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Disentangling sparse and low-rank matrices

Suppose we are given a matrix

M= L + S eRY"
~— ~—

low-rank sparse

Question: can we hope to recover both L and S from M?

Robust PCA 14-2



Principal component analysis (PCA)

e N samples X = [y, ®a,...,xy] € R™¥ that are centered

e PCA: seeks r directions that explain most variance of data

rninimizeL:rank(L) r HX_LHF

o best rank-r approximation of X
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Sensitivity to corruptions / outliers

What if some samples are corrupted (e.g. due to sensor
errors / attacks)?

Classical PCA fails even with a few outliers
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Video surveillance

Separation of background (low-rank) and foreground (sparse)

(a) Original frames (b) Low-rank L (c) Sparse §

Candés, Li, Ma, Wright '11
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Graph clustering / community recovery

n nodes, 2 (or more) clusters

A friendship graph G: for any pair (i, j),

1, if(i,j)€g
0, else

i’j -

Edge density within clusters > edge density across clusters

e Goal: recover cluster structure
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Graph clustering / community recovery

—~—
low-rank sparse

e An equivalent goal: recover the ground truth matrix

{1, if 2 and j are in the same community
ij =

0, else

e Clustering <= robust PCA
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Gaussian graphical models

Fact 14.1

Consider a Gaussian vector x ~ N(0,X). For any u and v,
Ty J_va ‘ $V\{u,v}

iff ©y, =0, where © = > -1 js the inverse covariance matrix

conditional independence <=  sparsity
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Gaussian graphical models

fx x 0 0 x 0 0 07
2l X5 * *x 0 0 0 x % O
X4 00 = 0 % 0 0 x
x 0 0 0 « 0 0 % O
2 X s *x 00 0 x 0 0 =
0 = 0 0 0 x 0 O
X3 %, 0 = 0 = 0 0 % O
L0 0 = 0 *x 0 0 =x* |
)

The inverse covariance matrix © is often sparse
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Graphical models with latent factors

What if one only observes a subset of variables?

Xy X5
X4
To (observed variables) x . Xy
. . 6
Ty (hidden variables)
X3 X
@o = [x1,- -+, m6] ", @0 = [w7, 8]

The covariance and precision matrices can be partitioned as

observed part 1
S=| 3 Zon| = l@To @o},h]
T o,h 1
Eo,h zh
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Graphical models with latent factors

What if one only observes a subset of variables?

Xy X5
Xy
To (observed variables) x . Xy
. . 6
Ty (hidden variables)
X3 X
®o = [z1,++ ,m6) , @ = [v7, 78]
> =0, - 0,10, '
o - o 0,h %y h,o
S~ ~~ ——————
observed  SPars€ |ow_rank if # latent vars is small

sparse + low-rank decomposition
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When is decomposition possible?

Identifiability issue: a matrix might be simultaneously low-rank and
sparse!

100 .-+ 0 1 0 1 1
000 ---0 010 0
. VS. .

000 ---0 100 --- 1
sparse and low-rank sparse but not low-rank

Nonzero entries of sparse component need to be spread out
— This lecture: assume locations of the nonzero entries are

random
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When is decomposition possible?

Identifiability issue: a matrix might be simultaneously low-rank and
sparse!

1 11 1 1 11 1
1 1 1 000 0
VS.

111 --- 1 000 ---0
low-rank and dense low-rank but sparse

The low-rank component needs to be incoherent
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Low-rank component: coherence

Definition 14.2
Coherence parameter ; of M = UXV T is the smallest quantity s.t.

max U e;|3 < 25
) n

and max ||V e3 < Hr
7 n

€;

'Pu(ei)
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Low-rank component: joint coherence

Definition 14.3 (Joint coherence)

Joint coherence parameter puo of M = UXV ' is the smallest

quantity s.t.
19T
IOV Tl < /25
n

This prevents UV T from being too peaky
o 1) < g < u%r, since

(UV )il =1el UV e < le]Ull2- ||V ejll2 < %

UV ejl|2 V'e;|? r r
||UVTH?><> > H - JHF _ H n]”2 _ % (suppose ||VTejH§ _ %)
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Convex relaxation

minimizer, ¢ rank(L) + A||S|lo st. M =L+ S (14.1)

