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(Proximal) gradient methods

Iteration complexities of (proximal) gradient methods
• strongly convex and smooth problems

O

(
κ log 1

ε

)

• convex and smooth problems

O

(1
ε

)

Can one still hope to further accelerate convergence?
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Issues and possible solutions

Issues:

• GD focuses on improving the cost per iteration, which might
sometimes be too “short-sighted”
• GD might sometimes zigzag or experience abrupt changes

Solutions:
• exploit information from the history (i.e. past iterates)
• add buffers (like momentum) to yield smoother trajectory
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Heavy-ball methods
— Polyak ’64



Heavy-ball method

B. Polyak

minimizex∈Rn f(x)

xt+1 = xt − ηt∇f(xt) + θt(xt − xt−1)︸ ︷︷ ︸
momentum term

• add inertia to the “ball” (i.e. include a momentum term) to
mitigate zigzagging
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Heavy-ball method

Proof of Lemma 2.5

It follows that

Îxt+1 ≠ xúÎ2
2 =

..xt ≠ xú ≠ ÷(Òf(xt) ≠ Òf(xú)¸ ˚˙ ˝
=0

)
..2

2

=
..xt ≠ xú..2

2 ≠ 2÷Èxt ≠ xú, Òf(xt) ≠ Òf(xú)Í¸ ˚˙ ˝
Ø 2÷

L ÎÒf(xt)≠Òf(xú)Î2
2 (smoothness)

+ ÷2..Òf(xt) ≠ Òf(xú)
..2

2

Æ
..xt ≠ xú..2

2 ≠ ÷2..Òf(xt) ≠ Òf(xú)
..2

2
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2
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State-space models

minimizex
1
2(x− x∗)>Q(x− x∗)

where Q � 0 has a condition number κ

One can understand heavy-ball methods through dynamical systems
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State-space models

Consider the following dynamical system
[

xt+1

xt

]
=
[

(1 + θt)I −θtI
I 0

] [
xt

xt−1

]
−
[
ηt∇f(xt)

0

]

or equivalently,
[

xt+1 − x∗

xt − x∗

]

︸ ︷︷ ︸
state

=
[

(1 + θt)I −θtI
I 0

] [
xt − x∗

xt−1 − x∗

]
−
[
ηt∇f(xt)

0

]

=
[

(1 + θt)I − ηtQ −θtI
I 0

]

︸ ︷︷ ︸
system matrix

[
xt − x∗

xt−1 − x∗

]
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System matrix

[
xt+1 − x∗

xt − x∗

]
=
[ (

1 + θt
)
I − ηtQ −θtI
I 0

]

︸ ︷︷ ︸
=:Ht (system matrix)

[
xt − x∗

xt−1 − x∗

]
(7.1)

implication: convergence of heavy-ball methods depends on the
spectrum of the system matrix Ht

key idea: find appropriate stepsizes ηt and momentum coefficients θt
to control the spectrum of Ht
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Convergence for quadratic problems

Theorem 7.1 (Convergence of heavy-ball methods for quadratic
functions)

Suppose f is a L-smooth and µ-strongly convex quadratic function.
Set ηt ≡ 4/(

√
L+√µ)2, θt ≡ max

{|1−√ηtL|, |1−√ηtµ|
}2, and

κ = L/µ. Then
∥∥∥∥∥

[
xt+1 − x∗

xt − x∗

]∥∥∥∥∥
2
.

