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Efficient large-scale data processing

When processing large-scale data (in particular, streaming data), we
desire methods that can be performed with

• a few (e.g. one or two) passes of data

• limited memory (so impossible to store all data)

• low computational complexity
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Key idea: dimension reduction via random sketching

• random sampling: randomly downsample data

◦ often relies on the information of data

• random projection: rotates / projects data to lower dimensions

◦ often data-agnostic
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Approximate matrix multiplication



Matrix multiplication: a fundamental algebra task

Given A ∈ Rm×n and B ∈ Rn×p, compute or approximate AB

Algorithm 6.1 Vanilla algorithm for matrix multiplication
1: for i = 1, · · · ,m do
2: for k = 1, · · · , n do
3: Mi,k = Ai,:B:,k
4: return M

Computational complexity: O(mnp), or O(n3) if m = n = p

For simplicity, we shall assume m = n = p unless otherwise noted.
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Faster matrix multiplication?

• Strassen algorithms: exact matrix multiplication

◦ Computational complexity ≈ O(n2.8)
◦ For various reasons, rarely used in practice

• Approximate solution?
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A simple randomized algorithm
View AB as a sum of rank-one matrices (or outer products)

AB =
n∑
i=1

A:,iBi,:

Idea: randomly sample L rank-one components

Algorithm 6.2 Basic randomized algorithm for matrix multiplication
1: for l = 1, · · · , L do
2: Pick il ∈ {1, · · · , n} i.i.d. with prob. P{il = k} = pk
3: return

M =
L∑
l=1

1
Lpil

A:,lBl,:

• {pk}: importance sampling probabilities
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A simple randomized algorithm

Rationale: M is an unbiased estimate of AB, i.e.

E [M ] =
L∑
l=1

∑
k

P {il = k} 1
Lpk

A:,kBk,:

=
∑
k

A:,kBk,: = AB

Clearly, the approximation error (e.g. ‖AB −M‖) depends on {pk}

Randomized linear algebra 6-10



Importance sampling probabilities

• Uniform sampling (pk ≡ 1
n): one can choose the sampling set

before looking at data, so it’s implementable via 1 pass over data

Intuitively, one may prefer biasing towards larger rank-1 components
• Nonuniform sampling

pk = ‖A:,k‖2‖Bk,:‖2∑
l ‖A:,l‖2‖Bl,:‖2

◦ {pk} can be computed using one pass and O(n) memory
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Optimal sampling probabilities?

Let’s measure the approximation error by E
[
‖M −AB‖2F

]
As it turns out, E

[
‖M −AB‖2F

]
is minimized by

pk = ‖A:,k‖2‖Bk,:‖2∑
l ‖A:,l‖2‖Bl,:‖2

(6.1)

Thus, we call (6.1) the optimal sampling probabilities
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Justification of the optimality of (6.1)
Since E[M ] = AB, one has

E
[
‖M −AB‖2

F
]

= E

[∑
i,j

(Mi,j −Ai,:B:,j)2

]
=
∑
i,j

Var[Mi,j ]

= 1
L

∑
k

∑
i,j

A2
i,kB

2
k,j

pk
− 1
L

∑
i,j

(Ai,:B:,j)2 (check)

= 1
L

∑
k

1
pk
‖A:,k‖2

2‖Bk,:‖2
2 −

1
L
‖AB‖2

F (6.2)

In addition, Cauchy-Schwarz yields (
∑
k pk)

(∑
k
αk

pk

)
≥
(∑

k

√
αk
)2, with

equality attained if pk ∝
√
αk. This implies

E
[
‖M −AB‖2

F
]
≥ 1
L

(∑
k

‖A:,k‖2‖Bk,:‖2

)2

− 1
L
‖AB‖2

F,

where the lower bound is achieved when pk ∝ ‖A:,k‖2‖Bk,:‖2
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Error concentration

Practically, one often hopes that the approximation error is absolutely
controlled most of the time. In other words, we desire an estimator
which is sufficiently close to the truth with high probability

For approximate matrix multiplication, two error metrics are of
particular interest

• Frobenius norm bound: ‖M −AB‖F
• spectral norm bound: ‖M −AB‖

invoke matrix concentration inequalities to control these metrics
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Recall: the matrix Bernstein inequality

Theorem 6.1 (Matrix Bernstein)

Let
{
Xl ∈ Rd1×d2

}
be a sequence of independent zero-mean random

matrices. Assume each random matrix satisfies ‖Xl‖ ≤ R. Define
V := max

{∥∥∥E [∑L
l=1 XlX

>
l

]∥∥∥ , ∥∥∥E [∑L
l=1 X

>
l Xl

]∥∥∥}. Then,

P
{∥∥∥∥∥

L∑
l=1

Xl

∥∥∥∥∥ ≥ τ
}
≤ (d1 + d2) exp

(
−τ2/2

V +Rτ/3

)
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Frobenius norm error of matrix multiplication

Theorem 6.2

Suppose pk ≥
β‖A:,k‖2‖Bk,:‖2∑

l
‖A:,l‖2‖Bl,:‖2

for some quantity 0 < β ≤ 1. If

L & logn
β , then with prob. exceeding 1−O(n−10),

‖M −AB‖F .

