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Outline

• Model selection

• Lasso estimator

• Risk inflation

• Minimax risk for sparse vectors
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Asymptotic notation
• f(n) . g(n) or f(n) = O(g(n)) means

lim
n→∞

|f(n)|
|g(n)| ≤ const

• f(n) & g(n) or f(n) = Ω(g(n)) means

lim
n→∞

|f(n)|
|g(n)| ≥ const

• f(n) � g(n) or f(n) = Θ(g(n)) means

const1 ≤ lim
n→∞

|f(n)|
|g(n)| ≤ const2

• f(n) = o(g(n)) means

lim
n→∞

|f(n)|
|g(n)| = 0
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Model selection

All models are wrong but some are useful.

— George Box
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Basic linear model

y = Xβ + η,

• y = [y1, · · · , yn]> ∈ Rn: observed data / response variables
• X = [x1, · · · ,xn]>: design matrix / feature matrix (known)

◦ assumed to be full rank

• β = [β1, · · · , βp]> ∈ Rp: unknown signal / regression coefficients

• η = [η1, · · · , ηn]> ∈ Rn: noise

Throughout this lecture, we assume Guassian noise

η ∼ N (0, σ2In)
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Model selection / feature selection

Regression:
• find relationship between response yi and explanatory variables
xi,1, · · · ,xi,p
• use the fitted model to make prediction

Question: which (sub)-set of variables / features︸ ︷︷ ︸
model

should we include?

• Myth: nothing is lost by including every feature / variable
available

• Paradoxically, we can often achieve better predictions by
discarding a fraction of variables
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Tradeoff

• Model too small =⇒ large bias (underfitting)

• Model too large =⇒ large variance and poor prediction
(overfitting)

How to achieve a desired tradeoff between predictive accuracy and
parsimony (model complexity)?
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Underfitting
Recall that the least squares (LS) estimate is β̂ = (X>X)−1X>y

• Divide the design matrix into 2 parts: X = [X(1),X(2)]

• x̃ =
[
x̃(1)

x̃(2)

]
: new data

• LS estimate based only on X(1):
β̂(1) := (X(1)>X(1))−1X(1)>y

with prediction at x̃ given by
ŷunderfit = x̃(1)>β̂(1)

• LS estimate based on true model
β̂ := (X>X)−1X>y

with prediction at x̃ given by
ŷtrue = [x̃(1)>, x̃(2)>]β̂
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Bias due to underfitting

Suppose the ground truth is β =
[
β(1)

β(2)

]
, then

E
[
β̂(1)

]
=

(
X(1)>X(1)

)−1
X(1)>

(
X(1)β(1) +X(2)β(2)

)
= β(1) +

(
X(1)>X(1)

)−1
X(1)>X(2)β(2)︸ ︷︷ ︸

bias

=⇒ β̂(1) is a biased estimate of β(1)
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Prediction variance due to underfitting

Fact 8.1

Var [ŷtrue] ≥ Var [ŷunderfit]

• Implications: the “apparent” prediction variance tends to
decrease when we adopt small models

• (Exercise): compute the prediction variance under overfitting
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Proof of Fact 8.1
Observe that

Cov[β̂] =
(
X>X

)−1
X>Cov [y]X

(
X>X

)−1 = σ2 (X>X)−1

= σ2
[

(X(1)>X(1))−1 +LML> −LM
−ML> M

]
(matrix inversion identity)

where L =
(
X(1)>X(1))−1

X(1)>X(2) and

M =
{
X(2)>

(
I −X(1) (X(1)>X(1))−1

X(1)>
)
X(2)

}−1
� 0.

This gives

Var [ŷtrue] =
[
x̃(1)>, x̃(2)>

]
Cov

[
β̂
] [ x̃(1)

x̃(2)

]
= σ2x̃(1)>

(
X(1)>X(1)

)−1
x̃(1) + σ2

(
L>x̃(1) − x̃(2)

)>
M
(
L>x̃(1) − x̃(2)

)
≥ σ2x̃(1)>

(
X(1)>X(1)

)−1
x̃(1) = Var [ŷunderfit]
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Model selection criteria

Choosing a subset of explanatory variables might improve prediction

Question: which subset shall we select?

