradient update rule can be rewritten as

A = prox,, - (A" + n, Ax?) (9.2)
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Justification of primal representation (cont.)

Moreover, from the extended Moreau decomposition, we know

Prox,,, j« (A" + nAzx?) = AL+ n, Az’ — nyprox _1h( I\ Azt

— XL = AP Azt — prox ‘1h( ny AT+ Axt)
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Accuracy of the primal sequence

One can control the primal accuracy via the dual accuracy:

Lemma 9.1
Let zy := argming { f(x) + (AT X, x)}. Suppose f is u-strongly

convex. Then
2(Q°P — Q(N))
I

lz” — all5 <

e consequence: ||z* — x!||3 <1/t (using (9.1))
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Proof of Lemma 9.1

Recall that Lagrangian is given by
L(x,2,\) = f(x) + (ATA ) + h(z) — (A 2)

=:f(x,\) =:h(z,\)

For any A, define x := arg min, f(x, A) and zx := argmin, h(z, A)
(non-rigorous). Then by strong convexity,
. ~ 1 N
L(a®, 2" A) = L(zx, 23, A) 2 f(@", A) = f(za, A) 2 Sullz” ~ z |3
In addition, since Ax* = z*, one has
L(x* 2" A) = f(x") + h(z") + (N, Ax™ — 2") = f(x") + h(Ax™)
_ Fopt duazlity Qopt

This combined with L(zx, zx, A) = Q(A) gives

1 *
Q¥ - Q) = sulla” — @l

as claimed
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Accelerated dual proximal gradient methods

One can apply FISTA to dual problem to improve convergence:

Algorithm 9.3 Accelerated dual proximal gradient algorithm
1: fort =0,1,--- do
20 A= prox,, - (wt + AV f*(— AT'wt))

14+4/14462
2

3: Orp1 =

4wt = A4 GEL(XFL X\
t+1

e apply FISTA theory and Lemma 9.1 to get

1 1
QP -QN) S 5 and [a* — '35
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Primal representation of accelerated dual proximal
gradient methods

Algorithm 9.3 admits more explicit primal representation

Algorithm 9.4 Accelerated dual proximal gradient algorithm (primal
representation)
1: fort =0,1,--- do
2. x! =argming f(z)+ (ATw! )
32 A =w! Azt — ntproanh(n;lwt + Ax')
t

14-+/1+462

4: 9t+1 =—5 L
t+1 _ yt+1 4 Op—=1(yt+1 _ yt
w = A4 G (X AY)
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Nonsmooth optimization

minimize, f(x) + h(Ax)

where f and h are closed and convex

e both f and h might be non-smooth

e both f and h might have inexpensive proximal operators
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Primal-dual approaches?

minimize, f(x) + h(Ax)

So far we have discussed proximal methods (resp. dual proximal
methods), which essentially updates only primal (resp. dual) variables

Question: can we update both primal and dual variables
simultaneously and take advantage of both prox; and prox;?
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A saddle-point formulation

To this end, we first derive a saddle-point formulation that includes
both primal and dual variables

minimize, f(x) + h(Ax)
II add an auxiliary variable z

minimizeg » f(x)+ h(z) subjectto Ax ==z

0
maximizey ming , f(x) + h(z) + (X, Az — z)
)
maximizey ming f(x) + (A, Ax) — h*(A)
)

minimize, maxy f(x) + (X, Az) — h*(A) (saddle-point problem)
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A saddle-point formulation

minimize, maxy f(z) + (A, Az) — h*(A) (9.3)

e one can then consider updating the primal variable « and the
dual variable A simultaneously

o we'll first examine the optimality condition for (9.3), which in
turn gives ideas about how to jointly update primal and dual
variables
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Optimality condition

minimize; maxy f(x) + (A, Az) — h*(A)

optimality condition:

0c Of(x)+ATA
0e —Azx+90h*(\)

= e[

key idea: iteratively update (x, A) to reach a point obeying
0e F(x,A)

_|_

of(x) | _.
SN 1 = F(z,A) (9.4)
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How to solve 0 € F(x) in general?

In general, finding solution to

0 € F(x)

called “monotone inclusion problem” if F is maximal monotone

e  ze(I+F)(x)

is equivalent to finding fixed points of (Z + nF)™", i.e. solutions to
—_———

resolvent of F

x = (I+nF)"}(z)

This suggests a natural fixed-point iteration / resolvent iteration:
= (T +nF) (=), =01
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Aside: monotone operators

e

(4) Not monotone.

(c) Maximal monotone func-

tion.
e a relation F is called monotone if

(u—v,z—y) >0,

-z

r

(B)
mal.

