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Basic problem

Findx € CP st. Az =y

where A = [aq,- -, ap] € C"*P obeys
e underdetermined system: n < p
e full-rank: rank(A) =n

A: an over-complete basis / dictionary;, a;: atom;
x: representation in this basis / dictionary
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Sparse representation in pairs of bases
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A special type of dictionary: two-ortho case

Motivation for over-complete dictionary: many signals are
mixtures of diverse phenomena; no single basis can describe them well

Two-ortho case: A is a concatenation of 2 orthonormal matrices

A=[U®  where VT = I = P* = "D =1

e A classical example: A = [I,F] (F : Fourier matrix)
o representing a signal y as a superposition of spikes and sinusoids
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Sparse representation

Clearly, there exist infinitely many feasible solutions to Ax =1y ...

e Solution set: A*(AA*)"ly + null(A)

How many “sparse” solutions are there?
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Example 1

The following signal y; is dense in the time domain, but sparse in the
frequency domain

time-representation of y; frequency-representation of y;
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Example 2

The following signal y2 is dense in both the time and the frequency
domains, but sparse in the overcomplete basis [I, F]|

time representation of yo frequency representation of yo
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Example 2

The following signal y9 is dense in both the time and the frequency
domains, but sparse in the overcomplete basis [I, F]|

representation of yo in overcomplete basis (time 4 frequency)
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Uniqueness of sparse representation

A natural strategy to promote sparsity:

— seek sparsest solution to a linear system

(Pp) minimizegecr ||z|0 st Az =1y

e When is the solution unique?

e How to test whether a candidate solution is the sparsest possible?
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Application: multiuser private communications

e 2 (or more) users wish to communicate to the same receiver over
a shared wireless medium

e the jth user transmits s;; the receiver sees s =}, s;
e for the sake of privacy, the jth user adopts its own codebook
Sj = Aja:j

where x; is the message (typically sparse), and A; is the
dictionary (known to the receiver; unknown to other users)

It comes down to whether the receiver can recover all messages
unambiguously
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Connection to null space of A

Suppose x and x + h are both solutions to the linear system, then
Ah=A(x+h)—Az=y—y=0

Write h = l Z‘I’ ] with hg,hge € C", then
3

VYhy = —Phs

e hg and —hg are representations of the same vector in different
bases

e (Non-rigorously) In order for x to be the sparsest solution, we
hope h is much denser, i.e. we don't want hy and —hg to be
simultaneously sparse
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Detour: uncertainty principles for basis pairs
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Heisenberg’s uncertainty principle

A pair of complementary variables cannot both be highly
concentrated

e Quantum mechanics

Var[z] - Var[p] > h%*/4
position momentum

o h: Planck constant
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Heisenberg’s uncertainty principle

A pair of complementary variables cannot both be highly
concentrated

e Quantum mechanics
Var[z] - Var[p] > h%*/4

position momentum

o h: Planck constant
e Signal processing

/oo £2)£(1)[2dt /Oo W2|F(w)2dw > 1/4

—_—
concentration level of f(t)

o f(t): asignal obeying [*_|f(¢)[*dt =1
o F(w): Fourier transform of f(t)
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Heisenberg’s uncertainty principle

f(t) F(w)

Roughly speaking, if f(t) vanishes outside an interval of length At,
and its Fourier transform vanishes outside an interval of length Aw,

then
At - Aw > const
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Proof of Heisenberg’s uncertainty principle

(assuming f is real-valued and tf2(¢) — 0 as [t| — o0)

® Rewrite [w?|F(w)[?dw in terms of f. Since f'(t) 5 iwF(w),
Parseval's theorem yields

[P = [liwFePao = [1£@Pa

@ Invoke Cauchy-Schwarz:

(/ﬂf|%Qm(/f wam>—/ﬁwﬁmm

= —0.5/ dfd2( )dt

= —O.5tf2(t)‘iooo + 0.5/f2(t)dt (integration by part)
=05 (by our assumptions)
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Uncertainty principle for time-frequency bases

concentrated signal sparse but non-concentrated signal

More general case: concentrated signals — sparse signals
e f(t) and F(w) are not necessarily concentrated on intervals