One strategy
(1) pick a criterion that measures how well a model performs

(2) evaluate the criterion for each subset and pick the best

One popular choice: choose a model that predicts well
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Prediction error and model error

• training set: y,X

• β̂: an estimate based on training set

• new data: ỹ = X̃β + η̃ ∈ Rm, where η̃ ∼ N (0, Im)

• Goal: use β̂ to predict ỹ

One may assess the quality of the estimate based on its prediction
error on ỹ, i.e.

PE := E
[∥∥X̃β̂ − ỹ∥∥2

]
= E

[∥∥X̃(β̂ − β)
∥∥2
]

+ 2E
[
(X̃(β̂ − β))>(ỹ − X̃β)

]
+ E

[∥∥ỹ − X̃β∥∥2
]

= E
[∥∥X̃(β̂ − β)

∥∥2
]

︸ ︷︷ ︸
:=ME (model error)

+ mσ2︸︷︷︸
variability of data
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Residual sum of squares (RSS)

We shall set X̃ = X (and hence m = n) out of simplicity
• the case where the structures of new and old data are the same

Unfortunately, we do not have access to PE (as we don’t know β)

=⇒ need an operational criterion for estimating PE

• One candidate: estimate PE via residual sum of squares

RSS :=
∥∥y −Xβ̂∥∥2

2

=⇒ training error
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Training error underestimates prediction error
Suppose Xβ̂ = Πy for some given Π with Tr(Π) > 0 (e.g. LS), then

PE = E[RSS] + 2σ2Tr(Π) > E[RSS] (8.1)

Proof:
PE− E[RSS] = E

[
‖ỹ −Xβ̂‖2

]
− E

[
‖y −Xβ̂‖2

]
= E

[
‖ỹ‖2 + ‖Xβ̂‖2 − 2〈ỹ,Xβ̂〉

]
− E

[
‖y‖2 + ‖Xβ̂‖2 − 2

〈
y,Xβ̂

〉]
= 2E

[
〈y − ỹ,Xβ̂〉

]
= 2E [〈η − η̃,Πy〉]

= 2E [〈η,Πη〉] (a)= 2Tr
(
ΠE

[
ηη>

])
= 2σ2Tr(Π),

where (a) follows from the identity Tr(A>B) = Tr(BA>).
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Example: least squares (LS) estimator

The least squares solution is

β̂ls := arg min
β̂
‖y −Xβ̂‖22 = (X>X)−1X>y

The fitted values ŷls is given by

ŷls = Πlsy := X(X>X)−1X>y.

=⇒ PE = E[RSS] + 2σ2Tr(Πls) = E[RSS] + 2σ2p
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LS estimator for a given model

Suppose the model (i.e. support of β) is S ⊆ {1, · · · , p}. The least
squares solution given S is

β̂S := arg min
β̂
{‖y −Xβ̂‖22 : β̂i = 0 for all i /∈ S}

The fitted values ŷ is then given by

ŷ = ΠSy := XS(X>SXS)−1X>S y,

where XS is formed by the columns of X at indices in S.

Model selection and Lasso 8-17



Mallows’ Cp statistic

In view of (8.1),

PE(β̂S) = E[RSS(β̂S)] + 2σ2Tr(ΠS) = E[RSS(β̂S)] + 2|S|σ2,

since

Tr(ΠS) = Tr(XS(X>SXS)−1X>S ) = Tr((X>SXS)−1X>SXS) = |S|.