(D) Maximal monotone but not
a funetion.

V(z,u), (y,v) €

Monotone but not maxi-

— Ryu, Boyd '16

F

e relation F is called maximal monotone if there is no monotone

operator that contains it
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Proximal point method

wt+1 = (I+ntf)71(wt)7 t= 07 17 T

If F = 0f for some convex function f, then this proximal point
method becomes

t+1

T = proxmf(a:t), t=0,1,---

e useful when prox,, ; is cheap
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Back to primal-dual approaches

Recall that we want to solve

o a3 e

the issue of proximal point methods: computing (Z +nF)!is in

general difficult
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Back to primal-dual approaches

observation: practically we may often consider splitting F into two
operators
0 € A(xz,A) + B(x, A\)
: _ A T | Of(=x)
with Az, A) = [ AT ] [)\ ], B(xz,\) = [ R (N)
(9.5)

e (Z+nA)~! can be computed by solving linear systems

o (Z+nB)~!is easy if prox ;s and prox;. are both inexpensive

solution: design update rules based on (Z +n.A)~! and (Z +nB)~!
instead of (Z + nF)~!
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Operator splitting via Cayley operators

We now introduce a principled approach based on operator splitting

find z st 0e€ F(x)=A(z) + B(x)

operator splitting

let R4 := (T +nA)"! and Rp := (Z + nB)~! be the resolvents, and
Ca:=2R4—1 and Cp := 2Rp — I be the Cayley operators

Lemma 9.2

0 A(x) + B(x) <= CuCp(z) =2z withx =Rp(z) (9.6)

r€RA+8(x) it comes down to finding fixed points of CACp
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Operator splitting via Cayley operators

€ Rarp(x) <= CaCB(2) =2

e advantage: allows us to apply C4 (resp. R4) and Cp (resp. Rp)
sequentially (instead of computing R 45 directly)
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Proof of Lemma 9.2

CaCs(z) =z
x =Rp(z)
= zZz=2r—=z
& =TRa(%)
z=2r—z

which together with (9.7d) gives
2e=z+z
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Proof of Lemma 9.2 (cont.)

Recall that
z € x +nB(x) and zZex+nAx)
Adding these two facts and using (9.8), we get
20 =z + 2 € 2+ nB(x) + nA(x)

= 0 € A(xz) + B(x)
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Douglas-Rachford splitting

How to find points obeying = C4Cp(x)?

e First attempt: fixed-point iteration
2t = CACs(2")
unfortunately, it may not converge in general

e Douglas-Rachford splitting: damped fixed-point iteration
1
Zt+1 — 5(Z- + C.ACB) (zt)

converges when a solution to 0 € A(x) + B(x) exists!
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More explicit expression for D-R splitting

Douglas-Rachford splitting update rule z!*! = %(Z +CACB) () is

essentially:

1
$t+2 — RB(Zt)

1 1
Zt+§ — th+§ _ Zt

1
't =R 4 (2"2)
1 1

L1 §(zt 4o9pttl zt+2)

1
— ot 4 gttl _ ptt3

) 1 . :
where /"2 and z!*2 are auxiliary variables
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More explicit expression for D-R splitting

or equivalently,

1
xt+§ — R[j’(Zt)
1
wt+1 — RA(2mt+§ _ zt)
1
t+1 _ Zt 4 $t+1 _ ptt3

z r
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Douglas-Rachford primal-dual splitting

minimize; maxy f(x) + (X, Az) — h*(X)

Applying Douglas-Rachford splitting to (9.5) yields
1
2+ = prox,(p')

A = prox, ;- (q")

mt—l—l TI T]AT
)\t+1 =
_l’_

-nA I
pttl = pt 4 ot _ gt

L gpttd _pt
oN\ttE _ q'

1
2

1

qt+1 — qt + )\t+1 — A\tt3
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Example

minimize, ||z|]2 + v||Ax — bl
= minimize;  f(x) + g(Ax)
with f(a) := |22 and g(y) := 7]y — bl

lla* = a1/ |
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— Connor, Vandenberghe '14
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Example

minimize ||[Kz —b|i +v | Dz|is st. 0<x<1
—_———
certain 2—¥1 norm
= minimize, f(x) + g(Ax)
with f(x) := Lio<z<1} (%) and g(y1,92) := [ly1 — bll1 + Vll¥2/iso

) (F(a*) = )/
10
---CP
} ADMM
fi
1075y -~ primal DR
» —— primal-dual DR
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— Connor, Vandenberghe '14
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