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e Augmented Lagrangian method

e Alternating direction method of multipliers



Two-block problem

minimizeg ., F(x, z) := fi(x) + f2(2)
subject to Ax+ Bz =1»

where f1 and f5 are both convex

e this can also be solved via Douglas-Rachford splitting

e we will introduce another paradigm for solving this problem

ADMM



Augmented Lagrangian method



Dual problem

ADMM

minimize, . fi(x) + f2(2)
subjectto Ax+ Bz =1b»

)

maximizex ming ., fi(x) + f2(z) + (A, Az + Bz — b)

=:L(x,z,\) (Lagrangian)

0
maximizex — fi(—ATA) — f3(=B"A) — (A, b)
)
minimizex fi(—A'A) + f5(=B"X) + (A, b)



Augmented Lagrangian method

minimizex fi(—ATA) + f5(—=B"A) + (A, b)

The proximal point method for solving this dual problem:

AL = argm}\in {ff(ATA) + f5(=B"X) + (A, b) + 271,0”)\ - )\t||§}

As it turns out, this is equivalent to the augmented Lagrangian
method (or the method of multipliers)

1. .12
(', 2"*!) = argmin {f1(m) + fa(z) + gHAcc +Bz-b+ ;)‘t 2}
A= AL 4 p(Az' ! 4 Bz~ b) (10.1)

ADMM



Justification of (10.1)

A = arg mm {fl (-A

0c —Adff(—ATATY) —

1
)+f5‘(BT>\)+<>\,b>+2pll>\Atll%}
optimality condition
{ optimality cond
Bof;(~B" A" + b+ = ()\”1 Af)

)

A= X 4 Azt 4 B2 — b)

where (check: use the conjugate subgradient theorem)

'™ . = argmin {(AT/\H'l, x) + fi(x)}

2! = argmin {(BT/\H'l, z) + fQ(Z)}

ADMM
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Justification of (10.1)

0

it = argm:gn {(AT A" +p (Az'™ + B2 —b)] @) + f1(x)}
2l = argmzin {(BT [)\t +p (A:cHl + Bzt — b)} ,Z) + fz(z)}
T

0 AT [N +p(Az' + B2 —b)] + 0 f1 (")
0eB' A +p (A:c“'l + Bzt — b)| + fa(2'h)

)

(z't!,2'") = argmin {fl(a:) + fa(z) + gHAm +Bz—-b+ l)\t
x,z 14

J
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Augmented Lagrangian method (ALM)

('t 2" = argrilgl {fl(m) + fa(z) + gHA:B +Bz—-b+ ;At"Z}
(primal step)
AL Z N4 p(Azt ! 4 B2 - b)
(dual step)

where p > 0 is penalty parameter

ALM aims to solve the following problem by alternating between
primal and dual updates

2
maximizex maxz,» f1(x) + f2(2) + p(Ax + Bz — b, A) + gHAw +Bz—-b+ 1)\
p

2

L,(x,z,X): augmented Lagrangian
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Issues of augmented Lagrangian method

1
(', 2'T) = argmin {fl(az) + fo(2) + gHAx +Bz—b+ ;)\t

J

e the primal update step is often expensive — as expensive as
solving the original problem

e minimization of & and z cannot be carried out separately
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Alternating direction method of multipliers



Alternating direction method of multipliers

Rather than computing exact primal estimate for ALM, we might
minimize = and z sequentially via alternating minimization

)
J

1
' = argmin {fl(a:) + gHAw +Bz' —b+ =X
z p

1
2! = argmin {fg(Z) + gHAmtJrl +Bz—b+ -\
z P

At+1 — )\t +p(Amt+1 4 th+1 o b)

— called the alternating direction method of multipliers (ADMM)
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Alternating direction method of multipliers

wt+1:argmin{f1 pHA:IZ—&-Bz -b+ )\t

J

argmin{fg pHAactH—&-Bz—b—&— )\tH }
z

A= A 4 p(Az™ + B2" —b)

Zt+1

e useful if updating = and updating 2! are both inexpensive

e blend the benefits of dual decomposition and augmented
Lagrangian method

e the roles of « and z are almost symmetric, but not quite
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Example: robust PCA

~—
low-rank sparse

Suppose we observe M, which is the superposition of a low-rank
component L and sparse outliers S

Can we hope to disentangle L and S?
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Example: robust PCA

One way to solve it is via convex programming (Candes et al. '08)

minimizer, s || L||« + A||S|1 (10.2)
st. L+S=M

where ||L||. := >_1; 0;(L) is the nuclear norm, and
[S|l1 == 32, ;15i,5] is the entrywise {1 norm
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Example: robust PCA

ADMM for solving (10.2):

