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e Classical methods for parameter estimation
o Polynomial method: Prony’s method
o Subspace method: MUSIC
o Matrix pencil algorithm
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Parameter estimation

Model: a signal is mixture of » modes
r
el =) . di(t: fi), teL

e d; : amplitudes
e f; : frequencies
e ¢: (known) modal function, e.g. ¥(t, f;) = e/?7tfi
e 7: model order

e 2r unknown parameters: {d;} and {f;}
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Application: super-resolution imaging

- . . The Point Spread Function
Consider a time signal (a dual problem) '

At) =D did(t—t;)
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e Resolution is limited by point spread
function h(t) of imaging system
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z(t) = 2(t) * h(t) point spread function h(t)
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Application: super-resolution imaging

r

time domain:  z(t) = 2(t) x h(t) = Zdih(t —t)
i=1

spectral domain:  &(f) = 2(f) h(f) =

H>

(£) Zd ¥t h(f)#0
=1

—> observed data:
(f b (f ti)

>

h(t) is usually band-limited  (suppress high-frequency components) J
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Application: super-resolution imaging

mw.

a) highly resolved signal z( b) low-pass version z(t

wwww

(c) Fourier transform z(f) (d) (red) observed spectrum Z(f)

Fig. credit: Candes, Fernandez-Granda '14

Super-resolution: extrapolate high-end spectrum (fine scale details)
from low-end spectrum (low-resolution data)
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Application: multipath communication channels

In wireless communications, transmitted signals typically reach
receiver by multiple paths, due to reflection from objects
(e.g. buildings).

Suppose h(t) is transmitted signal, then received signal is
x(t) = 22:1 d;ih(t —t;) (t; - delay in ith path)

— same as super-resolution model

Super-resolution 15-7



Basic model

e Signal model: a mixture of sinusoids at r distinct frequencies

x[t] = Zr d;el?mtii

i=1
where f; € [0,1) : frequencies; d; : amplitudes

o Continuous dictionary: f; can assume ANY value in [0, 1)

e Observed data:

z = [2[0], afn - 1)

e Goal: retrieve frequencies / recover signal (also called harmonic
retrieval)
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Matrix / vector representation

Alternatively, observed data can be written as

where d = [dy,--- ,d,]T;
1 1 1 1
21 22 z3 Zr
2 2 2 2 .
Vixr 1= 21 &) Z3 2y (Vandermonde matrix)
z?_l Zg_l zg_l z,’,‘_l
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Polynomial method: Prony’s method
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Prony’s method

e A polynomial method proposed by Gaspard Riche de Prony in
1795

e Key idea: construct an annililating filter + polynomial root
finding

Super-resolution 15-11



Annihilating filter

e Define a filter by (Z-transform or characteristic polynomial)
_ r -1 _IT1" _ -1
G(z) = Zl:o gz = lel(l 2127 7)
whose roots are {z = /2™t |1 <1 <1}
e ((z) is called annihilating filter since it annihilates x[k], i.e.

qlk] = g xx[k] =0 (15.2)

convolution

glk] =Y gl —i]=>"" > gidizf™
- Z;l dlzlk <Z::0 glzlﬂ) =0
N— ——

=0
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Annihilating filter

Equivalently, one can write (15.2) as

Xeg =0, (153)
where g= [gTa e 790]T and
z[0] z[l] 22 a[r]
x[1] x[2] x[3] x[r + 1]
X, = z[2] z[3] x4 - zlr+2] | ¢ o-rxe)
z[nfr—l] x[nfr] x[nfl]

Hankel matrix

(15.4)

Thus, we can obtain coefficients {g;} by solving linear system (15.3).
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A crucial decomposition

Vandermonde decomposition

Xe = ‘/(n—r)xrdiag(d) ‘/(:—H)Xr

Implications: if n > 2r and d; # 0, then
i rank(Xe) = rank(‘/(n—r)xr) = rank(‘/(r-i-l)xr) =T

(15.5)

e null(X,) is 1-dimensional <= nonzero solution to X.g =0

is unique
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A crucial decomposition

Vandermonde decomposition

Xe = Vip—ryxr diag(d) V[ 1y, (15.5)

Proof: For any i and j,
T . .
[‘Xe]lh7 Z +] _ 2 Zdl21+] 2 Zzzfldlzljfl

= (Wn—r)xr)i7: dlag(d) (‘/(T+1)><7’>I:
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Prony’s method

Algorithm 15.1 Prony’s method

® Findg=1[g,, - ,90]" # 0 that solves X.g =0
@ Compute r roots {2z |1 <1 <7} of G(2) =gz~

