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Basic problem

=

Find x ∈ Cp s.t. Ax = y

where A = [a1, · · · ,ap] ∈ Cn×p obeys
• underdetermined system: n < p

• full-rank: rank(A) = n

A: an over-complete basis / dictionary; ai: atom;
x: representation in this basis / dictionary
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Sparse representation in pairs of bases
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A special type of dictionary: two-ortho case

Motivation for over-complete dictionary: many signals are
mixtures of diverse phenomena; no single basis can describe them well

Two-ortho case: A is a concatenation of 2 orthonormal matrices

A = [Ψ,Φ] where ΨΨ∗ = Ψ∗Ψ = ΦΦ∗ = Φ∗Φ = I

• A classical example: A = [I,F ] (F : Fourier matrix)
◦ representing a signal y as a superposition of spikes and sinusoids
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Sparse representation

Clearly, there exist infinitely many feasible solutions to Ax = y ...
• Solution set: A∗(AA∗)−1y + null(A)

How many “sparse” solutions are there?
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Example 1

The following signal y1 is dense in the time domain, but sparse in the
frequency domain

time-representation of y1 frequency-representation of y1
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Example 2

The following signal y2 is dense in both the time and the frequency
domains, but sparse in the overcomplete basis [I,F ]

time representation of y2 frequency representation of y2

representation of y2 in overcomplete basis (time + frequency)
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Example 2

The following signal y2 is dense in both the time and the frequency
domains, but sparse in the overcomplete basis [I,F ]

time representation of y2 frequency representation of y2

representation of y2 in overcomplete basis (time + frequency)
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Uniqueness of sparse representation

A natural strategy to promote sparsity:
— seek sparsest solution to a linear system

(P0) minimizex∈Cp ‖x‖0 s.t. Ax = y

• When is the solution unique?

• How to test whether a candidate solution is the sparsest possible?
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Application: multiuser private communications

• 2 (or more) users wish to communicate to the same receiver over
a shared wireless medium

• the jth user transmits sj ; the receiver sees s =
∑
j sj

• for the sake of privacy, the jth user adopts its own codebook

sj = Ajxj

where xj is the message (typically sparse), and Aj is the
dictionary (known to the receiver; unknown to other users)

It comes down to whether the receiver can recover all messages
unambiguously
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Connection to null space of A

Suppose x and x+ h are both solutions to the linear system, then

Ah = A(x+ h)−Ax = y − y = 0

Write h =
[
hΨ

hΦ

]
with hΨ,hΦ ∈ Cn, then

ΨhΨ = −ΦhΦ

• hΨ and −hΦ are representations of the same vector in different
bases
• (Non-rigorously) In order for x to be the sparsest solution, we

hope h is much denser, i.e. we don’t want hΨ and −hΦ to be
simultaneously sparse
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Detour: uncertainty principles for basis pairs
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Heisenberg’s uncertainty principle
A pair of complementary variables cannot both be highly
concentrated
• Quantum mechanics

Var[x]︸ ︷︷ ︸
position

· Var[p]︸ ︷︷ ︸
momentum

≥ ~2/4

◦ ~: Planck constant

• Signal processing∫ ∞
−∞

t2|f(t)|2dt︸ ︷︷ ︸
concentration level of f(t)

∫ ∞
−∞

ω2|F (ω)|2dω ≥ 1/4

◦ f(t): a signal obeying
∫∞
−∞ |f(t)|2dt = 1

◦ F (ω): Fourier transform of f(t)
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Heisenberg’s uncertainty principle

f(t) F (ω)

Roughly speaking, if f(t) vanishes outside an interval of length ∆t,
and its Fourier transform vanishes outside an interval of length ∆ω,
then

∆t ·∆ω ≥ const
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Proof of Heisenberg’s uncertainty principle
(assuming f is real-valued and tf2(t)→ 0 as |t| → ∞)

1. Rewrite
∫
ω2|F (ω)|2dω in terms of f . Since f ′(t) F→ iωF (ω),

Parseval’s theorem yields∫
ω2|F (ω)|2dω =

∫
|iωF (ω)|2dω =

∫
|f ′(t)|2dt

2. Invoke Cauchy-Schwarz:(∫
t2|f(t)|2dt

)1/2(∫
|f ′(t)|2dt

)1/2
≥ −

∫
tf(t)f ′(t)dt

= −0.5
∫
t
df2(t)

dt dt

= −0.5tf2(t)
∣∣∞
−∞ + 0.5

∫
f2(t)dt (integration by part)

= 0.5 (by our assumptions)
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Uncertainty principle for time-frequency bases

concentrated signal sparse but non-concentrated signal

More general case: concentrated signals → sparse signals
• f(t) and F (ω) are not necessarily concentrated on intervals

Question: is there a signal that can be sparsely represented both in
time and in frequency?