√
logn
βL
‖A‖F‖B‖F
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Proof of Theorem 6.2
Clearly, vec(M) =

∑L
l=1 Xl, where

Xl =
∑n
k=1

1
Lpk

A:,k ⊗B>k,: 1 {il = k}. These matrices {Xl} obey

‖Xl‖2 ≤ max
k

1
Lpk
‖A:,k‖2‖Bk,:‖2 �

1
βL

n∑
k=1
‖A:,k‖2‖Bk,:‖2=: R

E

[
L∑
l=1
‖Xl‖2

2

]
= L

n∑
k=1

P {il = k} ‖A:,k‖2
2‖Bk,:‖2

2
L2p2

k

≤
(
∑n
k=1 ‖Ak,:‖2‖Bk,:‖2)2

βL︸ ︷︷ ︸
=:V

Invoke matrix Bernstein to arrive at

‖M −AB‖F =

∥∥∥∥∥
L∑
l=1

(Xl − E[Xl])

∥∥∥∥∥
2

.
√
V logn+R logn

�

√
logn
βL

(
n∑
k=1
‖Ak,:‖2‖Bk,:‖2

)
≤

√
logn
βL
‖A‖F‖B‖F (Cauchy-Schwarz)
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Spectral norm error of matrix multiplication

Theorem 6.3

Suppose pk ≥
β‖A:,k‖2

2
‖A‖2

F
for some quantity 0 < β ≤ 1, and

L &
‖A‖2

F
β‖A‖2 logn . Then the estimate M returned by Algorithm 6.2

obeys

‖M −AA>‖ .

√
logn
βL
‖A‖F‖A‖

with prob. exceeding 1−O(n−10)

• If L &
‖A‖2F
‖A‖2︸ ︷︷ ︸

stable rank

logn
ε2β , then ‖M −AA>‖ . ε‖A‖2

• can be generalized to approximate AB (Magen, Zouzias ’11)

Randomized linear algebra 6-18



Proof of Theorem 6.3
Write M =

∑L
l=1 Zl, where Zl =

∑n
k=1

1
Lpk

A:,kA
>
:,k 1 {il = k}. These

matrices satisfy

‖Zl‖2 ≤ max
k

‖A:,k‖2
2

Lpk
≤ 1
βL
‖A‖2

F =: R∥∥∥∥∥E
[
L∑
l=1

ZlZ
>
l

]∥∥∥∥∥ =

∥∥∥∥∥L
n∑
k=1

P {il = k} ‖A:,k‖2
2

L2p2
k

A:,kA
>
:,k

∥∥∥∥∥
= 1
βL
‖A‖2

F
∥∥AA>

∥∥
≤ 1
βL
‖A‖2

F ‖A‖
2 =: V

Invoke matrix Bernstein to conclude that with high prob.,∥∥M −AA>
∥∥ =

∥∥∥∥∑L

l=1
(Zl − E[Zl])

∥∥∥∥ .
√
V logn+B logn

�

√
logn
βL
‖A‖F ‖A‖
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Matrix multiplication with one-sided information

What if we can only use the information about A?

For example, suppose pk ≥
β‖A:,k‖2

2
‖A‖2

F
. In this case, matrix Bernstein

does NOT yield sharp concentration. But we can still use Markov’s
inequality to get some useful bound
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Matrix multiplication with one-sided information

More precisely, when pk ≥
β‖A:,k‖2

2
‖A‖2

F
, it follows from (6.2) that

E
[
‖M −AB‖2F

]
= 1
L

∑
k

1
pk
‖A:,k‖22‖Bk,:‖22 −

1
L
‖AB‖2F

≤ 1
βL

(∑
k

‖Bk,:‖22

)
‖A‖2F

= ‖A‖
2
F‖B‖2F
βL

Hence, Markov’s inequality yields that with prob. at least 1− 1
logn ,

‖M −AB‖2F ≤
‖A‖2F‖B‖2F logn

βL
(6.3)
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Least squares approximation



