ELE 522: Large-Scale Optimization for Data Science

Accelerated gradient methods

Yuxin Chen
Princeton University, Fall 2019



Outline

Heavy-ball methods

Nesterov's accelerated gradient methods
Accelerated proximal gradient methods (FISTA)
Convergence analysis

Lower bounds



(Proximal) gradient methods

Iteration complexities of (proximal) gradient methods

e strongly convex and smooth problems

0] </<c log 1)
€

e convex and smooth problems
1
€
Can one still hope to further accelerate convergence?
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Issues and possible solutions

Issues:

e GD focuses on improving the cost per iteration, which might
sometimes be too “short-sighted”

e GD might sometimes zigzag or experience abrupt changes

Solutions:

e exploit information from the history (i.e. past iterates)

e add buffers (like momentum) to yield smoother trajectory
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Heavy-ball methods

— Polyak '64



Heavy-ball method

minimizegzecrn  f ()

. @- | 1f

B. Polyak

momentum term

e add inertia to the “ball” (i.e. include a momentum term) to
mitigate zigzagging
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Heavy-ball method
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State-space models

1
minimize, 5(:3 — ") Q(x — z¥)

where @ > 0 has a condition number s

One can understand heavy-ball methods through dynamical systems
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State-space

models

Consider the following dynamical system

t

thrl T
r

or equivalently,

|: $t+1 — ¥ T

zt —x*

———

state
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System matrix

ottt — g (1+6)I —nQ —6,1 xt — x>
xt—x* | I 0 x' 7l —x* (7.1)

=:H; (system matrix)

implication: convergence of heavy-ball methods depends on the
spectrum of the system matrix H;

key idea: find appropriate stepsizes 7; and momentum coefficients 6;
to control the spectrum of H;
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Convergence for quadratic problems

Theorem 7.1 (Convergence of heavy-ball methods for quadratic
functions)

Suppose f is a L-smooth and u-strongly convex quadratic funct/on

Setny =4/(VL + /i)?, 6; = max {|1 — /L], |1_\/77t7’}

k= L/pu. Then
< VE—1 I 2t — 2
, T \WVE+1 0 —

2

e iteration complexity: O(y/klog?)
e significant improvement over GD: O(\/Elogé) vs. O(/ﬁlog%)

e relies on knowledge of both L and p
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Proof of Theorem 7.1

In view of (7.1), it suffices to control the spectrum of H; (which is
time-invariant). Let \; be the ith eigenvalue of @ and set

A1
A= , then the spectral radius (denoted by p()) of H;
An
obeys
1+60)I —mA —6,1
p(Ht)=p([ ( t)I ey D

T4+6 —mNi —0;
<

To finish the proof, it suffices to show

14+60; —m; —0 Kk—1
(N )

—_
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Proof of Theorem 7.1

To show (7.2), note that the two eigenvalues of 1+ 9t1— A —09t are

the roots of
2’2 — (1 + Qt — ’I’]t)\i)Z + Ht =0 (73)

If (1+60; —n:\;)? < 46;, then the roots of this equation have the same
magnitudes v/0; (as they are either both imaginary or there is only one root).

In addition, one can easily check that (1 + 60; — n;:\;)? < 40, is satisfied if

0r € [(1— vmAi)™, (1+ Vmeh) 7], (7.4)

which would hold if one picks 6; = max{(l — \/ntL)Q, (1 — ‘/ntu)z}
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Proof of Theorem 7.1

With this choice of 6;, we have (from (7.3) and the fact that two
eigenvalues have identical magnitudes)

p(H;) < \/@

Finally, setting 1, = ——~—— ensures 1 — \/j,L = —(1 — \/m11), which
(VI+ Vi)
yields

0; = max 1—72\/Z 2 1—72\//? 2 = (\/E_1>2
! VL+ i)’ VL + /i VE+1

This in turn establishes

7

p(H;) <

B

+
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Nesterov’s accelerated gradient methods