Definition 8.2 (Cp statistic, Mallows ’73)

Cp(S) = RSS(β̂S)︸ ︷︷ ︸
training error

+ 2σ2|S|︸ ︷︷ ︸
model complexity

Cp is an unbiased estimate of prediction error
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Model selection based on Cp statistic

1. Compute Cp(S) for each model S

2. Choose S∗ = arg minS Cp(S)

This is essentially an `0-regularized least-squares problem

minimizeβ̂ ‖y −Xβ̂‖22 + 2σ2‖β̂‖0︸ ︷︷ ︸
penalized by model complexity

(8.2)
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Example: orthogonal design

Suppose X = I, then (8.8) reduces to

minimizeβ̂
1
2

n∑
i=1

(yi − β̂i)2 + 2σ21{β̂i 6= 0}

Solving this problem gives

β̂i =
{

0, |yi| ≤
√

2σ
yi, |yi| >

√
2σ

hard thresholding

• Keep large coefficients; discard small coefficients
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Example: orthogonal design

β̂i = ψht(yi;
√

2σ) :=
{

0, |yi| ≤
√

2σ
yi, |yi| >

√
2σ

hard thresholding

Hard thresholding preserves data outside threshold zone
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Lasso estimator
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Convex relaxation: Lasso (Tibshirani ’96)

Lasso (Least absolute shrinkage and selection operator)

minimizeβ̂
1
2‖y −Xβ̂‖

2
2 + λ‖β̂‖1 (8.3)

for some regularization parameter λ > 0

• It is equivalent to

minimizeβ̂ ‖y −Xβ̂‖22
s.t. ‖β̂‖ ≤ t

for some t that depends on λ
◦ a quadratic program (QP) with convex constraints

• λ controls model complexity: larger λ restricts the parameters
more; smaller λ frees up more parameters
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Lasso vs. MMSE (or ridge regression)

β̂: least squares solution

minimizeβ ‖y −Xβ‖2
s.t. ‖β‖1 ≤ t

minimizeβ ‖y −Xβ‖2
s.t. ‖β‖2 ≤ t

Fig. credit: Hastie, Tibshirani, & Wainwright
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A Bayesian interpretation
Orthogonal design: y = β + η with η ∼ N (0, σ2I).

Impose an i.i.d. prior on βi to encourage sparsity (Gaussian is not a
good choice):

(Laplacian prior) P(βi = z) = λ

2 e
−λ|z|
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A Bayesian interpretation of Lasso

Posterior of β:

P (β | y) ∝ P(y|β)P(β) ∝
n∏
i=1

e−
(yi−βi)

2

2σ2
λ

2 e
−λ|βi|

∝
n∏
i=1

exp
{
−(yi − βi)2

2σ2 − λ|βi|
}

=⇒ maximum a posteriori (MAP) estimator:

arg min
β

n∑
i=1

{
(yi − βi)2

2σ2 + λ|βi|
}

(Lasso)

Implication: Lasso is MAP estimator under Laplacian prior
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Example: orthogonal design

Suppose X = I, then Lasso reduces to

minimizeβ̂
1
2

n∑
i=1

(yi − β̂i)2 + λ|β̂i|

The Lasso estimate β̂ is then given by

β̂i =


yi − λ, yi ≥ λ
yi + λ, yi ≤ −λ
0, else

soft thresholding
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Example: orthogonal design

β̂i = ψst(yi;λ) =


yi − λ, yi ≥ λ
yi + λ, yi ≤ −λ
0, else

soft thresholding

Soft thresholding shrinks data towards 0 outside threshold zone
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Optimality condition for convex functions

For any convex function f(β), β∗ is an optimal solution iff
0 ∈ ∂f(β∗), where ∂f(β) is the set of all subgradients at β

• s is a subgradient of f(β) = |β| if{
s = sign(β), if β 6= 0
s ∈ [−1, 1], if β = 0

(8.4)

• The subgradient of f(β) = 1
2(y − β)2 + λ|β| can be written as

g = β − y + λs with s defined in (8.4)

• We see that β̂ = ψst(y;λ) by checking optimality conditions for
two cases:
◦ If |y| ≤ λ, taking β = 0 and s = y/λ gives g = 0
◦ If |y| > λ, taking β = y − sign(y)λ gives g = 0
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Single-parameter setup

Consider the case where there is only a single parameter β̂ ∈ R:

minimizeβ̂∈R
1
2‖y − β̂z‖

2
2 + λ|β̂|.

