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`1 minimization for sparse signal recovery

minimizex∈Rp ‖x‖1
s.t. y = Ax ∈ Rn

What is the probability that `1 minimization succeeds in recovering x?

success failure
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Probability of success of `1 minimization
Suppose A is randomly generated

If x = [0, 1]> and A = [a1, a2] ∈ R1×2 (i.i.d. Gaussian), then

P
{
`1-min succeeds

}
= 1

2 (proved by figure)

Phase transition 12-3



How about `2 minimization?

Suppose A is randomly generated (e.g. i.i.d. Gaussian), and consider

minimizex∈Rp ‖x‖2
s.t. y = Ax ∈ Rn

success failure
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Probability of success of `2 minimization

Suppose A is randomly generated

If x = [0, 1]> and A = [a1, a2] ∈ R1×2 (i.i.d. Gaussian), then

P
{
`2-min succeeds

}
= 0 (proved by figure)
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Key metric: volume of descent cone
Suppose A is randomly generated, and consider

minimizex∈Rp f(x) (12.1)
s.t. y = Ax ∈ Rn

The success probability of (12.1) depends on the volume of the
descent cone

D (f,x) := {h : ∃ ε > 0 s.t. f(x + εh) ≤ f(x)}

We need to compute the probability of 2 convex cones sharing a ray:

P
{

(12.4) succeeds
}

= P
{
D (f,x) ∩ {h : Ah = 0} = {0}

}
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Kinematic formula

Lemma 12.1 (Theorem 6.5.6, Schneider & Wolfgang ’08)
Let C,K ⊆ Rd be convex cones, and Q a random orthogonal basis:

P
{
C ∩QK 6= {0}

}
=
∑d

i=0

(
1 + (−1)i+1

)∑d

j=i
νi(C)νd+i−j (K) ,

where νk ≥ 0 is called the kth intrinsic volume.

• Exact but not workable formula!

• Calls for a simpler expression
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Statistical dimension and Gaussian width

Definition 12.2 (Statistical dimension)
For any convex cone K, its statistical dimension is defined as

stat-dim(K) := E
[
‖PK(g)‖22

]
where g ∼ N (0, I); PK(g) := arg minz∈K ‖g − z‖2: Euclidean
projection

• If K is k-dimensional subspace, then

stat-dim(K) = k (so it is indeed a measure of “dimension”)

• A related definition: Gaussian width

w(K) := E
[

sup
z∈K,‖z‖2=1

〈z, g〉
]

• (Homework) w2(K) ≤ stat-dim(K) ≤ w2(K) + 1
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Polar cone
The polar cone of a convex cone K is defined as

K◦ = {y | y>x ≤ 0, ∀x ∈ K}

• Moreau’s decomposition:
g = PK(g) + PK◦(g)

where
〈
PK(g),PK◦(g)

〉
= 0

• K is called self-dual if
K = −K◦︸ ︷︷ ︸

dual cone

• If K is self-dual in Rd, then
stat-dim(K) = d/2 (by Moreau’s decomposition)
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Examples

• Nonnegative orthant Rd+ (self-dual)

stat-dim
(
Rd+
)

= 1
2d

• Second-order cone Ld :=
{[

x
τ

]
∈ Rd+1 : ‖x‖2 ≤ τ

}
(self-dual)

stat-dim
(
Ld
)

= 1
2(d+ 1)

• Set of symmetric positive semidefinite matrices Sd×d+ (self-dual)

stat-dim
(
Sd×d+

)
= 1

2 ·
d(d+ 1)

2
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Second-order cone is self-dual

The dual cone of Ld is

C =
{[

y
α

] ∣∣∣∣∣ 0 ≤ y>x + ατ, ∀
[

x
τ

]
∈ Ld

}

=
{[

y
α

] ∣∣∣∣∣ 0 ≤ inf
τ≥0

inf
x:‖x‖2≤τ

(
y>x + ατ

)}

=
{[

y
α

] ∣∣∣∣∣ 0 ≤ inf
τ≥0

inf
x:‖x‖2≤τ

(−‖y‖2‖x‖2 + ατ)
}

=
{[

y
α

] ∣∣∣∣∣ 0 ≤ inf
τ≥0

(α− ‖y‖2) τ
}

Since τ ≥ 0, one has
[

y
α

]
∈ C iff ‖y‖2 ≤ α and hence C = Ld
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Polarity relation

The statistical dimension can be expressed in terms of the polar cone:

stat-dim(K) = E
[
dist2 (g,K◦)

]
:= E

[
inf

z∈K◦
‖g − z‖22

]
where g ∼ N (0, Id)

• A direct consequence:

dist (g,K) = ‖g − PK(g)‖2
Moreau decomposition= ‖PK◦(g)‖2
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Approximate kinematic formula

C,K ∈ Rd: convex cones; Q ∈ Rd×d: random orthogonal basis

Theorem 12.3 (Amelunxen, Lotz, McCoy & Tropp ’13)

stat-dim(C) + stat-dim(K) ≤ d−Θ(
√
d log d)

=⇒ QC ∩ K = {0} with high prob.
stat-dim(C) + stat-dim(K) ≥ d+ Θ(

√
d log d)

=⇒ QC ∩ K 6= {0} with high prob.