Convex case

minimizegcrn  f ()

For a positive definite quadratic function f, including momentum
terms allows to improve the iteration complexity from O(x log %) to

O(v/klog 3)

Can we obtain improvement for more general convex cases as well?
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Nesterov’s idea

— Nesterov '83

't =y — VY

t
t+1 t+1 t+1 t
=z +——x" —x

Y. Nesterov

alternates between gradient updates and proper extrapolation

each iteration takes nearly the same cost as GD

not a descent method (i.e. we may not have f(x'*!) < f(x!))

one of the most beautiful and mysterious results in optimization
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Convergence of Nesterov’s accelerated gradient

method

Suppose f is convex and L-smooth. If n, =n =1/L, then

2L =" — "3

R e

e iteration complexity: O(%)

e much faster than gradient methods

e we'll provide proof for the (more general) proximal version later
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Interpretation using differential equations

Nesterov's momentum coefficient ;5 =1 — ¢ is particularly
mysterious
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Interpretation using differential equations

spring force
F=-Vf(X)

e

time-varying dampling force

—%X

INNNNNNNNNY

To develop insight into why Nesterov's method works so well, it's
helpful to look at its continuous limits (17, — 0), which is given by
second-order ordinary differential equations (ODE)

X (1) + 3\/; X(1)+Vf(X(r)=0

dampling coefficient potential

— Su, Boyd, Candes '14
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Heuristic derivation of ODE

To begin with, Nesterov's update rule is equivalent to

t t—1

!l -2t t-lat -
N4 t+2 /1

Let t = 7. Set X (1) ~ /v =zt and X (7 + /) ~ z'*1. Then the
Taylor expansion gives

— ViV (7.5)

R X () Xy

which combined with (7.5) yields

x(0)+ 5 X (1- 20 (X0 - 5X0VA) - vivs(x ()

— X(T)‘F%X(T)-FVf(X(T)) ~0
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Convergence rate of ODE

3

X+;X+Vf(X):O

Standard ODE theory reveals that
o 1
fX (@) - 17 <0 )

which somehow explains Nesterov's O(1/t?) convergence
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Proof of (7.7)

Define &(r) := 7% (£(X) = f) + 2| X + 5 X — X*|}. This obeys

Lyapunov function / energy function

& =27 (f(X) = f) + rA(VH(X), X) +4(X + 2X - X, gX +3X)

(by convexity)
<

—~

D or(£(X) = fo0) —27(X — X*, V(X))
where (i) follows by replacing 7X + 3X with —7V f(X)

This means & is non-decreasing in 7, and hence

T iG]

- T2 T
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Magic number 3

. 3.
X+ X +VfX)=0

e 3 is the smallest constant that guarantees O(1/72) convergence,
and can be replaced by any other av > 3

e in some sense, 3 minimizes the pre-constant in the convergence
bound O(1/72) (see Su, Boyd, Candes'14)
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Numerical example

taken from UCLA EE236C

m
minimize, log (Z exp(a; « + bz)>
i=1
with randomly generated problems and m = 2000, n = 1000

100

— gradient
— FISTA ||

0 50 100 150 200
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Extension to composite models

minimize, F(x) := f(x) + h(x)
subject to x € R"

e f: convex and smooth

e h: convex (may not be differentiable)

let F°P* := min, F'(x) be the optimal cost
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FISTA (Beck & Teboulle’09)

Fast iterative shrinkage-thresholding algorithm

't = proxnth(yt —neVI(yh))
0 — 1
yt+1 — pttl + t (mt—&-l _ wt)
01
/ 2
where y* =% 6y =1 and 6, = w

e adopt the momentum coefficients originally proposed by
Nesterov '83
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Momentum coefficient

< 10

5

0

0 10 20 30

t
14 /1 + 467
Orr1 = ft with 6y =1
coefficient et =1-2+0(}) (homework)