Least squares (LS) problems

Given A ∈ Rn×d (n� d) and b ∈ Rn, find the “best” vector
s.t. Ax ≈ b, i.e.

minimizex∈Rd ‖Ax− b‖2

If A has full column rank, then

xls = (A>A)−1A>b = VAΣ−1
A U>A b

where A = UAΣAV
>
A is the SVD of A.
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Methods for solving LS problems

Direct methods: computational complexity O(nd2)
• Cholesky decomposition: compute upper triangular matrix R

s.t. A>A = R>R, and solve R>Rx = A>b

• QR decomposition: compute QR decomposition A = QR (Q:
orthonormal; R: upper triangular), and solve Rx = Q>b

Iterative methods: computational complexity O
(σmax(A)
σmin(A) log 1

ε

)
• conjugate gradient ...
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Randomized least squares approximation

Basic idea: generate a sketching / sampling matrix Φ (e.g. via
random sampling, random projection), and solve instead

x̃ls = arg min
x∈Rd

‖Φ(Ax− b)‖2

Goal: find Φ s.t.

x̃ls ≈ xls

‖Ax̃ls − b‖2 ≈ ‖Axls − b‖2
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Which sketching matrices enable good
approximation?

We will start with two deterministic conditions that promise
reasonably good approximations (Drineas et al ’11)
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Which sketching matrices enable good
approximation?

Let A = UAΣAV
>
A be the SVD of A ...

• Condition 1 (approximate isometry)

σ2
min(ΦUA) ≥ 1√

2
(6.4)

◦ says that ΦUA is an approximate isometry / rotation
◦ 1/

√
2 can be replaced by other positive constants

• Condition 2 (approximate orthogonality)∥∥∥U>AΦ>Φ(Axls − b)
∥∥∥2

2
≤ ε

2‖Axls − b‖22 (6.5)

◦ says that ΦUA is roughly orthogonal to Φ (Axls − b)︸ ︷︷ ︸
=(UAU>

A
−I)b

◦ even though this condition depends on b, one can find Φ
satisfying this condition without using any information about b
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Which sketching matrices enable good
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A be the SVD of A ...
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σ2
min(ΦUA) ≥ 1√

2
(6.4)

◦ says that ΦUA is an approximate isometry / rotation
◦ 1/

√
2 can be replaced by other positive constants
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≤ ε
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Can these conditions be satisfied?

Two extreme examples

1. Φ = I, which satisfiesσmin (ΦUA) = σmin (UA) = 1∥∥∥U>AΦ>Φ (Axls − b)
∥∥∥

2
=
∥∥∥U>A (I −UAU

>
A

)
b
∥∥∥

2
= 0

◦ easy to construct; hard to solve the subsampled LS problem

2. Φ = U>A , which satisfiesσmin (ΦUA) = σmin (I) = 1∥∥∥U>AΦ>Φ (Axls − b)
∥∥∥

2
=
∥∥∥U>A (I −UAU

>
A

)
b
∥∥∥

2
= 0

◦ hard to construct (i.e. compute UA); easy to solve subsampled LS
problem
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Quality of approximation

We’d like to assess the quality of approximation w.r.t. both fitting
error and estimation error

Lemma 6.4

Under Conditions 1-2, the solution x̃ls to the subsampled LS problem
obeys

(i) ‖Ax̃ls − b‖2 ≤ (1 + ε)‖Axls − b‖2
(ii) ‖x̃ls − xls‖2 ≤

√
ε

σmin(A)‖Axls − b‖2
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Proof of Lemma 6.4(i)
The subsampled LS problem can be rewritten as

min
x∈Rd

‖Φb−ΦAx‖22 = min
∆∈Rd

∥∥Φb−ΦA
(
xls + ∆

)∥∥2
2

= min
∆∈Rd

∥∥Φ(b−Axls
)
−ΦA∆

∥∥2
2

= min
z∈Rd

∥∥∥Φ(b−Axls
)
−Φ UAz︸ ︷︷ ︸

=A(x−xls)

∥∥∥2

2
.

Therefore, the optimal solution zls obeys

zls =
(
U>AΦ>ΦUA

)−1(
U>AΦ>

)
Φ
(
b−Axls

)
.

Combine Conditions 1-2 to obtain

‖zls‖22 ≤
∥∥∥(U>AΦ>ΦUA

)−1
∥∥∥2 ∥∥∥U>AΦ>Φ

(
b−Axls

)∥∥∥2

2
≤ 2ε‖b−Axls‖22
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Proof of Lemma 6.4(i) (cont.)