Question: is there a signal that can be sparsely represented both in
time and in frequency?

e formally, for an arbitrary @, suppose & = Fx.
How small can ||||o + ||x|lo be ?
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Uncertainty principle for time-frequency bases

Theorem 7.1 (Donoho & Stark '89)

Consider any nonzero x € C", and let & := Fx. Then
lzllo- 2o >n
—_———

time-bandwidth product

e x and & cannot be highly sparse simultaneously
e does not rely on the kind of sets where & and & are nonzero
e sanity check: if € = [1,0,---,0]" with ||xo = 1, then
|&|lo = n and hence ||x||o - ||Z|l0 = n
Corollary 7.2 (Donoho & Stark '89)
lllo + &]0 > 2V (by AM-GM inequality)
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Proof of Theorem 7.1: a key lemma

The key to proving Theorem 7.1 is to establish the following lemma:

Lemma 7.3 (Donoho & Stark ’89)

If x € C™ has k nonzero entries, then & := Fx cannot have k
consecutive 0's.
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Proof of Theorem 7.1

Suppose x is k-sparse, and suppose n/k € Z
1. Partition {1,--- ,n} into n/k intervals of length k each

2. By Lemma 7.3, none of these intervals of & can vanish. Since
each interval contains at least 1 non-zero entry, one has

n
T
&l = 7

= |zlo-|Zllo =n

Exercise: fill in the proof for the case where k does not divide n
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Proof of Lemma 7.3

. _2mi
Suppose x;,- -, x5, are the nonzero entries, and let z =¢e™ n

@ For any consecutive frequency interval (s, - -

-, s+ k—1), the
(s + 1) frequency component is

1 k
. Z (s+1 _
J"S-‘rl_ \/ﬁ jzlejZT](S )7 Z—O, ?k_l

One can thus write

1
9 = [Zstlo<ick = 752%’
m‘n ZTlS 1 1 1 1
T8 271 C. N 2Tk
Trp2 2T e,
where z, := . L= .
Ty 27 Skm NS

Sparse representation

7-20



Proof of Lemma 7.3 (cont.)

2. Recognizing that Z is a Vandermonde matrix yields

det(Z2)= [ (=7 —27) #0,

1<i<j<k

and hence Z is invertible. Therefore, x, # 0 = g # 0 as claimed
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Tightness of uncertainty principle

Lower bounds in Theorem 7.1 and Corollary 7.2 are achieved by the
picket-fence signal « (a signal with uniform spacing /n)

10 0‘ (] I [~ ‘ @ IO C; [~
0.8 [
0.6 [
0.4 H
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0 —mmwmmmwm
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Figure 7.1: The picket-fence signal for n = 64, which obeys Fx = x
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Uncertainty principle for general basis pairs

There are many other bases beyond time-frequency pairs
o Wavelets

Ridgelets

Hadamard

Generally, for an arbitrary y € C™ and arbitrary bases ¥ and ®,
suppose y = Yo = P3:

How small can ||c||o + || B0 be ?
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Uncertainty principle for general basis pairs

The degree of “uncertainty” depends on the basis pair
e Example: suppose ¢1, 2 € ¥ and (d)1 + ¢2),
ﬁ((ﬁl — ¢2) € ¥ (so two bases share S|m||ar|ty). Then

Yy = @1 + 0.5¢2 can be sparsely represented in both ¥ and ®
(i.e. we have multiple sparse representations)

The uncertainty principle depends on how “different” ¥ and ® are J
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Mutual coherence

A rough way to characterize how “similar” ¥ and &® are:

Definition 7.4 (Mutual coherence)

For any pair of orthonormal bases ¥ = [t)1,--- ,4,] and @ = [¢y1, - , Pn],
the mutual coherence of these two bases is defined by