° asymptotlcally equalent to t+3
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Momentum coefficient

< 10
5
0
0 10 20 30
t
14 4/1 + 467
01 = ft with 0 =1
Fact 7.2
For all t > 1, one has 0; > % (homework) J
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Convergence analysis



Convergence for convex problems

Theorem 7.3 (Convergence of accelerated proximal gradient
methods for convex problems)

Suppose f is convex and L-smooth. If n, = 1/L, then

0 .x||2
F(mt) . Fopt < 2LH$ T ||2
(t+1)2

e improved iteration complexity (i.e. O(1/4/€)) than proximal
gradient method (i.e. O(1/¢))

e fast if prox can be efficiently implemented
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Recap: the fundamental inequality for proximal
method

Recall the following fundamental inequality shown in the last lecture:

Lemma 7.4

Let y©™ = prox%h(y — 1V f(y)), then

h

F(y") = Fz) < Jlle -yl - *Hw ~y73
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Proof of Theorem 7.6

1. build a discrete-time version of “Lyapunov function”

2. magic happens!

o “Lyapunov function” is non-increasing when Nesterov's
momentum coefficients are adopted
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Proof of Theorem 7.6

Key lemma: monotonicity of a certain “Lyapunov function”

Lemma 7.5

Let ut = 012" — (x* + (0—1 — 1)mt_1). Then

or Oy (xt—a*)—(0s—1—1)(xt~1—z*)

2 2
I3 + 207 (F (") = FP) < Jluf|§ + 207, (F(2") — F)

e quite similar to 2|| X + %X - X*||; +72(f(X) — forY)
(Lyapunov function) as discussed before (think about 0; ~ t/2)

Accelerated GD 7-33



Proof of Theorem 7.6
With Lemma 7.5 in place, one has
2 2
393_1(F(wt) — FOP) < Jlut3 + 393 (F(z') — Fo)

2
= ot — "3+ £ (Fa') - Fo")

To bound the RHS of this inequality, we use Lemma 7.4 and 3° = z° to get
2

7 (F@h) = F) < Iy’ —a"[5 - [l&’ — 2|7 = =" —2"|5 — [|l=" —2"[3

2
= S *$*||§+Z(F(wl)*F°pt) <l — 2*|3
As a result,

2 2
202, (F(a) = F) < [l — 2" [3+ 7 (Fa!) — Fo™) < |2 — 2|3,

Lja® — [ o172 210 — a3
— F t 7F0pt < 2 < 2
@O-F"S TN S Ty
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Proof of Lemma 7.5

Take x = Q%m* +(1- e%)a:t and y = y' in Lemma 7.4 to get

F(attl) - F(@;lm* +(1- 0;1)a;t> (7.8)
éua F-0at 2= Tl et + (-0t -t

(6~ 1) — 0] - (6~ 1)a' — B

—_tt+l
G0y L

= 57z (w13 = u"*13), (7.9)
26;

where (i) follows from the definition of u! and y* = = + Ltl(mt —zt 1)
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Proof of Lemma 7.5 (cont.)

We will also lower bound (7.8). By convexity of F,

F(&;lw* +(1- 9;1)wt) <O 'F(z*)+ (1- 6, ") F(z")
=0, "F? + (1-0,")F(z")

= F(@;lw* +(1- egl)mt) — F(z!h)
S (1 _ 0;1) (F(J}t) _ Fopt) _ (F(:ct'H) _ Fopt)
Combining this with (7.9) and 67 — 0, = 02_, yields

L

5 (1113 = w™H3) = 0F (F(2"1) = Po) = (67 = 0,) (F(a') — F*™")
tQ(F(thrl) o Fopt) o 9?,1(F(mt) o Fopt),

0
0

thus finishing the proof
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Convergence for strongly convex problems

2 = prox,,, (' = mVf(y"))

—1
R gt VE (@ — 2)

vo=® VE+1

Theorem 7.6 (Convergence of accelerated proximal gradient
methods for strongly convex case)