Previous bounds further yield

∥∥b−Ax̃ls
∥∥2

2 =
∥∥∥b−Axls︸ ︷︷ ︸
⊥UA

+ Axls −Ax̃ls︸ ︷︷ ︸
∈ range(UA)

∥∥∥2

2

=
∥∥b−Axls

∥∥2
2 +

∥∥Axls −Ax̃ls
∥∥2

2

=
∥∥b−Axls

∥∥2
2 +

∥∥UAzls
∥∥2

2

≤
∥∥b−Axls

∥∥2
2 +

∥∥zls
∥∥2

2

≤ (1 + 2ε)
∥∥b−Axls

∥∥2
2

Finally, we conclude the proof by recognizing that
√

1 + 2ε ≤ 1 + ε.
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Proof of Lemma 6.4(ii)

From the proof of Lemma 6.4(i), we know Axls −Ax̃ls = UAzls and
‖zls‖22 ≤ ε‖b−Axls‖22. These reveal that

‖xls − x̃ls‖22 ≤
‖A(xls − x̃ls)‖22

σ2
min(A)

= ‖UAzls‖22
σ2

min(A)

≤ ‖zls‖22
σ2

min(A)

≤
ε
∥∥b−Axls

∥∥2
2

σ2
min(A)
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Quality of approximation (cont.)

By imposing further assumptions on b, we can connect the error
bound with ‖xls‖2

Lemma 6.5

Suppose ‖UAU
>
A b‖2 ≥ γ‖b‖2 for some 0 < γ ≤ 1. Under Conditions

1-2, the solution x̃ls to the subsampled LS problem obeys

‖xls − x̃ls‖2 ≤
√
ε κ(A)

√
γ−2 − 1‖xls‖2

where κ(A): condition number of A

• ‖UAU
>
A b‖2 ≥ γ‖b‖2 says a nontrivial fraction of the energy of b

lies in range(A)
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Proof of Lemma 6.5

Since b−Axls = (I −UAU
>
A )b, one has

‖b−Axls‖22 = ‖(I −UAU
>
A )b‖22

= ‖b‖22 − ‖UAU
>
A b‖22

≤
(
γ−2 − 1

)
‖UAU

>
A b‖22 (since ‖UAU

>
A b‖2 ≥ γ‖b‖2)

=
(
γ−2 − 1

)
‖Axls‖22 (since Axls = UAU

>
A b)

≤
(
γ−2 − 1

)
σ2

max(A) ‖xls‖22

This combined with Lemma 6.4(ii) concludes the proof.
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Connection with approximate matrix multiplication

Condition 1 can be guaranteed if∥∥∥U>A (Φ>Φ
)
UA −U>AUA︸ ︷︷ ︸

=I

∥∥∥ ≤ 1− 1√
2

Condition 2 can be guaranteed if∥∥∥U>A (Φ>Φ
)(
Axls−b

)
− U>A

(
Axls − b

)︸ ︷︷ ︸
=U>

A (I−UAU>
A )b=0

∥∥∥2

2
≤ ε

2‖UA‖2︸ ︷︷ ︸
=1

‖Axls−b‖22

Both conditions can be viewed as approximate matrix multiplication
(by designing ΦΦ>)
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A (slow) random projection strategy

Gaussian sampling: let Φ ∈ Rr×n be composed of i.i.d. Gaussian
entries N

(
0, 1

r

)

• Conditions 1-2 are satisfied with high prob. if r & d log d
ε

(exercise)

• implementing Gaussian sketching is expensive (computing ΦA
takes time Ω(nrd) = Ω(nd2 log d))
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Another random subsampling strategy

Let’s begin with Condition 1 and try Algorithm 6.2 with optimal
sampling probabilities ...
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Another random subsampling strategy

Leverage scores of A are defined to be ‖(UA):,i‖2 (1 ≤ i ≤ n)

Nonuniform random subsampling: set Φ ∈ Rr×n to be a
(weighted) random subsampling matrix s.t.