W, ®) =  ax 7 ¢,

o 1/v/n < pu(P,®) <1 (homework)

e For p(¥, ®) to be small, each 1); needs to be “spread out” in
the ® domain
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Examples

e W(I.F)=1/yn

o Spikes and sinusoids are most mutually incoherent

e Other extreme basis pair obeying u(®,®) =1/y/n: ¥ =1 and
® = H (Hadamard matrix)
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Fourier basis vs. wavelet basis (n = 1024)
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Magnitudes of Daubechies-8 wavelets in the Fourier domain (j labels
the scales of the wavelet transform with j = 1 the finest scale)
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Uncertainty principle for general bases

Theorem 7.5 (Donoho & Huo'01, Elad & Bruckstein'02)

Consider any nonzero b € C™ and any pair of orthonormal bases
¥ P c C". Suppose b=Wa =®3. Then

1
. > -
ledlo- 18110 >~

Corollary 7.6 (Donoho & Huo’01, Elad & Bruckstein’02)

(by AM-GM inequality)

allo + (|80 =
ello + [|B]] (T, )
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Implications

e If two bases are “mutually incoherent”, then we cannot have
highly sparse representations in two bases simultaneously

o If W =1_Tand ® = F, Theorem 7.5 reduces to

o - 1Bllo = n

since u(¥,®) = 1/y/n, which coincides with Theorem 7.1
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Proof of Theorem 7.5

1. WLOG, assume ||b||2 = 1. This gives
1=0b = a"T*"®3
p
= Zm.:l i (i, &5) Bj
p
< Zm.:l il - (2, @) - |54

< (¥, ®) (Zle \a¢|) (ijl |/8j|) (7.1)

Aside: this shows ||a|1 - || 8|1 > m J
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Proof of Theorem 7.5 (cont.)

2. The assumption ||blj2 = 1 implies ||a||2 = ||B|l2 = 1. This
together with elementary inequality Zle x; < \/ka”:l z? yields

p p
S0 el < \fllado 37 feal? = el
Similarly, >-7_; 18:] < v/1I8]lo-

3. Substitution into (7.1) concludes the proof
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Back to the uniqueness of /; minimization

Uncertainty principle suggests the possibility of ideal sparse

representation
y =¥, ez (7.2)

Theorem 7.7 (Donoho & Huo'01, Elad & Bruckstein '02)

Any two distinct solutions ") and ) to (7.2) must satisfy

2
(1) @) > _ 2
=l + 12 > g5

Corollary 7.8 (Donoho & Huo’01, Elad & Bruckstein’02)

If a solution = obeys ||z||g < m, then it is necessarily the unique

sparsest solution
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Proof of Theorem 7.7

Define h = () — 22, and write h = [ Z\I’ ] with hy, he € C"
o

® Since y = [¥, ®]z(V) = [T, ®]x?), one has
W, 8h=0 <+ Thy= &he

@ By Corollary 7.6,

2
hllg = ||k + ||h > ——
[hllo = lhwllo + [Ihallo (T, ®)

@ [lzWo+ 2P0 > ||Rlo > ﬁ as claimed
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Sparse representation via /; minimization
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Relaxation of the highly discontinuous ¢, norm

Unfortunately, ¢y minimization is computationally intractable ...

Simple heuristic: replacing ¢y norm with continuous (or even smooth)
approximation

0.8+

0.6+

0.4+

0.2+

nNooo
o

QOaQ

|z|? vs. x
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Convexification: ¢; minimization (basis pursuit)

minimizegecy ||Zllo st Az =1y

4
convexifying ||x[[o with ||lz|[1
4
minimizegecr ||z]|1 st. Az =y (7.3)

e |z| is the largest convex function less than 1{z # 0} over
{z: || <1}

e (1 minimization is a linear program (homework)

e /1 minimization is non-smooth optimization (since | - || is
non-smooth)

e /1 minimization does not rely on prior knowledge on sparsity level
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Geometry

X9 X2

luti f £1-mi . .
?u R \ solution of £5-min
X

Ax =1y ﬁ Ax =1y
X1 \J X1

ming ||z|; st. Az =1y ming |||z st. Az =1y
e Level sets of || - ||; are pointed, enabling it to promote sparsity
e Level sets of || - ||2 are smooth, often leading to dense solutions
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Effectiveness of /; minimization