• formally, for an arbitrary x, suppose x̂ = Fx.

How small can ‖x̂‖0 + ‖x‖0 be ?
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Uncertainty principle for time-frequency bases

Theorem 7.1 (Donoho & Stark ’89)
Consider any nonzero x ∈ Cn, and let x̂ := Fx. Then

‖x‖0 · ‖x̂‖0︸ ︷︷ ︸
time-bandwidth product

≥ n

• x and x̂ cannot be highly sparse simultaneously

• does not rely on the kind of sets where x and x̂ are nonzero

• sanity check: if x = [1, 0, · · · , 0]> with ‖x‖0 = 1, then
‖x̂‖0 = n and hence ‖x‖0 · ‖x̂‖0 = n

Corollary 7.2 (Donoho & Stark ’89)

‖x‖0 + ‖x̂‖0 ≥ 2
√
n (by AM-GM inequality)
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Proof of Theorem 7.1: a key lemma

The key to proving Theorem 7.1 is to establish the following lemma:

Lemma 7.3 (Donoho & Stark ’89)

If x ∈ Cn has k nonzero entries, then x̂ := Fx cannot have k
consecutive 0’s.
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Proof of Theorem 7.1

Suppose x is k-sparse, and suppose n/k ∈ Z
1. Partition {1, · · · , n} into n/k intervals of length k each

2. By Lemma 7.3, none of these intervals of x̂ can vanish. Since
each interval contains at least 1 non-zero entry, one has

‖x̂‖0 ≥
n

k

⇐⇒ ‖x‖0 · ‖x̂‖0 ≥ n

Exercise: fill in the proof for the case where k does not divide n
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Proof of Lemma 7.3

Suppose xτ1 , · · · , xτk are the nonzero entries, and let z = e−
2πi
n .

1. For any consecutive frequency interval (s, · · · , s+ k − 1), the
(s+ l)th frequency component is

x̂s+l = 1√
n

∑k

j=1
xτjz

τj(s+l), l = 0, · · · , k − 1

One can thus write

g := [x̂s+l]0≤l<k = 1√
n
Zxτ ,

where xτ :=


xτ1 zτ1s

xτ2 zτ2s

...
xτkzτks

, Z :=


1 1 1 · · · 1
zτ1 · · · · · · · · · zτk

z2τ1 · · · · · · · · · z2τk

...
...

...
...

...
...

z(k−1)τ1 · · · · · · · · · z(k−1)τk
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Proof of Lemma 7.3 (cont.)

2. Recognizing that Z is a Vandermonde matrix yields

det(Z) =
∏

1≤i<j≤k
(zτj − zτi) 6= 0,

and hence Z is invertible. Therefore, xτ 6= 0 ⇒ g 6= 0 as claimed
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Tightness of uncertainty principle

Lower bounds in Theorem 7.1 and Corollary 7.2 are achieved by the
picket-fence signal x (a signal with uniform spacing

√
n)

Figure 7.1: The picket-fence signal for n = 64, which obeys Fx = x
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Uncertainty principle for general basis pairs

There are many other bases beyond time-frequency pairs
• Wavelets
• Ridgelets
• Hadamard
• ...

Generally, for an arbitrary y ∈ Cn and arbitrary bases Ψ and Φ,
suppose y = Ψα = Φβ:

How small can ‖α‖0 + ‖β‖0 be ?
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Uncertainty principle for general basis pairs

The degree of “uncertainty” depends on the basis pair
• Example: suppose φ1,φ2 ∈ Ψ and 1√

2(φ1 + φ2),
1√
2(φ1 − φ2) ∈ Ψ (so two bases share similarity). Then
y = φ1 + 0.5φ2 can be sparsely represented in both Ψ and Φ
(i.e. we have multiple sparse representations)

The uncertainty principle depends on how “different” Ψ and Φ are
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Mutual coherence

A rough way to characterize how “similar” Ψ and Φ are:

Definition 7.4 (Mutual coherence)
For any pair of orthonormal bases Ψ = [ψ1, · · · ,ψn] and Φ = [φ1, · · · ,φn],
the mutual coherence of these two bases is defined by

µ(Ψ,Φ) = max
1≤i,j≤n

|ψ∗i φj |

• 1/
√
n ≤ µ(Ψ,Φ) ≤ 1 (homework)

• For µ(Ψ,Φ) to be small, each ψi needs to be “spread out” in
the Φ domain
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Examples

• µ(I,F ) = 1/
√
n

◦ Spikes and sinusoids are most mutually incoherent

• Other extreme basis pair obeying µ(Φ,Ψ) = 1/
√
n: Ψ = I and

Φ = H (Hadamard matrix)
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Fourier basis vs. wavelet basis (n = 1024)