P
(

Φi,: = 1
√
rpk

e>k

)
= pk, 1 ≤ k ≤ n

with pk ∝ ‖(UA)i,:‖22
• still slow: needs to compute (exactly) leverage scores
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Fast and data-agnostic sampling

Can we design data-agnostic sketching matrix Φ (i.e. independent of
A, b) that allows fast computation while satisfying Conditions 1-2?
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Subsampled randomized Hadamard transform
(SRHT)

An SRHT matrix Φ ∈ Rr×n is

Φ = RHD

• D ∈ Rn×n: diagonal matrix, whose entries are random {±1}

• H ∈ Rn×n: Hadamard matrix (scaled by 1/
√
n so it’s

orthonormal)

• R ∈ Rr×n: uniform random subsampling

P
(
Ri,: =

√
n

r
e>k

)
= 1
n
, 1 ≤ k ≤ n
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Subsampled randomized Hadamard transform

Key idea of SRHT:

• use HD to “uniformize” leverage scores (so that
{‖(HDUA)i,:‖2} are more-or-less identical)

• subsample rank-one components uniformly at random
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Uniformization of leverage scores

Lemma 6.6

For any fixed matrix U ∈ Rn×d, one has

max
1≤i≤n

‖(HDU)i,:‖2 .
logn√
n
‖U‖F

with prob. exceeding 1−O(n−9)

• HD preconditions U with high prob.; more precisely,

‖(HDU)i,:‖22∑n
l=1 ‖(HDU)l,:‖22

=
‖(HDU)i,:‖22
‖U‖2F

.
log2 n

n
(6.6)

Randomized linear algebra 6-42



Proof of Lemma 6.6
For any fixed matrix U ∈ Rn×d, one has

(HDU)i,: =
n∑
j=1

hi,jDj,j︸ ︷︷ ︸
random on {± 1√

n
}

Uj,:,

which clearly satisfies E [(HDU)i,:] = 0. In addition,

V := E

 n∑
j=1
‖hi,jDj,jUj,:‖22

 = 1
n

n∑
j=1
‖Uj,:‖22 = 1

n
‖U‖2F

B := max
j
‖hi,jDj,jUj,:‖2 = 1√

n
max
j
‖Uj,:‖2 ≤

1√
n
‖U‖F

Invoke matrix Bernstein to demonstrate that with prob. 1−O(n−10),

‖(HDU)i,:‖2 .
√
V logn+B logn .

logn√
n
‖U‖F
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Theoretical guarantees for SRHT

When uniform subsampling is adopted, one has pk = 1/n. In view of
Lemma 6.6,

pk ≥ β
‖(HDUA)i,:‖22∑n
l=1 ‖(HDUA)l,:‖22

with β � log−2 n. Apply Theorem 6.3 to yield∥∥∥U>AΦ>ΦUA − I
∥∥∥ =

∥∥∥U>AΦ>ΦUA −U>AUA

∥∥∥
=
∥∥∥(U>AD>H>

)
R>R (HDUA)−

(
U>AD>H>

)
(HDUA)

∥∥∥
≤ 1/2

when r & ‖HDUA‖2
F

‖HDUA‖2
logn
β � d log3 n. This establishes Condition 1
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Theoretical guarantees for SRHT

Similarly, Condition 2 is satisfied with high prob. if r & d log3 n
ε

(exercise)
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Back to least squares approximation

Preceding analysis suggests following algorithm

Algorithm 6.3 Randomized LS approximation (uniform sampling)

1: Pick r & d log3 n
ε , and generate R ∈ Rr×n, H ∈ Rn×n and D ∈

Rn×n (as desribed before)
2: return x̃ = (RHDA)†RHDb

• computational complexity:

O

(
nd log n

ε︸ ︷︷ ︸
compute HDA

+ d3 log3 n

ε︸ ︷︷ ︸
solve subsampled LS (rd2)

)
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An alternative approach: nonuniform sampling

Key idea of Algorithm 6.3 is to uniformize leverage scores followed by
uniform sampling

Alternatively, one can also start by estimating leverage scores, and
then apply nonuniform sampling accordingly
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Fast approximation of leverage scores

Key idea: apply SRHT (or other fast Johnson-Lindenstrass
transform) in appropriate places

‖Ui,:‖22 = ‖e>i U‖22 = ‖e>i UU>‖22
= ‖e>i AA†‖22
= ‖e>i AA†Φ>1 ‖22

where Φ1 ∈ Rr1×n is SRHT matrix

Issue: AA† is expensive to compute; can we compute AA†Φ>1 in a
fast manner?
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Aside: pseudo inverse

Let Φ ∈ Rr×n be SRHT matrix with sufficiently large r � dpoly logn
ε2 .