Then one can verify that (homework)

β̂ = ψst

(
z>y

‖z‖22
; λ

‖z‖22

)
=


z>y
‖z‖2

2
− λ
‖z‖2

2
, if z>y > λ

0, if |z>y| ≤ λ
z>y
‖z‖2

2
+ λ
‖z‖2

2
, else
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Algorithm: coordinate descent

Idea: repeatedly cycle through the variables and, in each step,
optimize only a single variable
• When updating β̂j , we solve

minimizeβ̂j∈R
1
2

∥∥∥y − ∑
i:i 6=j

X:iβ̂i −X:,j β̂j
∥∥∥2

2
+ λ|β̂j |+ λ

∑
i:i 6=j
|β̂i|

where X:,j is jth column of X

• This is exactly the single-parameter setting, and hence

β̂j ← ψst

X>:,j
(
y −

∑
i:i 6=jX:iβ̂i

)
‖X:j‖2

; λ

‖X:j‖2


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Algorithm: coordinate descent

Algorithm 8.1 Coordinate descent for Lasso
Repeat until convergence

for j = 1, · · · , n:

β̂j ← ψst

X>:,j
(
y −

∑
i:i 6=jX:iβ̂i

)
‖X:j‖22

; λ

‖X:j‖22

 (8.5)
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Risk inflation
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Ideal risk: orthogonal design

yi = βi + ηi, i = 1, · · · , n

Let’s first select / fix a model and then estimate: for a fixed model
S ⊆ {1, · · · , n}, the LS estimate β̂S is

(β̂S)i =
{
yi, if i ∈ S
0, else

• Mean square estimation error for a fixed model S:

MSE(β̂S ,β) := E[‖β̂S − β‖2] =
∑
i∈S

E[(yi − βi)2] +
∑
i/∈S

β2
i

= |S|σ2︸ ︷︷ ︸
variance due to noise

+
∑
i/∈S

β2
i︸ ︷︷ ︸

bias (since we don’t estimate all coefficients)
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Ideal risk: orthogonal design

• Smallest MSE for a fixed model size: If we fix the model size
|S| = k, then the best model achieves

MSEk(β) := min
S:|S|=k

MSE(β̂S ,β) = kσ2 + min
S:|S|=k

∑
i/∈S

β2
i

= kσ2 +
n∑

i=k+1
|β|2(i)

where |β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(n) are order statistics of {|βi|}

Implication: good estimation is possible when β compresses well
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Optimizing the risk over all possible models

• Ideal risk (smallest MSE over all models): minimizing over
all possible model size k gives

MSEideal(β) := min
k

min
S:|S|=k

MSE(β̂S ,β) = min
k

{
kσ2 +

n∑
i=k+1

|β|2(i)
}

=
n∑
i=1

min{σ2, β2
i }
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Oracle lower bound

MSEideal(β) =
n∑
i=1

min{σ2, β2
i }

• βi is worth estimating iff |βi| > σ2

• MSEideal is the optimal risk if an oracle reveals which variables are
worth estimating and which can be safely ignored

• With the oracle information, one can achieve MSEideal via

β̂ideal
i =

{
yi, if |βi| > σ,

0 else
(eliminate irrelevant variables)
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Risk inflation

• Problem: unfortunately, we do NOT know which model S is the
best and hence cannot attain MSEideal ...

• Instead, we shall treat it as an oracle lower bound, and consider
the increase in estimation error due to selecting rather than
knowing the correct model
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Risk inflation

Definition 8.3 (risk inflation, Foster & George ’94)

The risk inflation of an estimator β̂ is

RI(β̂) = sup
β

MSE(β̂,β)
MSEideal(β)

,

where MSE(β̂,β) := E[‖β − β̂‖22].