Magnitudes of Daubechies-8 wavelets in the Fourier domain (j labels
the scales of the wavelet transform with j = 1 the finest scale)

Fig. credit: Candes & Romberg ’07
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Uncertainty principle for general bases

Theorem 7.5 (Donoho & Huo ’01, Elad & Bruckstein ’02)

Consider any nonzero b ∈ Cn and any pair of orthonormal bases
Ψ,Φ ∈ Cn. Suppose b = Ψα = Φβ. Then

‖α‖0 · ‖β‖0 ≥
1

µ2(Ψ,Φ)

Corollary 7.6 (Donoho & Huo ’01, Elad & Bruckstein ’02)

‖α‖0 + ‖β‖0 ≥
2

µ(Ψ,Φ) (by AM-GM inequality)
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Implications

• If two bases are “mutually incoherent”, then we cannot have
highly sparse representations in two bases simultaneously

• If Ψ = I and Φ = F , Theorem 7.5 reduces to

‖α‖0 · ‖β‖0 ≥ n

since µ(Ψ,Φ) = 1/
√
n, which coincides with Theorem 7.1
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Proof of Theorem 7.5

1. WLOG, assume ‖b‖2 = 1. This gives

1 = b∗b = α∗Ψ∗Φβ

=
∑p

i,j=1
αi 〈ψi,φj〉βj

≤
∑p

i,j=1
|αi| · µ(Ψ,Φ) · |βj |

≤ µ(Ψ,Φ)
(∑p

i=1
|αi|

)(∑p

j=1
|βj |

)
(7.1)

Aside: this shows ‖α‖1 · ‖β‖1 ≥ 1
µ(Ψ,Φ)
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Proof of Theorem 7.5 (cont.)

2. The assumption ‖b‖2 = 1 implies ‖α‖2 = ‖β‖2 = 1. This
together with elementary inequality

∑k
i=1 xi ≤

√
k
∑k
i=1 x

2
i yields

∑p

i=1
|αi| ≤

√
‖α‖0

∑p

i=1
|αi|2 =

√
‖α‖0

Similarly,
∑p
i=1 |βi| ≤

√
‖β‖0.

3. Substitution into (7.1) concludes the proof
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Back to the uniqueness of `0 minimization

Uncertainty principle suggests the possibility of ideal sparse
representation

y = [Ψ,Φ]x (7.2)

Theorem 7.7 (Donoho & Huo ’01, Elad & Bruckstein ’02)

Any two distinct solutions x(1) and x(2) to (7.2) must satisfy

‖x(1)‖0 + ‖x(2)‖0 ≥
2

µ(Ψ,Φ)

Corollary 7.8 (Donoho & Huo ’01, Elad & Bruckstein ’02)

If a solution x obeys ‖x‖0 < 1
µ(Ψ,Φ) , then it is necessarily the unique

sparsest solution

Sparse representation 7-32



Proof of Theorem 7.7

Define h = x(1) − x(2), and write h =
[
hΨ
hΦ

]
with hΨ,hΦ ∈ Cn

1. Since y = [Ψ,Φ]x(1) = [Ψ,Φ]x(2), one has

[Ψ,Φ]h = 0 ⇐⇒ ΨhΨ = −ΦhΦ

2. By Corollary 7.6,

‖h‖0 = ‖hΨ‖0 + ‖hΦ‖0 ≥
2

µ(Ψ,Φ)

3. ‖x(1)‖0 + ‖x(2)‖0 ≥ ‖h‖0 ≥ 2
µ(Ψ,Φ) as claimed
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Sparse representation via `1 minimization
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Relaxation of the highly discontinuous `0 norm

Unfortunately, `0 minimization is computationally intractable ...
Simple heuristic: replacing `0 norm with continuous (or even smooth)
approximation

|x|q vs. x
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Convexification: `1 minimization (basis pursuit)

minimizex∈Cp ‖x‖0 s.t. Ax = y

⇓
convexifying ‖x‖0 with ‖x‖1

⇓

minimizex∈Cp ‖x‖1 s.t. Ax = y (7.3)

• |x| is the largest convex function less than 1{x 6= 0} over
{x : |x| ≤ 1}

• `1 minimization is a linear program (homework)

• `1 minimization is non-smooth optimization (since ‖ · ‖1 is
non-smooth)

• `1 minimization does not rely on prior knowledge on sparsity level
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Geometry

minx ‖x‖1 s.t. Ax = y minx ‖x‖2 s.t. Ax = y

• Level sets of ‖ · ‖1 are pointed, enabling it to promote sparsity

• Level sets of ‖ · ‖2 are smooth, often leading to dense solutions
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Effectiveness of `1 minimization

Theorem 7.9 (Donoho & Huo ’01, Elad & Bruckstein ’02)

x ∈ Cp is the unique solution to `1 minimization (7.3) if

‖x‖0 <
1
2

(
1 + 1

µ(Ψ,Φ)

)
(7.4)

• `1 minimization yields the sparse solution too!