With high prob., one has (check Mahoney’s lecture notes)∥∥(ΦUA)† − (ΦUA)>
∥∥ ≤ ε

and (ΦA)† = VAΣ−1
A (ΦUA)†

These mean

A(ΦA)† = UAΣAV
>
A VAΣ−1

A (ΦUA)† ≈ UAΣAV
>
A VAΣ−1

A (ΦUA)>

= UAU
>
AΦ> = AA†Φ
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Fast approximation of leverage scores

Continuing our key idea: apply SRHT (or other fast
Johnson-Lindenstrass transform) in appropriate places

‖Ui,:‖22 ≈ ‖e>i A(Φ1A)†‖22
≈ ‖e>i A(Φ1A)†Φ2‖22

where Φ1 ∈ Rr1×n and Φ2 ∈ Rr1×r2 (r2 � poly logn) are both SRHT
matrices
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Fast approximation of leverage scores

Algorithm 6.4 Leverage scores approximation

1: Pick r1 & d log3 n
ε and r2 � poly logn

2: Compute Φ1A ∈ Rr1×d and its QR decompsotion, and let RΦ1A

be the “R” matrix from QR
3: Construct Ψ = AR−1

Φ1A
Φ2

4: return `i = ‖Ψi,:‖2

• computational complexity: O
(
ndpoly logn

ε2 + d3poly logn
ε2

)
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Least squares approximation (nonuniform sampling)

Algorithm 6.5 Randomized LS approximation (nonuniform sampling)
1: Run Algorithm 6.4 to compute approximate leverage scores {`k},

and set pk ∝ `2k
2: Randomly sample r & dpoly logn

ε rows of A and elements of b using
{pk} as sampling probabilities, rescaling each by 1/√rpk. Let ΦA
and Φb be the subsampled matrix and vector

3: return x̃ls = arg minx∈Rd ‖ΦAx−Φb‖2

informally, Algorithm 6.5 returns a reasonably good solution with
prob. 1−O(1/ logn)
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Low-rank matrix approximation



Low-rank matrix approximation

Question: given a matrix A ∈ Rn×n, how to find a rank-k matrix
that well approximates A

• One can compute SVD of A = UΣV >, then return

Ak = UkU
>
k A

where Uk consists of top-k singular vectors

• In general, takes time O(n3), or O(kn2) (by power methods)

• Can we find faster algorithms if we only want “good
approximation”?
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Randomized low-rank matrix approximation

Strategy: find a matrix C (via, e.g., subsampling columns of A),
and return

CC†A︸ ︷︷ ︸
project A onto column space of C

Question: how well can CC†A approximate A?
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A simple paradigm

Algorithm 6.6
1: input: data matrix A ∈ Rn×n, subsampled matrix C ∈ Rn×r
2: return Hk as top-k left singular vectors of C

• As we will see, quality of approximation depends on size of
AA> −CC>︸ ︷︷ ︸

connection with matrix multiplication
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Quality of approximation (Frobenius norm)

One can also connect spectral-norm error with product of matrices

Lemma 6.7

The output of Algorithm 6.6 satisfies∥∥A−HkH
>
k A

∥∥2
F ≤

∥∥A−UkU
>
k A

∥∥2
F + 2

√
k
∥∥AA> −CC>

∥∥
F

where Uk ∈ Rn×k contains top-k left singular vectors of A

• This holds for any C

• Approximation error depends on the error in approximating
product of two matrices
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Proof of Lemma 6.7
To begin with, since Hk is orthonormal, one has∥∥A−HkH

>
k A

∥∥2
F =

∥∥A∥∥2
F −

∥∥H>k A∥∥2
F

Next, letting hi = (Hk):,i yields∣∣∣∣∣∥∥H>k A∥∥2
F −

k∑
i=1

σ2
i (C)

∣∣∣∣∣ =
∣∣∣∣∣
k∑
i=1

∥∥A>hi∥∥2
2 −

k∑
i=1
‖Chi‖22

∣∣∣∣∣
=
∣∣∣∣∣
k∑
i=1

〈
hih

>
i ,AA> −CC>

〉∣∣∣∣∣
=
∣∣∣〈HkH

>
k ,AA> −CC>

〉∣∣∣
≤
∥∥HkH

>
k

∥∥
F
∥∥AA> −CC>

∥∥
F

≤
√
k
∥∥AA> −CC>

∥∥
F
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Proof of Lemma 6.7

In addition,∣∣∣∣∣
k∑
i=1

σ2
i (C)−

k∑
i=1

σ2
i (A)

∣∣∣∣∣ =
∣∣∣∣∣
k∑
i=1

{
σi(CC>)− σi(AA>)

}∣∣∣∣∣
≤
√
k

√√√√ n∑
i=1
{σi(CC>)− σi(AA>)}2 (Cauchy-Schwarz)

≤
√
k
∥∥CC> −AA>

∥∥
F (Wielandt-Hoffman inequality)

Finally, one has ‖A−UkU
>
k A‖2F = ‖A‖2F −

∑k
i=1 σ

2
i (A).