• Idea: calibrate the actual risk against the ideal risk for each β to
better reflect the potential gains / loss

• Suggestion: find a procedure that achieves low risk inflation!
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Risk inflation by soft / hard thresholding

Consider identity design X = I, and β̂i = ψht (yi;λ) or
β̂i = ψst (yi;λ) with threshold zone [−λ, λ]
• For the extreme case where β = 0,

MSEideal(β) =
∑p

i=1
min{σ2, β2

i } = 0

• In order to control risk inflation, λ needs to be sufficiently large
so as to ensure β̂i ≈ 0 for all i. In particular,

max1≤i≤p |yi| = max
1≤i≤p

|ηi| ≈ σ
√

2 log p (exercise)

=⇒ λ ≥ σ
√

2 log p
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Risk inflation by soft / hard thresholding

Theorem 8.4 (Foster & George ’94, Johnstone, Candes)

Let β̂ be either a soft or hard thresholding procedure with threshold
λ = σ

√
2 log p. Then

MSE(β̂,β) ≤ (2 log p+ c)
(
σ2 + MSEideal(β)

)
where c = 1 for soft thresholding and c = 1.2 for hard thresholding.

For large p, one typically has MSEideal(β)� σ2. Then Theorem 8.4
implies

RI(β̂) ≈ 2 log p
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Proof of Theorem 8.4 for soft thresholding

WLOG, assume that σ = 1. The risk of soft thresholding for a single
coordinate is

rst(λ, βi) := E[(ψst(yi;λ)− βi)2]

where yi ∼ N (βi, 1).
1. There are 2 very special points that we shall single out: βi = 0

and βi =∞. We start by connecting rst(λ, βi) with rst(λ, 0) and
rst(λ,∞).

Lemma 8.5
rst(λ, β) ≤ rst(λ, 0) + β2 (quadratic upper bound)
rst(λ, β) ≤ rst(λ,∞) = 1 + λ2
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Proof of Theorem 8.4 for soft thresholding
2. The next step is to control rst(λ, 0)

Lemma 8.6

rst(λ, 0) ≤ 2φ(λ)/λ
λ=
√

2 log p
� 1/p (very small)

where φ(z) := 1√
2π exp(−z2/2).

3. With these lemmas in mind, we are ready to prove Theorem 8.4
p∑
i=1

E[(βi − β̂i)2] ≤ prst (λ, 0) +
∑p

i=1
min

{
β2
i , λ

2 + 1
}

< 1 +
∑p

i=1
min

{
β2
i , 2 log p+ 1

}
≤ (2 log p+ 1)

[
1 +

∑p

i=1
min

{
β2
i , 1
}]

= (2 log p+ 1)
(
1 + MSEideal

)
Model selection and Lasso 8-43



Proof of Lemma 8.5

Figure adapted from
Johnstone ’15

WLOG, assume β ≥ 0.

(1) To prove rst(λ, β) ≤ rst(λ, 0) + β2, it suffices to show ∂rst
∂β ≤ 2β, as

rst(λ, β)− rst(λ, 0) =
∫ β

0

∂rst(λ, β)
∂β

dβ ≤
∫ β

0
2βdβ = β2.

This follows since (exercise)
∂rst(λ, β)

∂β
= 2βP (Z ∈ [−λ− β, λ− β]) ∈ [0, 2β], (8.6)

with Z ∼ N (0, 1)

(2) The identity (8.6) also shows rst is increasing in β > 0, and hence

rst(λ, β) ≤ rst(λ,∞) = E[((β + z − λ)− β)2] = 1 + λ2 (8.7)
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Proof of Lemma 8.6 (Candes)

rst(λ, 0)
2 =

∫ ∞
λ

(y − λ)2φ(y)dy

=
∫ ∞
λ

(y − 2λ) yφ(y)dy + λ2
∫ ∞
λ

φ(y)dy

(a)= −
∫ ∞
λ

(y − 2λ)φ′(y)dy + λ2P {Z > λ}

(b)= − (y − 2λ)φ(y)
∣∣∣∞
λ

+
∫ ∞
λ

φ(y)dy + λ2P {Z > λ}

= −λφ(λ) +
(
1 + λ2

)
P {Z > λ}

(c)
≤ −λφ(λ) +

(
1 + λ2

) φ(λ)
λ

= φ(λ)
λ

,

where (a) follows since φ′(y) = −yφ(y), (b) follows from integration
by parts, and (c) holds since P {Z > λ} ≤ φ(λ)