(√
κ− 1√
κ+ 1

)t ∥∥∥∥∥

[
x1 − x∗

x0 − x∗

]∥∥∥∥∥
2

• iteration complexity: O(
√
κ log 1

ε )
• significant improvement over GD: O(

√
κ log 1

ε ) vs. O(κ log 1
ε )

• relies on knowledge of both L and µ
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Proof of Theorem 7.1
In view of (7.1), it suffices to control the spectrum of Ht (which is
time-invariant). Let λi be the ith eigenvalue of Q and set

Λ :=



λ1

. . .
λn


, then the spectral radius (denoted by ρ(·)) of Ht

obeys

ρ(Ht) = ρ

([ (
1 + θt

)
I − ηtΛ −θtI
I 0

])

≤ max
1≤i≤n

ρ

([
1 + θt − ηtλi −θt

1 0

])

To finish the proof, it suffices to show

max
i
ρ

([
1 + θt − ηtλi −θt

1 0

])
≤
√
κ− 1√
κ+ 1 (7.2)
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Proof of Theorem 7.1

To show (7.2), note that the two eigenvalues of
[

1 + θt − ηtλi −θt
1 0

]
are

the roots of
z2 − (1 + θt − ηtλi)z + θt = 0 (7.3)

If (1 + θt − ηtλi)2 ≤ 4θt, then the roots of this equation have the same
magnitudes

√
θt (as they are either both imaginary or there is only one root).

In addition, one can easily check that (1 + θt − ηtλi)2 ≤ 4θt is satisfied if

θt ∈
[(

1−
√
ηtλi

)2
,
(
1 +

√
ηtλi

)2]
, (7.4)

which would hold if one picks θt = max
{(

1−√ηtL
)2
,
(
1−√ηtµ

)2}
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Proof of Theorem 7.1

With this choice of θt, we have (from (7.3) and the fact that two
eigenvalues have identical magnitudes)

ρ (Ht) ≤
√
θt

Finally, setting ηt = 4
(
√
L+√µ)2 ensures 1−√ηtL = −(1−√ηtµ), which

yields

θt = max





(
1− 2

√
L√

L+√µ

)2

,

(
1− 2√µ√

L+√µ

)2


 =

(√
κ− 1√
κ+ 1

)2

This in turn establishes

ρ (Ht) ≤
√
κ− 1√
κ+ 1
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Nesterov’s accelerated gradient methods



Convex case

minimizex∈Rn f(x)

For a positive definite quadratic function f , including momentum
terms allows to improve the iteration complexity from O

(
κ log 1

ε

)
to

O
(√
κ log 1

ε

)

Can we obtain improvement for more general convex cases as well?
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Nesterov’s idea

Y. Nesterov

— Nesterov ’83

xt+1 = yt − ηt∇f(yt)

yt+1 = xt+1 + t

t+ 3
(
xt+1 − xt

)

• alternates between gradient updates and proper extrapolation
• each iteration takes nearly the same cost as GD
• not a descent method (i.e. we may not have f(xt+1) ≤ f(xt))
• one of the most beautiful and mysterious results in optimization

...
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Convergence of Nesterov’s accelerated gradient
method

Suppose f is convex and L-smooth. If ηt ≡ η = 1/L, then

f(xt)− fopt ≤ 2L‖x0 − x∗‖22
(t+ 1)2

• iteration complexity: O
( 1√

ε

)

• much faster than gradient methods
• we’ll provide proof for the (more general) proximal version later
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Interpretation using differential equations

Nesterov’s momentum coefficient t
t+3 = 1− 3

t is particularly
mysterious
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Interpretation using differential equations

pi /
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To develop insight into why Nesterov’s method works so well, it’s
helpful to look at its continuous limits (ηt → 0), which is given by
second-order ordinary differential equations (ODE)

..
X(τ) + 3/τ︸︷︷︸

dampling coefficient

.
X(τ) +∇f(X(τ))︸ ︷︷ ︸

potential

= 0

— Su, Boyd, Candes ’14
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Heuristic derivation of ODE
To begin with, Nesterov’s update rule is equivalent to

xt+1 − xt√
η

= t− 1
t+ 2

xt − xt−1
√
η

−√η∇f(yt) (7.5)

Let t = τ√
η . Set X(τ) ≈ xτ/

√
η = xt and X(τ +√η) ≈ xt+1. Then the

Taylor expansion gives
xt+1 − xt√

η
≈

.

X(τ) + 1
2
..

X(τ)√η

xt − xt−1
√
η

≈
.

X(τ)− 1
2
..

