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/1 minimization for sparse signal recovery

minimizegere |1
st. y=Ax e R"

What is the probability that £; minimization succeeds in recovering x?

Ax

{1 norm ball

success failure
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Probability of success of /; minimization

Suppose A is randomly generated

failure

If £ =[0,1]" and A = [a1, az] € R*2 (i.i.d. Gaussian), then

(proved by figure)

N =

P{¢;-min succeeds} =
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How about /5 minimization?

Suppose A is randomly generated (e.g. i.i.d. Gaussian), and consider

minimizegcre

s.t.

Ax

/> norm ball

success
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failure
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Probability of success of ¢, minimization

Suppose A is randomly generated

failure

success
Ax

If x =[0,1]" and A = [a1,as] € R*2 (i.i.d. Gaussian), then
P{¢s-min succeeds} =0 (proved by figure)
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Key metric: volume of descent cone

Suppose A is randomly generated, and consider

minimizezerr  f() (12.1)
st. y=AxeR"

v
"o @+ lh2), - N

N
————— - \\f“’D(”'”va)//
‘‘‘‘‘‘ -

The success probability of (12.1) depends on the volume of the
descent cone

D(f,x):={h:3e>0st. f(x+eh)<f(x)}
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Key metric: volume of descent cone

Suppose A is randomly generated, and consider

minimizezerr  f() (12.1)
st. y=AxeR"

v
"o @+ lh2), - N

N
————— - \\f“’D(”'”va)//
‘‘‘‘‘‘ -

We need to compute the probability of 2 convex cones sharing a ray:

]P’{(12.4) succeeds} = IP’{D (f,x)yn{h: Ah =0} = {0}}
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Kinematic formula

Lemma 12.1 (Theorem 6.5.6, Schneider & Wolfgang '08)

Let C,K C R? be convex cones, and Q a random orthogonal basis:

PlenQk#{0)} =30 (14 ()" X0 vi(Crariy (K),

j=i

where v, > 0 is called the kth intrinsic volume.

e Exact but not workable formulal

e Calls for a simpler expression
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Statistical dimension and Gaussian width

Definition 12.2 (Statistical dimension)

For any convex cone KC, its statistical dimension is defined as
stat-dim(KC) := E[||Pxc(g)]13]

where g ~ N(0,I); Px(g) := argmin,ex ||g — 2|2 Euclidean
projection
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Statistical dimension and Gaussian width

Definition 12.2 (Statistical dimension)

For any convex cone KC, its statistical dimension is defined as
stat-dim(KC) := E[||Pxc(g)]13]

where g ~ N(0,I); Px(g) := argmin,ex ||g — 2|2 Euclidean
projection

e If K is k-dimensional subspace, then

stat-dim(K) = k (so it is indeed a measure of “dimension”)
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Statistical dimension and Gaussian width

Definition 12.2 (Statistical dimension)

For any convex cone KC, its statistical dimension is defined as
stat-dim(KC) := E[||Pxc(g)]13]

where g ~ N(0,I); Px(g) := argmin,ex ||g — 2|2 Euclidean
projection

o A related definition: Gaussian width

w(k) :=E[ S
z€L,||z|l2=1

e (Homework) w?(K) < stat-dim(K) < w?(K) + 1
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Polar cone

The polar cone of a convex cone K is defined as

Ke={y|y'z<0, Veek)}

K° K°
Px-(g) Preo(g)
% ’ i
“Prclg) Pr(g)
K K

e Moreau's decomposition:
g =Px(g) + Pxo(g)
where (P (g), Pre(g)) =0
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Polar cone

The polar cone of a convex cone K is defined as

Ke={y|y'z<0, Veek)}

K K

Pre(9) Pres(g)
é ’ .
“Pr(g) Pr(9)
K K

e IC is called self~dual if

K= -K°
~——
dual cone

e If K is self-dual in RY, then
stat-dim(K) = d/2 (by Moreau's decomposition)
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Examples

e Nonnegative orthant RY (self-dual)

1
stat-dim (Ri) = id

e Second-order cone L¢ := { [ j_: ] c R |jz||p < T}
(self-dual)

1
stat-dim(L%) = 5(d +1)
e Set of symmetric positive semidefinite matrices S?*? (self-dual)

d(d+1)

stat- dlm(SdXd) % 5

Phase transition 12-10



Second-order cone is self-dual

The dual cone of L% is

Since 7 > 0,

Phase transition

= { y Ogmi+aT,V{x]€]Ld}
| o | T

= { y 0 < inf  inf (chc + on')}

| o | 720 z:|all2 <

L « i 720 x|zl <T

= { Yllo<inf nf (—|y|2||$||2+0ﬁ)}

= < —
{_ o || 05 infle IIyIz)T}
one has [ Z ] € Ciff ||ly||2 < a and hence C = L4
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Polarity relation

The statistical dimension can be expressed in terms of the polar cone:
stat-dim(K) = E [dist? (g,K°)] = E [ inf g — z||§}
zeke

where g ~ N(0, I,;)

e A direct consequence:

Moreau decomposition

dist (g,K) = llg — Px(g)ll2 1Prce(g)l2
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Approximate kinematic formula

C,K € R4 convex cones; Q € R¥*9: random orthogonal basis

Theorem 12.3 (Amelunxen, Lotz, McCoy & Tropp '13)

stat-dim(C) + stat-dim(K) < d— ©(y/dlogd)
= QCNK ={0} with high prob.