@ Calculate f; via z; = e72™h1

Drawback

e Root-finding for polynomials becomes difficult for large r

e Numerically unstable in the presence of noise
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Subspace method: MUSIC
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MUItiple Signal Classification (MUSIC)

Consider a (slightly more general) Hankel matrix

z[1] w2 23] - alk 41
X, = z[2] x[3] x[d] - zlk+2] | ¢ cr—R)x(k+1)
x[n—.k—l] x[n—k] :C[n.— 1]

where » < k < n —r (note that k = r in Prony's method).

e null(X,) might span multiple dimensions
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MUItiple Signal Classification (MUSIC)

e Generalize Prony’s method by computing {v; | 1 <i <k—r+1}
that forms orthonormal basis for null(X,)

1
oi2rf
o Let 2(f) := , , then it follows from Vandermonde
ejZ;ka
decomposition that
2(f)Tv; =0, 1<i<k—-r+1,1<I<r

e Thus, {f;} are peaks in pseudospectrum

1

TSR 2 (f) Tu 2

S(f):
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MUSIC algorithm

Algorithm 15.2 MUSIC

® Compute orthonormal basis {v; | 1 <i <k —r+ 1} for null(X,)
@ Return r largest peaks of S(f) :=

2(f) = [1,927] ... | ed2mkf]T

, where

1
E—r+1
Yo 2Tl
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Matrix pencil algorithm
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Matrix pencil

Definition 15.1
A linear matrix pencil M ()) is defined as a combination

M()\) = My — AM,

of 2 matrices M7 and M5, where X € C.
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Matrix pencil algorithm

Key idea:
e Create 2 closely related Hankel matrices X1 and X, o

e Recover {f;} via generalized eigenvalues of matrix pencil
Xe,2 - )\Xe,l

(i.e. all X € C obeying det(Xc2 — AXe 1) = 0)
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Matrix pencil algorithm

Construct 2 Hankel matrices (which differ only by 1 row)

z[0] x[1] xz[2] - a[k—1]
Xooo| el ] e ekt | gon
x[n—.k—l] x[n—k] x[n.— 2]
z[1] z[2] z[3] - z[k]
z[2] z[3] xz[d] - zlk+1]
Xeo: = (3] z[4] z[d] - zlk+2] c Cn—k)xk
z[n—k] z[n—-kJrl] x[n-— 1]

where k is pencil parameter
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Matrix pencil algorithm

Fact 15.2
Similar to (15.5), one has

Xe,l = ‘/(n—k)xrdiag(d) ‘/k—lr
Xe2 = Viu_yx, diag(d) diag (2) Vi),

where z = [e/27]1 ... ei2nfr)T.

Proof: The result for X, ; follows from (15.5). Regarding X o,

[Xe,2]z‘7j =zli+j—1] Zdlzlﬂ ! Zz (d1z))z

= (Vin—kyxr); d1ag(d)d1ag(z)(kar)j7:
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Matrix pencil algorithm

Based on Fact 15.2,

Xe,2 - )\Xe,l - ‘/(nfk)xrdiag(d) (diag (z) - AI) V;czr

(Exercise) If r <k <mn —r, then
o rank(Vip_p)xr) = rank(Vis,) =1

e Generalized eigenvalues of X. o — AX,; are {7 = eI2mf1} | which
can be obtained by finding eigenvalues of X;lXe’g
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Matrix pencil algorithm

Algorithm 15.3 Matrix pencil algorithm

@® Compute all eigenvalues {\;} of X271X672

@ Calculate f; via \; = e72™/1
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Basis mismatch issue
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Optimization methods for super resolution?

Recall our representation in (15.1):

x=Vpurd (15.6)

e Challenge: both V,,«, and d are unknown

Alternatively, one can view (15.6) as sparse representation over a

continuous dictionary {z(f) | 0 < f < 1}, where
Z(f) - {1, ej?ﬂ'f’ e ’ej27r(n71)f]—r
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Optimization methods for super resolution?

One strategy:

e Convert nonlinear representation into linear system via
discretization at desired resolution:

(assume) T = v I¢]
nXp partial DFT matrix

o representation over a discrete frequency set {0, %, cee p;l}

o gridding resolution: 1/p
e Solve £1 minimization:

minimizegecr |81 st x = ¥P
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Discretization destroys sparsity

Suppose n = p, and recall
x=YB=V,d

= B=9"1V,,.d

Ideally, if ¥~1V},, ~ submatrix of I, then sparsity is preserved.