X(τ)√η

which combined with (7.5) yields
.

X(τ) + 1
2
..

X(τ)√η ≈
(

1− 3√η
τ

)(
.

X(τ)− 1
2
..

X(τ)√η
)
−√η∇f

(
X(τ)

)

=⇒
..

X(τ) + 3
τ

.

X(τ) +∇f
(
X(τ)

)
≈ 0
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Convergence rate of ODE

..
X + 3

τ

.
X +∇f(X) = 0 (7.6)

Standard ODE theory reveals that

f(X(τ))− fopt ≤ O
( 1
τ2

)
(7.7)

which somehow explains Nesterov’s O(1/t2) convergence
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Proof of (7.7)

Define E(τ) := τ2(f(X)− fopt)+ 2
∥∥X + τ

2
.

X −X∗
∥∥2

2︸ ︷︷ ︸
Lyapunov function / energy function

. This obeys

.

E = 2τ
(
f(X)− fopt)+ τ2〈∇f(X),

.

X
〉

+ 4
〈
X + τ

2
.

X −X∗,
3
2
.

X + τ

2
..

X
〉

(i)= 2τ
(
f(X)− fopt)− 2τ

〈
X −X∗,∇f

(
X
)〉 (by convexity)

≤ 0

where (i) follows by replacing τ
..

X + 3
.

X with −τ∇f
(
X
)

This means E is non-decreasing in τ , and hence

f(X(τ))− fopt (defn of E)
≤ E(τ)

τ2 ≤ E(0)
τ2 = O

(
1
τ2

)
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Magic number 3

..
X + 3

τ

.
X +∇f(X) = 0

• 3 is the smallest constant that guarantees O(1/τ2) convergence,
and can be replaced by any other α ≥ 3
• in some sense, 3 minimizes the pre-constant in the convergence

bound O(1/τ2) (see Su, Boyd, Candes ’14)
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Numerical example
taken from UCLA EE236C

minimizex log
(

m∑

i=1
exp(a>i x + bi)

)

with randomly generated problems and m = 2000, n = 1000

Example

minimize log
mP

i=1

exp(aT
i x + bi)

• two randomly generated problems with m = 2000, n = 1000

• same fixed step size used for gradient method and FISTA

• figures show (f(x(k)) � f?)/f?
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Convergence analysis
Using Lemma 5.4, we immediate arrive at
Theorem 5.3

Suppose f is convex and Lipschitz continuous (i.e. ÎgtÎú Æ Lf ) on C,
and suppoe Ï is fl-strongly convex w.r.t. Î · Î. Then

fbest,t ≠ fopt Æ
supxœC DÏ

!
x,x0"

+ L2
f

2fl

qt
k=0 ÷2

kqt
k=0 ÷k

• If ÷t =
Ô

2flR
Lf

1Ô
t

with R := supxœC DÏ
!
x,x0"

, then

fbest,t ≠ fopt Æ O

A
Lf

Ô
RÔ

fl

log tÔ
t

B

¶ one can further remove log t factor
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Extension to composite models

minimizex F (x) := f(x) + h(x)
subject to x ∈ Rn

• f : convex and smooth
• h: convex (may not be differentiable)

let F opt := minx F (x) be the optimal cost

Accelerated GD 7-26



FISTA (Beck & Teboulle ’09)

Fast iterative shrinkage-thresholding algorithm

xt+1 = proxηth

(
yt − ηt∇f(yt)

)

yt+1 = xt+1 + θt − 1
θt+1

(xt+1 − xt)

where y0 = x0, θ0 = 1 and θt+1 = 1+
√

1+4θ2
t

2

• adopt the momentum coefficients originally proposed by
Nesterov ’83

Accelerated GD 7-27



Momentum coefficient

0 10 20 30
0

5

10

15

20

0 5 10 15 20 25 30
0

0.2

0.4
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0.8

1

θt+1 =
1 +

√
1 + 4θ2

t

2 with θ0 = 1

coefficient θt−1
θt+1

= 1− 3
t + o

(1
t

)
(homework)