stat-dim(C) + stat-dim(K) > d + ©(y/dlogd)
= QCNK #{0} with high prob.

e 2 randomly rotated cones share a ray <= their aggregate
statistical dimension exceeds ambient dimension

e Sharp concentration: the fluctuation does not exceed

O(v/dlogd)

Phase transition
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Example: logistic regression

Suppose we obtain n independent binary samples:

1, with prob. —— -
Vi = { tewiersl1<i<n

. 1
_1, with prob. m

where {a; € RP}: known design vectors; € RP: unknown signal

e the likelihood for each y;:

1
1+ exp(—a; z)
1
1 + exp(—yia; x)

L(x;y;) = T{y; =1} + 1{y; = -1}

1+ exp(a; )
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Example: logistic regression

Maximum likelihood estimation (logistic regression)

minimize, — Zlogﬁ(m;yi) = Zlog {1 + exp(—yiajm)}
i=1

=1

e Consider a simple case

true signal = 0 (global null); a; & N(0,1I,)

e We'd naturally hope the MLE & to be small (since = 0)

e Question: is ||||2 always small under the global null
(i.e. x =0)?
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Example: logistic regression

Fact 12.4 (Cover’65; Sur, Chen, Candes '17)

Suppose x = 0. Ifp >n/2 — O(y/nlogn), then ||&||2 = co w.h.p.

e n = 2p is indeed a sharp boundary in the sense that ||&|2 S 1 if
n/p > 2 (Sur, Chen, Candes'17)
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Proof of Fact 12.4

Note that log {1 + exp(—yiaiTa:)} > (. Thus, if 32 s.t.
yia; & = 4oo, 1<i<n, (12.2)

then log {1 + exp(—y;a; )} = 0 for all i, and hence & must be the
MLE. In this case, ||Z||2 = oo
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Proof of Fact 12.4 (cont.)

It remains to check when we can find & obeying (12.2), or
equivalently, when we have

{ului=yalz zcrr}nRL £ {0} (12.3)
X

QC: p-dimensional

Note that y is independent of A when x = 0. By Theorem 12.3, if

p + stat-dim(R}) > n+0©(y/nlogn) (or p >n/2+0O(y/nlogn)),
/2

then (12.3) holds. This establishes the claim that & is unbounded.
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Phase transition for inverse problems

Suppose A € R™*P is i.i.d. Gaussian, and consider

minimizezecre  f() (12.4)
st. y=Ax

Key: convex geometry

(12.4) succeeds
0
{h: Ah =0} N D(f,z) = {0}
)
stat-dim({h : Ah = 0}) + stat-dim(D(f,x)) <p (by Theorem 12.3)

= p—n
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Phase transition for inverse problems

Suppose A € R™*P is i.i.d. Gaussian, and consider

minimizezecre  f() (12.4)
st. y=Ax

Theorem 12.5 (Amelunxen, Lotz, McCoy & Tropp '13)

n > stat-dim(D(f,x)) + ©(1/plogp)
== (12.4) succeeds with high prob.

n < stat-dim(D(f,x)) — ©(y/plogp)
= (12.4) fails with high prob.

12-19
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Computing statistical dimension of descent cones?

Example: the decent cone w.r.t. {5, norm
stat-dim (D(]| - ||oo, ) = d — s/2
where s = 7£{i : |2 = [0 }

Proof: WLOG, suppose @ = [1,--- ,1, 2441, - ,24] with
1>x541>--->x3>0. Then

D([ - loo, ) = (R%) x R

1 1
= stat-dim (D(|| - |0, x)) = 5 +d—s=d-— 35
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Computing statistical dimension of descent cone?

In general, there is a duality between descent cone and subdifferentials
—_—

set of subgradients

(D(f,®))° = cone (0f (2)) := | ] 70f()

72>0

: ol : _ 2
= stat dlm(D (f, :c)) =E lig%ué%}f(lw) lg — Tul3
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Computing statistical dimension of descent cone?

In general, there is a duality between descent cone and subdifferentials
—_—

set of subgradients

(D(f,®))° = cone (0f (2)) := | ] 70f()

72>0

Lemma 12.6 (informal, Amelunxen, Lotz, McCoy & Tropp ’'13)

. o~ - R
5tat—d1m(D(f,w)) ~ HZIEE Lgal;l(lm)ﬂg Tub]
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Example: /; minimization

WLOG, suppose z1, -+, > 0, Tpy1 =+ = xp = 0.
k D )
E| min |g—7ul3| =E (gi —7)° + min (g; — Tu;)
[u€6w1 | HQ] ; ! iz%l lug|<1 " ’

=k(1+7) +(p—k)E lmln (9i — Tuz‘)ﬂ

=k(147) + (- FE[(g] - 7)3]
By Lemma 12.6,

stat—dim(D(H . ||1,cc)) ~ inf E [ min g — TuH%}

720  |ued|z|:

= }_gfo {k (1 + 7'2) +(p—k) \/z/oo(z — 7)2622dz}
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Numerical phase transition

Compressed sensing with ¢; minimization

100
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Number of random measurements

95% success
50% success
5% success
Theory
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Number of nonzeros in x,

Figure credit: Amelunxen, Lotz, McCoy, & Tropp '13
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