Combining above results establishes the claim
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Quality of approximation (spectral norm)

Lemma 6.8

The output of Algorithm 6.6 satisfies∥∥A−HkH
>
k A

∥∥2 ≤
∥∥A−UkU

>
k A

∥∥2 + 2
∥∥AA> −CC>

∥∥
where Uk ∈ Rn×k contains top-k left singular vectors of A
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Proof of Lemma 6.8
First of all,∥∥A−HkH

>
k A

∥∥ = max
x:‖x‖2=1

∥∥x>(I −HkH
>
k

)
A
∥∥

2

= max
x:‖x‖2=1,x⊥Hk

∥∥x>A∥∥2

Additionally, for any x ⊥Hk,∥∥x>A∥∥2
2 =

∣∣∣x>CC>x + x>(AA> −CC>)x
∣∣∣

≤
∣∣∣x>CC>x

∣∣∣+ ∣∣∣x>(AA> −CC>)x
∣∣∣

≤ σk+1
(
CC>

)
+
∥∥AA> −CC>

∥∥
≤ σk+1

(
AA>

)
+ 2

∥∥AA> −CC>
∥∥

= ‖A−UkU
>
k A‖2 + 2

∥∥AA> −CC>
∥∥.

This concludes the proof.
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Back to low-rank matrix approximation

To ensure AA> −CC> is small, we can do random subsampling /
projection as before. For example:

Algorithm 6.7
1: for l = 1, · · · , r do
2: Pick il ∈ {1, · · · , n} i.i.d. with prob. P{il = k} = pk
3: Set C:,l = 1√

rpil
A:,l

4: return Hk as top-k left singular vectors of C
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Back to low-rank matrix approximation

Invoke Theorems 6.2 and 6.3 to see that with high prob.:

• If r & k logn
βε2 , then

∥∥A−HkH
>
k A

∥∥2
F ≤ ‖A−UkU

>
k A‖2F + ε‖A‖2F (6.7)

• If r & ‖A‖2
F

‖A‖2
logn
βε2 , then

∥∥A−HkH
>
k A

∥∥2 ≤ ‖A−UkU
>
k A‖2 + ε‖A‖2 (6.8)
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An improved multi-pass algorithm

Algorithm 6.8 Multi-pass randomized SVD
1: S = {}
2: for l = 1, · · · , t do
3: El = A−ASA

†
SA

4: Set pk ≥
β‖(El):,k‖2

2
‖El‖2

F
, 1 ≤ k ≤ n

5: Randomly select r column indices with sampling prob. {pk} and
append to S

6: return C = AS
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An improved multi-pass algorithm

Theorem 6.9

Suppose r & k logn
βε2 . With high prob.,

‖A−CC†A‖2F ≤
1

1− ε‖A−UkU
>
k ‖2F + εt‖A‖2F
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Proof of Theorem 6.9
We will prove it by induction. Clearly, the claim holds for t = 1
(according to (6.7)). Assume∥∥∥A−Ct−1(Ct−1)†A︸ ︷︷ ︸

:=Et

∥∥∥2

F
≤ 1

1− ε‖A−UkU
>
k A‖2F + εt−1‖A‖2F,

and let Z be the matrix of the columns of Et included in the sample.
In view of (6.7),∥∥∥Et −ZZ†Et

∥∥∥2

F
≤ ‖Et − (Et)k‖2F + ε‖Et‖2F,

with (Et)k the best rank-k approximation of Et. Combining the
above two inequalities yields∥∥∥Et −ZZ†Et

∥∥∥2

F
≤ ‖Et − (Et)k‖2F

+ ε

1− ε‖A−UkU
>
k A‖2F + εt‖A‖2F (6.9)
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Proof of Theorem 6.9 (cont.)

If we can show that

Et −ZZ†Et = A−Ct(Ct)†A (6.10)

‖Et − (Et)k‖2F ≤ ‖A−Ak‖2F (6.11)

then substitution into (6.9) yields∥∥∥A−Ct(Ct)†A
∥∥∥2

F
≤ ‖A−Ak‖2F + ε

1− ε‖A−Ak‖2F + εt‖A−Ak‖2F

= 1
1− ε‖A−Ak‖2F + εt‖A−Ak‖2F

We can then use induction to finish proof
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Proof of Theorem 6.9 (cont.)

It remains to justify (6.10) and (6.11).