• asymptotically equivalent to t
t+3

Fact 7.2

For all t ≥ 1, one has θt ≥ t+2
2 (homework)
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Momentum coefficient
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Convergence analysis



Convergence for convex problems

Theorem 7.3 (Convergence of accelerated proximal gradient
methods for convex problems)

Suppose f is convex and L-smooth. If ηt ≡ 1/L, then

F (xt)− F opt ≤ 2L‖x0 − x∗‖22
(t+ 1)2

• improved iteration complexity (i.e. O(1/
√
ε)) than proximal

gradient method (i.e. O(1/ε))
• fast if prox can be efficiently implemented
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Recap: the fundamental inequality for proximal
method

Recall the following fundamental inequality shown in the last lecture:

Lemma 7.4

Let y+ = prox 1
L
h

(
y − 1

L∇f(y)
)
, then

F (y+)− F (x) ≤ L

2 ‖x− y‖22 −
L

2 ‖x− y+‖22
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Proof of Theorem 7.6

1. build a discrete-time version of “Lyapunov function”

2. magic happens!
◦ “Lyapunov function” is non-increasing when Nesterov’s

momentum coefficients are adopted
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Proof of Theorem 7.6

Key lemma: monotonicity of a certain “Lyapunov function”

Lemma 7.5

Let ut = θt−1x
t − (x∗ + (θt−1 − 1)xt−1)

︸ ︷︷ ︸
or θt−1(xt−x∗)−(θt−1−1)(xt−1−x∗)

. Then

‖ut+1‖22 + 2
L
θ2
t

(
F (xt+1)− F opt) ≤ ‖ut‖22 + 2

L
θ2
t−1
(
F (xt)− F opt)

• quite similar to 2
∥∥X + τ

2
.
X −X∗

∥∥2
2 + τ2(f(X)− fopt)

(Lyapunov function) as discussed before (think about θt ≈ t/2)
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Proof of Theorem 7.6
With Lemma 7.5 in place, one has

2
L
θ2
t−1
(
F (xt)− F opt) ≤ ‖u1‖2

2 + 2
L
θ2

0
(
F (x1)− F opt)

= ‖x1 − x∗‖2
2 + 2

L

(
F (x1)− F opt)

To bound the RHS of this inequality, we use Lemma 7.4 and y0 = x0 to get
2
L

(
F (x1)− F opt) ≤ ‖y0 − x∗‖2

2 − ‖x1 − x∗‖2
2 = ‖x0 − x∗‖2

2 − ‖x1 − x∗‖2
2

⇐⇒ ‖x1 − x∗‖2
2 + 2

L

(
F (x1)− F opt) ≤ ‖x0 − x∗‖2

2

As a result,
2
L
θ2
t−1
(
F (xt)− F opt) ≤ ‖x1 − x∗‖2

2 + 2
L

(
F (x1)− F opt) ≤ ‖x0 − x∗‖2

2,

=⇒ F (xt)− F opt ≤ L‖x0 − x∗‖2
2

2θ2
t−1

(Fact 7.2)
≤ 2L‖x0 − x∗‖2

2
(t+ 1)2
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Proof of Lemma 7.5

Take x = 1
θt
x∗ +

(
1− 1

θt

)
xt and y = yt in Lemma 7.4 to get

F (xt+1)− F
(
θ−1
t x∗ +

(
1− θ−1

t

)
xt
)

(7.8)

≤ L

2
∥∥θ−1
t x∗ +

(
1− θ−1

t

)
xt − yt

∥∥2
2 −

L

2
∥∥θ−1
t x∗ +

(
1− θ−1

t

)
xt − xt+1∥∥2

2

= L

2θ2
t

∥∥x∗ +
(
θt − 1

)
xt − θtyt

∥∥2
2 −

L

2θ2
t

∥∥x∗ +
(
θt − 1

)
xt − θtxt+1

︸ ︷︷ ︸
=−ut+1

∥∥2
2

(i)= L

2θ2
t

(
‖ut‖2

2 − ‖ut+1‖2
2
)
, (7.9)

where (i) follows from the definition of ut and yt = xt + θt−1−1
θt

(xt−xt−1)
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Proof of Lemma 7.5 (cont.)