• recovery condition (7.4) can be improved to, e.g.,

‖x‖0 <
0.914
µ(Ψ,Φ) [Elad & Bruckstein ’02]
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Effectiveness of `1 minimization

‖x‖0 < 1
µ(Ψ,Φ) =⇒ `0 minimization works

‖x‖0 < 0.914
µ(Ψ,Φ) =⇒ `1 minimization works

Recovery condition for `1 miniization is within a factor of
1/0.914 ≈ 1.094 of the condition derived for `0 minimization
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Proof of Theorem 7.9
We need to show that ‖x+ h‖1 > ‖x‖1 holds for any other feasible
solution x+ h. To this end, we proceed as follows

‖x+ h‖1 > ‖x‖1
⇐=

∑
i/∈supp(x)

|hi|+
∑

i∈supp(x)
(|xi + hi| − |xi|) > 0

⇐=
∑

i/∈supp(x)
|hi| −

∑
i∈supp(x)

|hi| > 0 (since |a+ b| − |a| ≥ −|b|)

⇐= ‖h‖1 > 2
∑

i∈supp(x)
|hi|

⇐=
∑

i∈supp(x)

|hi|
‖h‖1

<
1
2

⇐= ‖x‖0
‖h‖∞
‖h‖1

<
1
2 (7.5)

Sparse representation 7-40



Proof of Theorem 7.9 (cont.)

It remains to control ‖h‖∞‖h‖1
. As usual, due to the feasibility constraint

we have [Ψ,Φ]h = 0, or

Ψhψ = −Φhφ ⇐⇒ hψ = −Ψ∗Φhφ where h =
[
hψ
hφ

]
.

For any i, the inequality |a∗b| ≤ ‖a‖∞‖b‖1 gives

|(hψ)i| = |(Ψ∗Φ)row i · hφ| ≤ ‖Ψ∗Φ‖∞ · ‖hφ‖1 = µ(Ψ,Φ) · ‖hφ‖1

In addition, ‖hψ‖1 ≥ |(hψ)i|. Putting them together yields

‖h‖1 = ‖hφ‖1 + ‖hψ‖1 ≥ |(hψ)i|
(

1 + 1
µ(Ψ,Φ)

)
(7.6)
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Proof of Theorem 7.9 (cont.)

Similarly, this inequality (7.6) holds if we replace (hψ)i by (hφ)i. As
a consequence,

‖h‖∞
‖h‖1

≤ 1
1 + 1

µ(Ψ,Φ)
(7.7)

Finally, if ‖x‖0 < 1
2

(
1 + 1

µ(Ψ,Φ)

)
, then this together with (7.7) yields

‖x‖0 ·
‖h‖∞
‖h‖1

<
1
2

as claimed in (7.5), thus concluding the proof
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Sparse representation for general dictionaries
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Beyond two-ortho case

minimizex ‖x‖0 s.t. y = Ax

What if A ∈ Cn×p is a general overcomplete dictionary?
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Mutual coherence for arbitrary dictionaries

Definition 7.10 (Mutual coherence)
For any A = [a1, · · · ,ap] ∈ Cn×p, the mutual coherence of A is defined by

µ(A) = max
1≤i,j≤p, i 6=j

|a∗iaj |
‖ai‖‖aj‖

• If ‖ai‖2 = 1 for all i, then µ(A) is the maximum off-diagonal
entry (in absolute value) of the Gram matrix G = A∗A

• µ(A) characterizes “second-order” dependency across the atoms
{ai}

• (Welch bound) µ(A) ≥
√

p−n
n(p−1) , with equality attained by a

family called Grassmannian frames
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Uniqueness of sparse representation via µ(A)

A theoretical guarantee similar to the two-ortho case

Theorem 7.11 (Donoho & Elad ’03, Gribonval & Nielsen ’03,
Fuchs ’04)

If x is a feasible solution that obeys ‖x‖0 < 1
2

(
1 + 1

µ(A)

)
, then x is

the unique solution to both `0 and `1 minimization
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Tightness?

Suppose p = cn for some constant c > 2, then Welch bound gives

µ(A) ≥ 1/
√

2n.

=⇒ for the “most incoherent” (and hence the best possible)
dictionary, the recovery condition reads

‖x‖0 = O(
√
n)

This says: to recover a
√
n-sparse signal (and hence

√
n degrees of

freedom), we need an order of n samples
• the measurement burden is way too high!
• mutual coherence might not capture information bottleneck!
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Summary

• For many dictionaries, if a signal is representable in a highly
sparse manner, then it is often guaranteed to be unique sparse
solution

• Seeking a sparse solution often becomes a well-posed question
with interesting properties
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