Lt argmLm{HLy* + oL+t -+ ;AtHi}

511 argmgn (sl + 2[5+ + 5 - a+ L)

At-‘rl — At _|_p(Lt+1 + St+1 _ M)
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Example: robust PCA

This is equivalent to

L't =SVT (M -8t - 1At) (singular value thresholding)

p
S =T, ,1 (M — L' - 1At) (soft thresholding)
p
At—‘rl — At +p(Lt+l +St+1 _ M)
here f X wi = T (2 =di ;
where for any X with SVD X =UXV ' (¥ = diag({0;})), one has
SVT.(X) = Udiag({(o; — 7)) VT

Xi,j -7, |if Xi,j >T
and (ST,(X)). . =10, if | X5 <7
Xi,j + 7, if X@j < -7
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Example: graphical lasso

When learning a sparse Gaussian graphical model, one resorts to:

minimizeg  —logdet ©® + (O, S) +  AN©O|h
——
negative log-likelihood of Gaussian graphical model  encourage sparsity

st. ®©>0
i}

minimizeg —logdet ® + (®, S) + s, (©) + A[[¥|;  (10.3)
st. =W

where Sy :={X | X = 0}
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Example: graphical lasso

ADMM for solving (10.3):

1 1.2
@tH:argmin{—logdet@—i—pH@—\Ilt—i—At—l—SH }
©>0 2 p p IIF

)

1
Wil — argmin{)\\lll + EH@tH W A
N7 2 p

At+1 _ At + p ((_)t+1 o ‘Ilt+1)
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Example: graphical lasso

This is equivalent to
1
O = F,(w' - 7At -5)
0
1
Tt = ST, (@Hl + At) (soft thresholding)
At+1 At +p(®t+1 \Ilt+1)

A1
where for X = UAU T = 0 with A = , one has

Fo(X) := gUdiag({Xi + /A7 + 3 1)UT
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Example: consensus optimization

Consider solving the following minimization problem

N
minimizeg Zfz(:c)
i=1

N
minimize Z fi(xi) (block separable)
i=1
st. ;=2 1<i<N
)
N
minimize Zfl(ml)
i=1
1 T
st. u:=| @ | =|"! |z
z, I
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Example: consensus optimization

ADMM for solving this problem:

N
1 2
't =arg  min STfilm) + 5 @ — 20+ =Xl
u:[wi]lﬁiSN i=1 2 =1 2
1 ol t+1 1 2
2" = argmin{ & Tz -
z 2 2
)\t+1 )\t + P( t+1 t+1)’ 1<i<N
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Example: consensus optimization

This is equivalent to

. L2 .
w§+1 _argnélin{f,-(wi)+gHa:i—zt—i-p)\fHQ} 1<i<N
(can be computed in parallel)
t+1 1 al t+1 1 t
i=1 p
(gather all local iterates)
AL = AL (et — 21, 1<i<N

(“broadcast” 2! to update all local multipliers)

ADMM is well suited for distributed optimization!
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Convergence of ADMM

Theorem 10.1 (Convergence of ADMM)

Suppose f1 and fo are closed convex functions, and -y is any constant
obeying v > 2||A*||2. Then

0 2
L0 _ o2 YCEIEND)
F(w(t),z(t)) — FoPt < I ”P;;i 5 p (10.4a)
+[A%2)
||ZO _ z*||2 + ('7
|Az® + Bz® — b||; < "%i 5 2 (10.4b)

where z®) = H% 22111 xk, 20 .= H% 22111 z¥, and for any C,
||z||ZC =21Cz

e convergence rate: O(1/t)
e iteration complexity: O(1/¢)
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Fundamental inequality

Define

T xt AT 0
w:=|z |,w:==]| 2|, G B" |, d 0

A Al —-A -B b

0
H = pB'B , Jwl|% = w" Hw
p— I

Lemma 10.2

For any x, z, \, one has
F(z,z) — F(z' 2" 4 (w — w'™ Gw + d)
t41

1 1
> Sflw - w' T — Sl - w'l
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Proof of Theorem 10.1

*T,Z*T7>\T]T

*

Setx=x*, z=2" and w =[x in Lemma 10.2 to reach

k+1)12 k12
w—w w—w
F(:l:*,z*)—F(wk+1,zk+1)+<w—wk+1,Gw+d> 2 || ||H _ H 5 ||H
forms telescopic sum
Summing over all k =0, --- |t gives
t+1 t+1
(t+1)F(z*, z*) — ZF(mk,zk) + <(t + Dw — Zwk, Gw + d>
k=1 k=1
L o — w1, — fw — w13
- 2
If we define
t+1 t+1 t4+1 t+1

(t)_t+1z (t>_t+1z t+lz t+lz

then from convexity of F' we have

(', 2\") (x*, 2") <w —w, Gw >_2(t+1)