We will also lower bound (7.8). By convexity of F ,

F
(
θ−1
t x∗ +

(
1− θ−1

t

)
xt
)
≤ θ−1

t F (x∗) +
(
1− θ−1

t

)
F (xt)

= θ−1
t F opt +

(
1− θ−1

t

)
F (xt)

⇐⇒ F
(
θ−1
t x∗ +

(
1− θ−1

t

)
xt
)
− F (xt+1)

≤
(
1− θ−1

t

)(
F (xt)− F opt)−

(
F (xt+1)− F opt)

Combining this with (7.9) and θ2
t − θt = θ2

t−1 yields

L

2
(
‖ut‖2

2 − ‖ut+1‖2
2
)
≥ θ2

t

(
F (xt+1)− F opt)−

(
θ2
t − θt

)(
F (xt)− F opt)

= θ2
t

(
F (xt+1)− F opt)− θ2

t−1
(
F (xt)− F opt),

thus finishing the proof
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Convergence for strongly convex problems

xt+1 = proxηth

(
yt − ηt∇f(yt)

)

yt+1 = xt+1 +
√
κ− 1√
κ+ 1(xt+1 − xt)

Theorem 7.6 (Convergence of accelerated proximal gradient
methods for strongly convex case)

Suppose f is µ-strongly convex and L-smooth. If ηt ≡ 1/L, then

F (xt)− F opt ≤
(

1− 1√
κ

)t(
F (x0)− F opt + µ‖x0 − x∗‖22

2

)
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A practical issue

Fast convergence requires knowledge of κ = L/µ

• in practice, estimating µ is typically very challenging

A common observation: ripples / bumps in the traces of cost values
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Rippling behavior
Numerical example: take yt+1 = xt+1 + 1−√q

1+√q (xt+1 − xt); q∗ = 1/κ
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Figure 1: Convergence of Algorithm 1 with different estimates of q.

Interpretation. The optimal momentum depends on the condition number of the function;
specifically, higher momentum is required when the function has a higher condition number. Under-
estimating the amount of momentum required leads to slower convergence. However we are more
often in the other regime, that of overestimated momentum, because generally q = 0, in which case
βk ↑ 1; this corresponds to high momentum and rippling behavior, as we see in Figure 1. This
can be visually understood in Figure (2), which shows the trajectories of sequences generated by
Algorithm 1 minimizing a positive definite quadratic in two dimensions, under q = q⋆, the optimal
choice of q, and q = 0. The high momentum causes the trajectory to overshoot the minimum and
oscillate around it. This causes a rippling in the function values along the trajectory. Later we
shall demonstrate that the period of these ripples is proportional to the square root of the (local)
condition number of the function.

Lastly we mention that the condition number is a global parameter; the sequence generated by
an accelerated scheme may enter regions that are locally better conditioned, say, near the optimum.
In these cases the choice of q = q⋆ is appropriate outside of this region, but once we enter it we
expect the rippling behavior associated with high momentum to emerge, despite the optimal choice
of q.
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Convergence analysis
Using Lemma 5.4, we immediate arrive at
Theorem 5.3

Suppose f is convex and Lipschitz continuous (i.e. ÎgtÎú Æ Lf ) on C,
and suppoe Ï is fl-strongly convex w.r.t. Î · Î. Then

fbest,t ≠ fopt Æ
supxœC DÏ

!
x,x0"

+ L2
f

2fl

qt
k=0 ÷2

kqt
k=0 ÷k

• If ÷t =
Ô

2flR
Lf

1Ô
t

with R := supxœC DÏ
!
x,x0"