Super-resolution
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Discretization destroys sparsity

Suppose n = p, and recall
x=YB=V,d

— B=9v"1V,,.d

Simple calculation gives

D(do) D(51) e D(6)
D(Go—3)  D@Oi—3) - D(@r—3)
\Ililvnxr - : : . :
D(do - 1) D6 - Bd) - D(br - =
where f; is mismatched to grid {0, 1%, e ,pTTI} by 4;, and

15 1 sin(7 fp)
D(f) =~ Zeﬂﬂf = —eimfle-) ZRTID) (Dirichlet kernel)
P p sin(7 f)
———
heavy tail
Super-resolution
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Discretization destroys sparsity

Suppose n = p, and recall
x=YB=V,d

— B=9v"1V,,.d
Slow decay / spectral leakage of Dirichlet kernel

If 5 = 0 (no mismatch), ¥~1V,,,. = submatrix of I
= WV, ,.d is sparse
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Discretization destroys sparsity

Suppose n = p, and recall
x=YB=V,d

— B=9v"1V,,.d
Slow decay / spectral leakage of Dirichlet kernel

If §; # 0 (e.g. randomly generated), =1V}, may be far from
submatrix of I

— ¥ 'V,,,d may be incompressible
e Finer gridding does not help!
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Mismatch of DFT basis

Loss of sparsity after discretization due to basis mismatch

Actual modes

051

]

Conventional FFT

- :_ﬂﬂ 11 [ Ly W,

-1 1

L 3

-

-

1

Fig. credit: Chi, Pezeshki, Scharf, Calderbank '10
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Optimization-based methods
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Atomic set

Consider a set of atoms A = {¢(v) : v € S}

e S can be finite, countable, or even continuous

e Examples:

o standard basis vectors (used in compressed sensing)
o rank-one matrices (used in low-rank matrix recovery)
o line spectral atoms

a(fa ¢) = \ej(b, [17 ej27rf7 e 7ej27r(n—1)f]77 f € [01 ]-)7 ¢ S [07 27T)
global phase
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Atomic norm

Definition 15.3 (Atomic norm, Chandrasekaran, Recht, Parrilo,
Willsky "10)
Atomic norm of any x is defined as

|||.4 := inf {HdHl Tx = delb(vk)} =inf{t >0:x € tconv(A)}
k

e Generalization of ¢1 norm for vectors
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SDP representation of atomic norm

Consider set of line spectral atoms
A={a(f.0) = [, . DT | e (0,1), 0 € [0,2m) ],
then

)4 = inf { Zk di | ¢ = Zk dka(fk7¢k)}

deO: ¢k€[0727r)7 fke[ovl)

Lemma 15.4 (Tang, Bhaskar, Shah, Recht '13)
For any € C",

1 1 .
||| = inf{%Tr (Toeplita(u)) + 5t ‘ [ Toepile(u) 'f ] - 0}
(15.7)
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Vandermonde decomposition of PSD Toeplitz
matrices

Lemma 15.5

Any Toeplitz matrix P = 0 can be represented as
P = Vdiag(d)V™,

where V' := [a(f1,0),--- ,a(fr,0)], d; >0, and r = rank(P)

e Vandermonde decomposition can be computed efficiently via
root finding
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Proof of Lemma 15.4

Let SDP(x) be value of RHS of (15.7).
1. Show that SDP(x) < ||z 4.

Suppose x = ), dra(fr, ¢x) for di > 0. Picking uw =, dra(fy,0)
and t =), dj, gives (exercise)

Toeplitz(u dea fr,0)a”(fr,0) dea fr r)a™ (fr, o)

N { Toepaljltz } Zd [ fk7¢k) } { a(fk17¢k) T =0
Given that L Tr(Toeplitz(u)) =t =Y, di, one has

SDP(x <Z dy.

Since this holds for any decomposition of &, we conclude this part.
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Proof of Lemma 15.4

2. Show that ||z|| 4 < SDP(x).
i) Suppose for some u,

{ Toeplitz(u) x

= 0.
x* t}_o

Lemma 15.5 suggests Vandermonde decomposition

Toeplitz(u) = Vdiag(d)V* = dea(fk, 0)
k

This together with the fact |la(fx,0)] = /n gives

1
fTr (Toeplitz(w Z di.

Super-resolution

a*(f,0).