— [ropt

0”2
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Proof of Theorem 10.1

Further, we claim that
<w(t) —w,Gw +d) = (A, Az + Bz — b)

which together with preceding bounds yields

1
F(x® 2Oy _port L Ix Ax® + B2® _py < ——
@, 27) + (A A2+ B2 - ) < 50y

_ 1 _ .0 0
~ sy {1 - 2l + 512 - X1

Notably, this holds for any A

Taking maximum of both sides over {\ | ||A]|2 <~} yields
F(x® 20y — FPt 4| Az® + Bz®) — b,

0112 (v+IA%)12)*
{12= 20020+ 202

2(t+1)

which immediately establishes (10.4a)
ADMM

<

[[w

(10.5)

— ||

(10.6)
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Proof of Theorem 10.1 (cont.)

Caution needs to be exercised since, in general, (10.6) does not establish
(10.4b), since F(x®), z(1)) — F°Pt may be negative (as (x®), z(*)) is not
guaranteed to be feasible)

Fortunately, if v > 2||A*||2, then standard results (e.g. Theorem 3.60 in
Beck '18) reveal that F(x®, z()) — FPt will not be “too negative”, thus
completing proof
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Proof of Theorem 10.1

Finally, we prove (10.5). Observe that

(w" —w,Gw + d) = (W' —w, G(w —w")) + (w" —w, Gw" + d)

=0 since G is skew-symmetric

= (w!) —w, Gw® +d) (10.7)
To further simplify this inner product, we use Ax* + Bz* = b to obtain
<w(t) —w, Gw® + d) = <:c(t) —x", AT)\(t)> + <z(t) —z", BT)\(t)>
+ (A — X, ~Az) — B2") +b)
= (- Az" — Bz* + b A") + (X, Az® + Bz —b)
= (X, Az + Bz —b)
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Proof of Lemma 10.2

To begin with, ADMM update rule requires
—pAT (A:ctJrl +Bz' —b+ %)\t) c ofi(z')
—pB’ (Aa:t'H + Bzt — b+ %)\t) € fy(2'h)
Therefore, for any x, z,

1
fi(®) = f(=""1) + <pAT (A:vt“ 1Bzt b+ ;)\t),:c _ wt+1> >0

v

1
fa(z) = fa(2"H1) + <pBT (A:Jat+1 + Bzt b+ ;At>7z _ zt+1> 0
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Proof of Lemma 10.2 (cont.)

Using A""! = A" + p(Az't! + Bz't! — b), setting
Al = At + p(Az!™ + Bz! — b), and adding above two inequalities give

F(m’ z) - F(mt+1) zt+1)

x — wt+1 ATit 0
+ z -zt | BTt — | pBTB(z! —z'T1) >0
A— At —Axtt! — Bzt 4 b ST =AY

(10.8)

Next, we'd like to simplify above inner product. Let C := pB " B, then

Dt — a2
C

1 t)12
Sz =210 + 5z

1
(2 =2 )TO(! = 2%1) = Sz — 2 — 5
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Proof of Lemma 10.2 (cont.)

Also,

2(}\ _ )\t+1)T(>\t _ )\t+1)
= 1A = XS — I = A3 AT = NS = A = AT
= A= XFHE = A = A3 + p*| Az"*! + B2' - b|3
— IAf + p(Az'™ + Bz' — b) — X' — p(Ax!™! + B2 — b)||3
= A= NTHE — I = A3 + p? | A" + B2' - blf3

= PIB(z" = 2" )I3
which implies that

2()\ o At+1)T(At o At+1)
> A = XFHE — A= X3 = p?| Bz - 2|3
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Proof of Lemma 10.2 (cont.)

Combining above results gives

x — xtt! 0
< - — zt—i—l , pBTB(Zt _ zt+1) >
)\—S\t %()\t 7}\t+1)

1 1 1 p
> fw - w g - 5w = wl + 512 - 2 - LBt - 2

1 1
= Ll — w0t e —
This together with (10.8) yields
F(z,z) — F(z', 2" + (w — w'™!, Guw'™ + d)

1 1
> Sllw — w5 w - w3
2 2
Since G is skew-symmetric, repeating prior argument in (10.7) gives
(w—w'™ G + d) = (w — w', Gw + d)

This immediately completes proof
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Convergence of ADMM in practice

e ADMM is slow to converge to high accuracy

e ADMM often converges to modest accuracy within a few tens of
iterations, which is sufficient for many large-scale applications
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Beyond two-block models

Convergence is not guaranteed when there are 3 or more blocks

e e.g. consider solving
r1a1 + 209 + 303 =0
where
11 1
[al,ag,ag] = 1 1 2
1 2 2

3-block ADMM is divergent for solving this problem (Chen et
al.'16)
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