λ .
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Optimality

Theorem 8.7 (Foster & George ’94, Jonestone)

inf
β̂

sup
β

MSE(β̂,β)
σ2 + MSEideal(β)

≥ (1 + o(1))2 log p

• Soft and hard thresholding rules—depending only on available
data without access to an oracle—can achieve the ideal risk up
to the multiplicative factor (1 + o(1))2 log p

• This 2 log p factor is asymptotically optimal for unrestricted β
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Comparison with canonical selection procedure

1. Minimax-optimal procedure w.r.t. risk inflation

β̂i = ψht
(
yi; σ

√
2 log p

)
2. Canonical selection based on Cp statistics

β̂i = ψht
(
yi;
√

2σ
)

◦ Optimal procedure employs a much larger threshold zone
◦ Reason: minS Cp(S) underestimates minS E[PE(S)] since

E
[
min
S
Cp(S)

]
≤︸︷︷︸

sometimes �

min
S

E
[
Cp(S)

]
= min

S
E
[
PE(S)

]
◦ e.g. when β = 0, ‖ψht

(
y;
√

2σ
)
− β‖2 � n� 0 with high prob.
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More general models

Let’s turn to a general design matrix X:

y = Xβ + η where η ∼ N (0, I)

One can take the ideal risk to be

MSEideal := min
S

PE(S) = min
S

{
E
[
‖XSβ̂S −Xβ‖22

]︸ ︷︷ ︸
model error

+ |S|σ2
}
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More general models
Consider the `0-penalized selection procedure

minimizeβ̂ ‖y −Xβ̂‖22 + λ2σ2‖β̂‖0 (8.8)

for some λ �
√

log p

Theorem 8.8 (Foster & George ’94, Birge & Massart ’01,
Jonestone, Candes)

(achievability) MSE(β̂,β) . (log p)
{
σ2 + MSEideal(β)

}

(minimax lower bound) inf
β̂

sup
β

MSE(β̂,β)
σ2 + MSEideal(β)

& log p

(8.8) is nearly minimax optimal for arbitrary designs!

Model selection and Lasso 8-49



Lasso is suboptimal for coherent design

X =


1

1
. . .

1

ε
...
ε
1

 , β =


0
...
0
−1/ε
1/ε

 , and y = Xβ =


1
...
1
0



When ε→ 0, solution to Lasso is

β̂ =


1
...
1
0

 far from the truth

• Issue: the last 2 columns of X are too similar / correlated
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Minimax risk for sparse vectors
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Asymptotic minimax risk for sparse vectors

So far we’ve considered risk without any restriction on β. Practically,
prior knowledge (like sparsity of β) might be exploited to yield more
accurate estimates.

Theorem 8.9

Suppose X = I. For any k-sparse β with k � p, the asymptotic
minimax risk is

inf
β̂

sup
β:‖β‖0≤k

MSE(β̂,β) = (1 + o(1))2σ2k log(p/k)
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Minimaxity of soft thresholding estimator

Consider β̂i = ψst(yi;λ) with λ = σ
√

2 log p as before
• If β = 0, one has β̂ ≈ 0 as discussed before

• If β1 � β2 � · · · � βk � σ and βk+1 = · · · = βp = 0, then

β̂i ≈
{
yi − λ, if i ≤ k
0, else

=⇒ MSE(β̂,β) ≈
k∑
i=1

E
[
(yi − βi − λ)2

]
= k(σ2 + λ2)

= kσ2(2 log p+ 1) > 2kσ2 log(p/k)︸ ︷︷ ︸
minimax risk

◦ Need to pick a smaller threshold λ

Model selection and Lasso 8-53



Minimaxity of soft thresholding estimator

Theorem 8.10

Suppose X = I. For any k-sparse β with k � p, the soft
thresholding estimator β̂i = ψst(yi;λ) with λ = σ

√
2 log(p/k) obeys

MSE(β̂,β) ≤ (1 + o(1))2σ2k log(p/k)

• Threshold λ determined by sparsity level
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Sanity check