(15.8)
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Proof of Lemma 15.4
2. Show that ||z|| 4 < SDP(x).

ii) It follows from (15.8) that x € range(V), i.e.
T = Zwka(fk,O) =Vw
k

for some w. By Schur complement lemma,
1

1
Vdiag(d)V* = ;ww* = ;Vw'w*V*.

Let g be any vector s.t. V*q = sign(w). Then

* . * 1 * 2 VA D 1 2
Zk di, = q¢*Vdiag(d)V*q = 14 Vww*V*q = n (Zk |wk\>
2
= tzk dk > (Zk \wk|)
- inequali 1 1
AM-GM ingquality 5 Tr (Toeplita(w))+ 5t > I k=D wel = 24
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Atomic norm minimization

minimizeccn HZHA

st. zi=ux;, 1€T (observation set)

)

1 1
minimizeccn 2—Tr (Toeplitz(u)) + §t
n
st. zi=x;, 1€T

Toeplitz(u) =z
-
[ z* t |~ 0

Super-resolution 15-40



Key metrics

Minimum separation A of {f; |1 <1 <r}is

A= Iggl\fi—le

Rayleigh resolution distance

2

Rayleigh resolution limit: \. = =

Super-resolution
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Performance guarantees for super resolution

Suppose T= {_nT_l7 T 7nT_1}

Theorem 15.6 (Candes, Fernandez-Granda '14)
Suppose that
e Separation condition: A > % = 2\;

Then atomic norm (or total-variation) minimization is exact.

A deterministic result

e Can recover at most n/4 spikes from n consecutive samples

Does not depend on amplitudes / phases of spikes

There is no separation requirement if all d; are positive
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Fundamental resolution limits

If 7= {-271,... 251} we cannot go below Rayleigh limit A..

Theorem 15.7 (Moitra '15)

IfA < % = A, then no estimator can distinguish between a
particular pair of A-separated signals even under exponentially small
noise.
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Compressed sensing off the grid

Suppose T is random subset of {0,---, N — 1} of cardinality n

— Extend compressed sensing to continuous domain

Theorem 15.8 (Tang, Bhaskar, Shah, Recht "13)
Suppose that

e Random sign: sign(d;) are i.i.d. and random;
e Separation condition: A > ﬁ;
e Sample size: 7 > max{rlogrlog N,log? N}.

Then atomic norm minimization is exact with high prob.

4

e Random sampling improves resolution limits ( Vs. N—7)

_4
n—1
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Connection to low-rank matrix completion

Recall Hankel matrix

1] w2 w3 - alk 4]
X, = 2] e8] ald] - alk 42
x[n—-k—l] x[n—k] x[n-— 1]

= Vin—i)xrdiag(d) V(;CFH)X,, (Vandermonde decomposition)

o rank (Xe) <r

e Spectral sparsity <= low rank
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Recovery via Hankel matrix completion

Enhanced Matrix Completion (EMaC):
I 7
minimize || Ze[|,

st. zi=uz;, €T

When T is random subset of {0,--- , N — 1}:

e Coherence measure is closely related to separation condition
(Liao & Fannjiang '16)

e Similar performance guarantees as atomic norm minimization
(Chen, Chi, Goldsmith '14)

Super-resolution 15-46



Extension to 2D frequencies

Signal model: a mixture of 2D sinusoids at r distinct frequencies
_ r . ]27r<t7f1>
z[t] = Zi:l d;e

where f; € [0,1)? : frequencies; d; : amplitudes

e Multi-dimensional model: f; can assume ANY value in [0, 1)?
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Vandermonde decomposition

X = [z(t1,t2)]o<t) <ni,0<ts<ns

Vandermonde decomposition:

X =Y -diag(d)- Z".

where
1 1 1 1 1 1
n Yo . Yr 2 29 e 2
Y = ,Z =
y;),l.—l y;”-_l y:}l.—l ZILQ.—l Z;LQ.—I 2;12.71

with y; = exp(j27f1:), 2z = exp(j2m fa;).
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Multi-fold Hankel matrix (Hua ’92)

An enhanced form X.: k; x (n; — k; + 1) block Hankel matrix

XO Xl X'n,lfkl
Xl X2 X7L1—k1+1
Xe = . . . . 5
Xk1—1 Xk1 an—l

where each block is k2 x (ng — ko 4+ 1) Hankel matrix:

1,0 Ty o Tl,ng—ko
T, xy,2 e Tl,ng—ko+1
X; = .
Tlko—1 Tlky " Tlmng—1
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Multi-fold Hankel matrix (Hua ’'92)




Low-rank structure of enhanced matrix

e Enhanced matrix can be decomposed as

Z
Z\ Y4 . ok
X. = . diag(d) | Zr, YaZr, -, Y3" " Zg]
o Z, and Zg are Vandermonde matrices specified by z1,..., 2,

o) Y:j = d|ag [ylayZ,“' ;y"“]

e Low-rank: rank (X¢) <7
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Recovery via Hankel matrix completion

Enhanced Matrix Completion (EMaC):
minimize || Ze||,
zeCn

st. 25 =i, (Z,]) eT

e Can be easily extended to higher-dimensional frequency models
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