Theorem 7.9 (Donoho & Huo '01, Elad & Bruckstein '02)

x € CP is the unique solution to {1 minimization (7.3) if
1 1
1+ — 7.4
et <5 (1+ 25 7) (74)

e /1 minimization yields the sparse solution too!

e recovery condition (7.4) can be improved to, e.g.,

914
o < /ﬁq)) [Elad & Bruckstein '02]
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Effectiveness of /; minimization

llz|lo < m —>  fp minimization works

lxllo < Oe) £1 minimization works

Recovery condition for £1 miniization is within a factor of
1/0.914 ~ 1.094 of the condition derived for {y minimization
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Proof of Theorem 7.9

We need to show that ||« + h||; > ||«||1 holds for any other feasible
solution @ + h. To this end, we proceed as follows

[ + kL > [l
— >l D (mi A bl = al) >0
i¢supp(x) i€supp(x)
— Y - Y Jhl>0  (since a+ b —[a] = —Jb])
i¢supp(x) i€supp(x)
= |hlh>2 > |
i€supp(x)
[hal _ 1
[hlli 2

— >
i€supp(x)
[hllo 1

— 75
Il =2 (7.5)
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Proof of Theorem 7.9 (cont.)

It remains to control H”’;l‘h"l" As usual, due to the feasibility constraint

we have [¥, ®]h = 0, or

VYhy, =—-Phy <<= hy= —\Il*<I>h¢ where h = [

For any i, the inequality |a*b| < ||a||||b||1 gives
[(Rp)il = [(B" @) row i - hg| < [T D[ - lRg[[1 = (P, @) - [[hg]l2
In addition, [|hy|l1 > [(hy):|. Putting them together yields

1

Il = gl -+ sl = ()| (14 —g5)  (76)
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Proof of Theorem 7.9 (cont.)

Similarly, this inequality (7.6) holds if we replace (hy); by (he):. As

a consequence,
Al 1

= 1
[hl1 1+ WT.3)

(7.7)

Finally, if [|z(lo < 3 (1 + m) then this together with (7.7) yields

Al 1
.7<7
=00y, < 2

as claimed in (7.5), thus concluding the proof
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Sparse representation for general dictionaries
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Beyond two-ortho case

minimizeg ||z|lo s.t. y = Az

What if A € C™"*P is a general overcomplete dictionary?
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Mutual coherence for arbitrary dictionaries

Definition 7.10 (Mutual coherence)
For any A = [aq, - ,ap] € C"*P, the mutual coherence of A is defined by
|aja,|

A) = max ITPSRTIIPST
WA = max Tadllas]

o If ||lai||2 =1 for all 4, then u(A) is the maximum off-diagonal
entry (in absolute value) of the Gram matrix G = A*A

e 1(A) characterizes “second-order” dependency across the atoms

{ai}

e (Welch bound) u(A) > nfpinl), with equality attained by a

family called Grassmannian frames
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Uniqueness of sparse representation via ;(A)

A theoretical guarantee similar to the two-ortho case

Theorem 7.11 (Donoho & Elad ’03, Gribonval & Nielsen "03,
Fuchs '04)

If T is a feasible solution that obeys |zo < % (1 + ﬁ) then x is
the unique solution to both {y and ¢1 minimization
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Tightness?

Suppose p = cn for some constant ¢ > 2, then Welch bound gives
u(A) > 1/v2n.

= for the “most incoherent” (and hence the best possible)
dictionary, the recovery condition reads

[z(lo = O(v'n)

This says: to recover a \/n-sparse signal (and hence /n degrees of
freedom), we need an order of n samples

e the measurement burden is way too high!
e mutual coherence might not capture information bottleneck!
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Summary

e For many dictionaries, if a signal is representable in a highly
sparse manner, then it is often guaranteed to be unique sparse
solution

e Seeking a sparse solution often becomes a well-posed question
with interesting properties
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