• 2 randomly rotated cones share a ray ⇐⇒ their aggregate
statistical dimension exceeds ambient dimension
• Sharp concentration: the fluctuation does not exceed
O(
√
d log d)
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Example: logistic regression

Suppose we obtain n independent binary samples:

yi =

1, with prob. 1
1+exp(−a>i x)

−1, with prob. 1
1+exp(a>i x)

1 ≤ i ≤ n

where {ai ∈ Rp}: known design vectors; x ∈ Rp: unknown signal

• the likelihood for each yi:

L(x; yi) = 1
1 + exp(−a>i x)

1 {yi = 1}+ 1
1 + exp(a>i x)

1 {yi = −1}

= 1
1 + exp(−yia>i x)
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Example: logistic regression

Maximum likelihood estimation (logistic regression)

minimizex −
n∑
i=1

logL(x; yi) =
n∑
i=1

log
{

1 + exp(−yia>i x)
}

• Consider a simple case

true signal x = 0 (global null); ai
i.i.d.∼ N (0, Ip)

• We’d naturally hope the MLE x̂ to be small (since x = 0)

• Question: is ‖x̂‖2 always small under the global null
(i.e. x = 0)?
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Example: logistic regression

Fact 12.4 (Cover ’65; Sur, Chen, Candes ’17)

Suppose x = 0. If p > n/2−Θ(
√
n logn), then ‖x̂‖2 =∞ w.h.p.

• n = 2p is indeed a sharp boundary in the sense that ‖x̂‖2 . 1 if
n/p > 2 (Sur, Chen, Candes ’17)
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Proof of Fact 12.4

Note that log
{
1 + exp(−yia>i x)

}
≥ 0. Thus, if ∃ x̂ s.t.

yia
>
i x̂ = +∞, 1 ≤ i ≤ n, (12.2)

then log
{
1 + exp(−yia>i x)

}
= 0 for all i, and hence x̂ must be the

MLE. In this case, ‖x̂‖2 =∞
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Proof of Fact 12.4 (cont.)

It remains to check when we can find x̂ obeying (12.2), or
equivalently, when we have{

u | ui = yia
>
i x, x ∈ Rp

}
︸ ︷︷ ︸

QC: p-dimensional

∩ Rn+︸︷︷︸
K

6= {0} (12.3)

Note that y is independent of A when x = 0. By Theorem 12.3, if

p + stat-dim(Rn+)︸ ︷︷ ︸
n/2

> n+Θ(
√
n logn) (or p > n/2+Θ(

√
n logn)),

then (12.3) holds. This establishes the claim that x̂ is unbounded.
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Phase transition for inverse problems

Suppose A ∈ Rn×p is i.i.d. Gaussian, and consider

minimizex∈Rp f(x) (12.4)
s.t. y = Ax

Key: convex geometry

(12.4) succeeds

m

{h : Ah = 0} ∩ D(f,x) = {0}

m

stat-dim({h : Ah = 0})︸ ︷︷ ︸
= p−n

+ stat-dim(D(f,x)) < p (by Theorem 12.3)

Theorem 12.5 (Amelunxen, Lotz, McCoy & Tropp ’13)

n > stat-dim(D(f,x)) + Θ(
√
p log p)

=⇒ (12.4) succeeds with high prob.
n < stat-dim(D(f,x))−Θ(

√
p log p)

=⇒ (12.4) fails with high prob.
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Computing statistical dimension of descent cones?

Example: the decent cone w.r.t. `∞ norm

stat-dim (D(‖ · ‖∞,x)) = d− s/2

where s = #{i : |xi| = ‖x‖∞}

Proof: WLOG, suppose x = [1, · · · , 1, xs+1, · · · , xd]> with
1 > xs+1 ≥ · · · ≥ xd ≥ 0. Then

D(‖ · ‖∞,x) = (Rs−)× Rd−s

=⇒ stat-dim (D(‖ · ‖∞,x)) = 1
2s+ d− s = d− 1

2s
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Computing statistical dimension of descent cone?