If β1 � · · · � βk � σ and βk+1 = · · · = βp = 0, then

β̂i ≈
{
yi − λ, if i ≤ k
0, else

=⇒ MSE(β̂,β) ≈ k(σ2 + λ2) (as shown before)
= kσ2(2 log(p/k) + 1)
≈ 2kσ2 log(p/k)︸ ︷︷ ︸

minimax risk
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Proof of Theorem 8.11

WLOG, suppose σ = 1. Under the sparsity constraint,

MSE(β̂,β) =
p∑
i=1

rst(λ, βi) =
∑
i:βi 6=0

rst(λ, βi) + (p− k) rst(λ, 0)

≤ krst(λ,∞) + (p− k) rst(λ, 0) (8.9)

≤ k
(
1 + λ2

)
+ 2pφ(λ)

λ
(8.10)

= (1 + o(1))2k log(p/k) + k√
π log(p/k)

= (1 + o(1))2k log(p/k),

where (8.9) follows since rst(λ, β) is increasing in β, and (8.10)
comes from (8.7) and Lemma 8.6
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Adaptivity to unknown sparsity

• Problem of “optimal” soft thresholding: knowing the sparsity
level a priori is often unrealistic

• Question: can we develop an estimator that is adaptive to
unknown sparsity?

Adaptivity cannot be achieved via soft thresholding with fixed
thresholds, but what if we adopt data-dependent thresholds?
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Data-dependent thresholds

Let |y|(1) ≥ · · · ≥ |y|(p) be the order statistics of |y1|, · · · , |yp|

Key idea: use a different threshold for yi based on its rank

β̂i = ψst(yi;λj) if |yi| = |y|(j) (8.11)

• originally due to Benjamini & Hochberg ’95 for controlling false
discovery rate
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How to set thresholds? (non-rigorous)

Consider k-sparse vectors, and WLOG suppose σ = 1. Recall that
when we use soft thresholding with λ =

√
2 log(p/k), the least

favorable signal is

β1 � · · · � βk � σ and βk+1 = · · · = βp = 0 (8.12)

If we use data-dependent thresholds and if {λi}i>k are sufficiently
large, then

β̂i ≈
{
yi − λi, if i ≤ k
0, else

MSE(β̂,β) ≈
k∑
i=1

E[(yi − λi − βi)2] =
k∑
i=1

(
1 + λ2

i

)
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How to set thresholds? (non-rigorous)

If the estimator is minimax for each k and if the worst-case β for
each k is given by (8.12), then

MSE(β̂,β) ≈ 2k log(p/k), k = 1, · · · , p

=⇒
k∑
i=1

λ2
i ≈ 2k log(p/k), k = 1, · · · , p

This suggests a choice (think of λ2
i as the derivative of

g(x) := 2x log(p/x))

λ2
i ≈ 2 log(p/i)− 2 ≈ 2 log(p/i)
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How to set thresholds? (non-rigorous)

When β1 = · · · = β50 = 0, σ = 1
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How to set thresholds? (non-rigorous)

When β1 = · · · = β5 = 3, β6 = · · · = β50 = 0, σ = 1
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Minimaxity

Theorem 8.11 (Abramovich ’06, Su & Candes ’16)

Suppose X = I, and k � p. The estimator (8.11) with
λi = σ

√
2 log(p/i) is minimax, i.e.

MSE(β̂,β) = (1 + o(1))2σ2k log(p/k)

• Adaptive to unknown sparsity
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Generalization to arbitrary design: SLOPE

SLOPE (Sorted L-One Penalized Estimation): a generalization of
LASSO

minimizeβ̂∈Rp
1
2‖y −Xβ̂‖

2
2 + λ1|β̂|(1) + λ2|β̂|(2) + · · ·+ λp|β̂|(p)

where λi = σΦ−1(1− iq/(2p)) ≈ σ
√

2 log(p/i), 0 < q < 1 is
constant, and Φ is CDF of N (0, 1)

• This is a convex program if λ1 ≥ · · · ≥ λp ≥ 0 (homework)

• This can be computed efficiently via proximal methods

• SLOPE is minimax and adaptive to unknown sparsity under
i.i.d. Gaussian design X
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