, then

fbest,t ≠ fopt Æ O

A
Lf

Ô
RÔ

fl

log tÔ
t

B

¶ one can further remove log t factor
Mirror descent 5-37

period of ripples is
often proportional to√
L/µ

O’Donoghue, Candes ’12

• when q > q∗: we underestimate momentum −→ slower convergence

• when q < q∗: we overestimate momentum ( 1−√q
1+√q is large)

−→ overshooting / rippling behavior
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Adaptive restart (O’Donoghue, Candes ’12)

When a certain criterion is met, restart running FISTA with

x0 ← xt

y0 ← xt

θ0 = 1

• take the current iterate as a new starting point
• erase all memory of previous iterates and reset the momentum

back to zero
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Numerical comparisons of adaptive restart schemes
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Figure 3: Comparison of fixed and adaptive restart intervals.
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Figure 4: Sequence trajectories under scheme I and with adaptive restart.
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Convergence analysis
Using Lemma 5.4, we immediate arrive at
Theorem 5.3

Suppose f is convex and Lipschitz continuous (i.e. ÎgtÎú Æ Lf ) on C,
and suppoe Ï is fl-strongly convex w.r.t. Î · Î. Then

fbest,t ≠ fopt Æ
supxœC DÏ

!
x,x0"

+ L2
f

2fl

qt
k=0 ÷2

kqt
k=0 ÷k

• If ÷t =
Ô

2flR
Lf

1Ô
t

with R := supxœC DÏ
!
x,x0"

, then

fbest,t ≠ fopt Æ O

A
Lf

Ô
RÔ

fl

log tÔ
t

B

¶ one can further remove log t factor
Mirror descent 5-37

• function scheme: restart when f(xt) > f(xt−1)
• gradient scheme: restart when 〈∇f(yt−1),xt − xt−1〉 > 0︸ ︷︷ ︸

restart when momentum lead us towards a bad direction
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Illustration
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Figure 4: Sequence trajectories under scheme I and with adaptive restart.
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• with overestimated momentum (e.g. q = 0), one sees spiralling
trajectory
• adaptive restart helps mitigate this issue
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Lower bounds



Optimality of Nesterov’s method

Interestingly, no first-order methods can improve upon Nesterov’s
results in general

More precisely, ∃ convex and L-smooth function f s.t.

f(xt)− fopt ≥ 3L‖x0 − x∗‖22
32(t+ 1)2

as long as xk ∈ x0 + span{∇f(x0), · · · ,∇f(xk−1)}︸ ︷︷ ︸
definition of first-order methods

for all 1 ≤ k ≤ t

— Nemirovski, Yudin ’83
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Example

minimizex∈R(2n+1) f(x) = L

4

(1
2x
>Ax− e>1 x

)

where A =




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2



∈ R(2n+1)×(2n+1)

• f is convex and L-smooth
• the optimizer x∗ is given by x∗i = 1− i

2n+2 (1 ≤ i ≤ n) obeying

fopt = L

8

( 1
2n+ 2 − 1

)
and ‖x∗‖22 ≤

2n+ 2
3

• ∇f(x) = L
4 Ax− L

4 e1

• span{∇f(x0), · · · ,∇f(xk−1)}︸ ︷︷ ︸
=:Kk

= span{e1, · · · , ek} if x0 = 0

◦ every iteration of first-order methods expands the search space by
at most one dimension
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Example (cont.)

If we start with x0 = 0, then

f(xn) ≥ inf
x∈Kn

f(x) = L

8

( 1
n+ 1 − 1

)

=⇒ f(xn)− fopt

‖x0 − x∗‖22
≥

L
8

(
1

n+1 − 1
2n+2

)

1
3(2n+ 2)

= 3L
32(n+ 1)2
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Summary: accelerated proximal gradient

stepsize convergence iteration
rule rate complexity

convex & smooth
ηt = 1

L O
(

1
t2

)
O
(

1√
ε

)
problems

strongly convex &
ηt = 1

L O

((
1− 1√

κ

)t)
O
(√

κ log 1
ε

)
smooth problems
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