In general, there is a duality between descent cone and subdifferentials︸ ︷︷ ︸
set of subgradients

(D(f,x))◦ = cone (∂f(x)) :=
⋃
τ≥0

τ∂f(x)

⇒ stat-dim
(
D (f,x)

)
= E

[
inf
τ≥0

min
u∈∂f(x)

‖g − τu‖22

]

Lemma 12.6 (informal, Amelunxen, Lotz, McCoy & Tropp ’13)

stat-dim
(
D (f,x)

)
≈ inf

τ≥0
E
[

min
u∈∂f(x)

‖g − τu‖22

]
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Example: `1 minimization
WLOG, suppose x1, · · · , xk > 0, xk+1 = · · · = xp = 0.

E
[

min
u∈∂‖x‖1

‖g − τu‖22

]
= E

 k∑
i=1

(gi − τ)2 +
p∑

i=k+1
min
|ui|≤1

(gi − τui)2


= k

(
1 + τ2

)
+ (p− k)E

[
min
|ui|≤1

(gi − τui)2
]

= k
(
1 + τ2

)
+ (p− k)E

[
(|gi| − τ)2

+

]
By Lemma 12.6,

stat-dim
(
D (‖ · ‖1,x)

)
≈ inf

τ≥0
E
[

min
u∈∂‖x‖1

‖g − τu‖22

]

= inf
τ≥0

{
k
(
1 + τ2

)
+ (p− k)

√
2
π

∫ ∞
τ

(z − τ)2e−z
2dz

}
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Numerical phase transition
PHASE TRANSITIONS IN RANDOM CONVEX PROGRAMS 9
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FIGURE 2.4: Phase transitions for regularized linear inverse problems. [left] Recovery of sparse vectors.
The empirical probability that the `1 minimization problem (2.5) identifies a sparse vector x0 2 R100 given
random linear measurements z0 = Ax0. [right] Recovery of low-rank matrices. The empirical probability that
the S1 minimization problem (2.6) identifies a low-rank matrix X0 2R30£30 given random linear measurements
z0 =A (X0). In each panel, the heat map indicates the empirical probability of success (black = 0%; white =
100%). The yellow curve marks the theoretical prediction of the phase transition from Theorem II; the red curve
traces the 50% success isocline calculated from the data.

by Theorem II, where the number m of measurements equals the statistical dimension of the appropriate
descent cone; the statistical dimension formulas are drawn from Sections 4.3 and 4.4. See Appendix A for the
experimental protocol.

In both examples, the theoretical prediction of Theorem II coincides almost perfectly with the 50% success
isocline. Furthermore, the phase transition takes place over a range of O(

p
d) values of m, as promised.

Although Theorem II does not explain why the transition region tapers at the bottom-left and top-right
corners of each plot, we have established a more detailed version of Theorem I that allows us to predict this
phenomenon as well; see Section 7.1.

2.6. Demixing problems with a random model. In a demixing problem [MT14b], we observe a superposi-
tion of two structured vectors, and we aim to extract the two constituents from the mixture. More precisely,
suppose that we have acquired a vector z0 2Rd of the form

z0 = x0 +U y0 (2.7)

where x0, y0 2 Rd are unknown and U 2 Rd£d is a known orthogonal matrix. If we wish to identify the pair
(x0, y0), we must assume that each component is structured to reduce the number of degrees of freedom.
In addition, if the two types of structure are coherent (i.e., aligned with each other), it may be impossible
to disentangle them, so it is expedient to include the matrix U to model the relative orientation of the two
constituent signals.

2.6.1. Solving demixing problems with convex optimization. Suppose that f and g are proper convex functions
on Rd that promote the structures we expect to find in x0 and y0. Then we can frame the convex optimization
problem

minimize f (x) subject to g (y) ∑ g (y0) and z0 = x +U y . (2.8)
In other words, we seek structured vectors x and y that are consistent with the observation z0. This
approach requires the side information g (y0), so a Lagrangian formulation is sometimes more natural in
practice [MT14b, Sec. 1.2.4]. Here are two concrete examples of the demixing program (2.8) that are adapted
from the literature.

Figure credit: Amelunxen, Lotz, McCoy, & Tropp ’13

Phase transition 12-23



Reference

• “Living on the edge: Phase transitions in convex programs with
random data,” D. Amelunxen, M. Lotz, M. McCoy, J. Tropp,
Information and Inference, 2014.

• “Neighborliness of randomly projected simplices in high dimensions,”
D. Donoho and J. Tanner, PNAS, 2005.

• “Stochastic and integral geometry ,” R. Schneider and W. Wolfgang,
Springer Science & Business Media, 2008.

• “Geometrical and statistical properties of systems of linear inequalities
with applications in pattern recognition,” T. Cover, IEEE trans. on
electronic computers, 1965.

• “The likelihood ratio test in high-dimensional logistic regression is
asymptotically a rescaled chi-square,” P. Sur, Y. Chen, and E. Candes,
2017.

Phase transition 12-24