(8
minimizer, s ||L|[« + A||S|i st. M =L+ S (14.2)
e || - ||«: nuclear norm; || -||1: entry-wise ¢; norm

e )\ > 0: regularization parameter that balances two terms
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Theoretical guarantee

Theorem 14.4 (Candeés, Li, Ma, Wright '11)
< n .
e rank(L) < el T o
e Nonzero entries of S are randomly located, and ||S||o < psn?® for
some constant ps > 0 (e.g. ps = 0.2).

Then (14.2) with A = 1/+/n is exact with high prob.

rank(L) can be quite high (up to n/polylog(n))
Parameter free: A =1/\/n

Ability to correct gross error: ||S]lo < n

2

Sparse component S can have arbitrary magnitudes / signs!
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Geometry

Fig. credit: Candeés’'14
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Empirical success rate

0 01 02 03 04 05

rank(L)/n
n = 400

Fig. credit: Candes, Li, Ma, Wright '11
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Dense error correction

Theorem 14.5 (Ganesh, Wright, Li, Candées, Ma 10, Chen,
Jalali, Sanghavi, Caramanis '13)
e rank(L) < —max{ul,Zz}logzn’.
e Nonzero entries of S are randomly located, have random sign,
and ||S|lo = psn®.

Then (14.2) with A < \/% succeeds with high prob., provided that

- S \/max{ul,ug}rpolylog(n)

n
non-corruption rate

e When additive corruptions have random signs, (14.2) works even
when a dominant fraction of the entries are corrupted
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Is joint coherence needed?

e Matrix completion: does not need o

e Robust PCA: so far we need s

Question: is uo needed? can we recover L with rank up to
rather than

Zooiyiog(ny ( y )?
papolylog(n) max{p1,p2 tpolylog(n)

Answer: no (example: planted clique)
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Planted clique problem

Setup: a graph G of n nodes generated as follows
1. connect each pair of nodes independently with prob. 0.5

2. pick ng nodes and make them a clique (fully connected)

Goal: find the hidden clique from G

Information theoretically, one can recover the clique if ng > 2log, n
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Conjecture on computational barrier

Conjecture: V constant € > 0, if ng < nY%-5=¢, then no tractable
algorithm can find the clique from G with prob. 1 — o(1)

— often used as a hardness assumption

Lemma 14.6

If there is an algorithm that allows recovery of any L from M with

rank(L) < Zpolylog(n) then the above conjecture is violated
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Proof of Lemma 14.6

Suppose L is the true adjacency matrix,

{1, if 7,7 are both in the clique
0] —

0, else
Let A be the adjacency matrix of G, and generate M s.t.

{Am, with prob. 2/3
ij =

0, else

Therefore, one can write

M =1L+ M —-L
——
each entry is nonzero w.p. 1/3
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Proof of Lemma 14.6

Note that

[\

pr=— and  pp

I
Sl 3

. . n
If there is an algorithm that can recover any L of rank polylog(n)
from M, then
rank(L) =1 < " = ng > polylog(n)
papolylog(n)

But this contradicts the conjecture (which claims computational
infeasibility to recover L unless ng > n%5—0(1))
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Matrix completion with corruptions

What if we have missing data + corruptions?

e Observed entries
M;j = Lij + Sij,  (i,7) € Q
for some observation set 2, where S = (.S;;) is sparse

e A natural extension of RPCA
minimizer, s ||L||« + A||S|li s.t. Po(M) = Pa(L + S)

e Theorems 14.4 - 14.5 easily extend to this setting
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Efficient algorithm

In the presence of noise, one needs to solve
minimizer,s  |IL|l- + A|IS|ly + 5IIM — L — S|

which can be solved efficiently

Algorithm 14.1 Iterative soft-thresholding
fort=0,1,---:

L+ =7y, (M- S")
fS e - wk/u (M . Lt—i—l)

where T singular-value thresholding operator; v: soft thresholding
operator
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