To begin with, (6.10) follows from the definition of Et and the fact
ZZ†Ct−1(Ct−1)† = 0, which gives

Ct(Ct)† = Ct−1(Ct−1)† + ZZ†
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Proof of Theorem 6.9 (cont.)

To show (6.11), note that (Et)k is best rank-k approximation of Et.
This gives

‖Et − (Et)k‖2
F =

∥∥(I −Ct−1(Ct−1)†
)
A−

((
I −Ct−1(Ct−1)†

)
A
)
k

∥∥2
F

≤
∥∥(I −Ct−1(Ct−1)†

)
A−

(
I −Ct−1(Ct−1)†

)
Ak

∥∥2
F

(since
(
I −Ct−1(Ct−1)†

)
Ak is rank-k)

=
∥∥(I −Ct−1(Ct−1)†

)
(A−Ak)

∥∥2
F

≤ ‖A−Ak‖2
F ,

where Ak is best rank-k approximation of A. Substitution into (6.9)
establishes the claim for t
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Multiplicative error bounds

So far, our results read

‖A−CC†A‖2F ≤ ‖A−Ak‖2F + additive error
‖A−CC†A‖2 ≤ ‖A−Ak‖2 + additive error

In some cases, one might prefer multiplicative error guarantees, e.g.

‖A−CC†A‖F ≤ (1 + ε)‖A−Ak‖F
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Two types of matrix decompositions

• CX decomposition: let C ∈ Rn×r consist of r columns of A, and
return

Â = CX

for some matrix X ∈ Rr×n

• CUR decomposition: let C ∈ Rn×r (resp. R ∈ Rr×n) consist of
r columns (resp. rows) of A, and return

Â = CUR

for some matrix U ∈ Rr×r
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Generalized least squares problem

minimizeX ‖B −AX‖2F
where X is matrix (rather than vector)

• generalization of over-determined `2 regression

• optimal solution: X ls = A†B

• if rank(A) ≤ k, then X ls = A†kB
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Generalized least squares approximation

Randomized algorithm: construct a optimally weighted subsampling
matrix Φ ∈ Rr×n with r & k2

ε2 and compute

X̃ ls = (ΦA)†ΦB

Then informally, with high probability,

‖B −AX̃ ls‖F ≤ (1 + ε)
{

min
X
‖B −AX‖F

}
‖X ls − X̃ ls‖F ≤

ε

σmin(Ak)

{
min
X
‖B −AX‖F

}
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Randomized algorithm for CX decomposition

Algorithm 6.9 Randomized algorithm for constructing CX matrix de-
compositions

1: Compute / approximate sampling probabilities {pi}ni=1, where pi =
1
k‖(UA,k):,i‖22

2: Use sampling probabilities {pi} to construct a rescaled random
sampling marix Φ

3: Construct C = AΦ>
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Theoretical guarantees

Theorem 6.10

Suppose r & k log k
ε2 , then Algorithm 6.9 yields

‖A−CC†A‖F ≤ (1 + ε)‖A−Ak‖F
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Proof of Theorem 6.10

‖A−CC†A︸ ︷︷ ︸
:=X ls

‖F

= ‖A− (AΦ>)(AΦ>)†A‖F
≤ ‖A− (AΦ>)(PAk

AΦ>)†PAk
A‖F (PAk

:= UkU
>
k )

since X ls := C†A minimizes ‖A−CX‖F
= ‖A− (AΦ>)(AkΦ

>)†Ak‖F
≤ (1 + ε)‖A−AA†kAk‖F
= (1 + ε)‖A−Ak‖F

Randomized linear algebra 6-76



Reference

[1] ”Lecture notes on randomized linear algebra,” M. Mahoney, 2016.
[2] ”Randomized algorithms for matrices and data,” M. Mahoney,

Foundations and Trends in Machine Learning, 2011.
[3] ”Low rank matrix-valued Chernoff bounds and approximate matrix

multiplication,” A. Magen, Z. Anastasios, SODA, 2011.
[4] ”Faster least squares approximation,” P. Drineas, M. Mahoney,

S. Muthukrishnan, T. Sarlos, Numerische mathematik, 2011.
[5] ”The fast Johnson-Lindenstrauss transform and approximate nearest

neighbors,” N. Ailon, B. Chazelle, SIAM Journal on computing, 2009.
[6] ”Improved analysis of the subsampled randomized Hadamard

transform,” J. Tropp, Advances in Adaptive Data Analysis, 2011
[7] ”Finding structure with randomness: Probabilistic algorithms for

constructing approximate matrix decompositions,” N. Halko,
P. G. Martinsson, J. Tropp, SIAM review, 2011.

Randomized linear algebra 6-77