Suppose f is p-strongly convex and L-smooth. If ny = 1/L, then

Ly pla® — |3
F ty Fopt < <1 . > F 0y Fopt 2
@) - < (1= ) (et - e 21
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A practical issue

Fast convergence requires knowledge of k = L/

e in practice, estimating u is typically very challenging

A common observation: ripples / bumps in the traces of cost values
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Rippling behavior

Numerical example: take y/*! = z!*+1 + %ﬁ(wtﬂ —zh); ¢* =1/k

period of ripples is
often proportional to

VL/u

O’Donoghue, Candes '12

flah) = 1o

q=3¢"
q=10g" !
g=1

3 500 1000 1500 2000 2500 G000 3500 4000 4500 5000

t
e when ¢ > ¢*: we underestimate momentum — slower convergence

Tﬁ is large)

e when ¢ < ¢*: we overestimate momentum (
— overshooting / rippling behavior
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Adaptive restart (O’Donoghue, Candes ’12)

When a certain criterion is met, restart running FISTA with

e take the current iterate as a new starting point

e erase all memory of previous iterates and reset the momentum
back to zero
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Numerical comparisons of adaptive restart schemes

fla') = fo"

NI
Gradient descent RN | Y B
No Restart 2

Y \f
Restart every 100 AN \
Restart every 400 AN
Restart every 1000

Restart optimal, 700 .
1070 | = = = With q=pL . .~ 4
- = = Adaptive Restart - Function scheme| N -
Adaptive Restart - Gradient scheme |
T T T T L L
200 400 600 800 1000 1200

t

e function scheme: restart when f(x!) > f(z!™1)

L L
1400 1600 1800 2000

e gradient scheme: restart when (Vf(y'™!), ! —z!=1) >0

restart when momentum lead us towards a bad direction
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lllustration

—a=q -
01 ——q=0 N 1
adaptive restart

0.051

T2
o

-0.05

e with overestimated momentum (e.g. ¢ = 0), one sees spiralling
trajectory

e adaptive restart helps mitigate this issue
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Lower bounds



Optimality of Nesterov’'s method

Interestingly, no first-order methods can improve upon Nesterov's
results in general

More precisely, 3 convex and L-smooth function f s.t.

L[z — =*|3

f@) = 1o > 32(t + 1)2

as long as 2% € 2° + span{Vf(z?),--- ,Vf(x* 1)} forall 1 <k <t

definition of first-order methods

— Nemirovski, Yudin ‘83
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Example

R L /1
minimize cpenty  f(x) = 1 (2$TA$ _ eIw)
2 -1
-1 2 -1
where A = . € REn+DX(2n+1)
-1 2 -1
-1 2

e f is convex and L-smooth

e the optimizer &* is given by z} =1 — ﬁ (1 <i < mn) obeying

L 1 2n + 2
optzi -1 * 2<
/ 8 <2n+2 ) and - Jlz"llz < —3
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Example

R L /1
minimize cpenty  f(x) = 1 (2212TA:1: _ e;:z)
2 -1
-1 2 -1
where A = e € R@n+DX(2n+1)
-1 2 -1
-1 2

o Vf(x)= %Am - %el

o span{Vf(z"), -, Vf(x* 1)} =span{er,---,e;} if 0 =0
=Ky

o every iteration of first-order methods expands the search space by
at most one dimension
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Example (cont.)

If we start with Y = 0, then

fe) = inf o) = (g 1)

mEIC’VL
L({ 1 1
. f@") - 8 (nTl - 2n+2) 3L
|20 —x*||3 %(2n+2) 32(n+1)2
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Summary: accelerated proximal gradient

stepsize convergence iteration
rule rate complexity
convex & smooth
m=i| O(#) 0 (%)
problems €

strongly convex &

smooth problems =

0((1-3%)) | o (vmios)

-
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