ELE 520: Mathematics of Data Science

## Model Selection and Lasso



# Yuxin Chen Princeton University, Fall 2020

# Outline

- Model selection
- Lasso estimator
- Risk inflation
- Minimax risk for sparse vectors

### Asymptotic notation

•  $f(n) \leq q(n)$  or f(n) = O(q(n)) means  $\lim_{n \to \infty} \frac{|f(n)|}{|a(n)|} \leq \text{ const}$ •  $f(n) \ge q(n)$  or  $f(n) = \Omega(q(n))$  means  $\lim_{n \to \infty} \frac{|f(n)|}{|g(n)|} \geq \text{ const}$ •  $f(n) \asymp q(n)$  or  $f(n) = \Theta(q(n))$  means  $const_1 \leq \lim_{n \to \infty} \frac{|f(n)|}{|g(n)|} \leq const_2$ 

• f(n) = o(g(n)) means

$$\lim_{n \to \infty} \frac{|f(n)|}{|g(n)|} = 0$$

## Model selection

All models are wrong but some are useful.

— George Box

$$y = X\beta + \eta$$
,

- $\boldsymbol{y} = [y_1, \cdots, y_n]^{ op} \in \mathbb{R}^n$ : observed data / response variables
- $\boldsymbol{X} = [\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n]^{ op}$ : design matrix / feature matrix (known)

assumed to be full rank

- $\boldsymbol{\beta} = [\beta_1, \cdots, \beta_p]^\top \in \mathbb{R}^p$ : unknown signal / regression coefficients
- $\boldsymbol{\eta} = [\eta_1, \cdots, \eta_n]^\top \in \mathbb{R}^n$ : noise

Throughout this lecture, we assume Guassian noise

$$\boldsymbol{\eta} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I}_n)$$

#### **Regression:**

- find relationship between response  $y_i$  and explanatory variables  $m{x}_{i,1},\cdots,m{x}_{i,p}$
- use the fitted model to make prediction

Question: which (sub)-set of variables / features should we include?

- Myth: nothing is lost by including every feature / variable available
- Paradoxically, we can often achieve better predictions by discarding a fraction of variables

# Tradeoff

- Model too small  $\implies$  large bias (underfitting)
- Model too large  $\implies$  large variance and poor prediction (overfitting)

How to achieve a desired tradeoff between predictive accuracy and parsimony (model complexity)?

# Underfitting

Recall that the least squares (LS) estimate is  $\hat{oldsymbol{eta}} = (oldsymbol{X}^{ op} oldsymbol{X})^{-1} oldsymbol{X}^{ op} oldsymbol{y}$ 

• Divide the design matrix into 2 parts:  $oldsymbol{X} = [oldsymbol{X}^{(1)}, oldsymbol{X}^{(2)}]$ 

• 
$$\tilde{\boldsymbol{x}} = \left[ egin{array}{c} \tilde{\boldsymbol{x}}^{(1)} \\ \tilde{\boldsymbol{x}}^{(2)} \end{array} 
ight]$$
: new data

• LS estimate based only on  $X^{(1)}$ :

$$\hat{\boldsymbol{eta}}^{(1)} := (\boldsymbol{X}^{(1)\top} \boldsymbol{X}^{(1)})^{-1} \boldsymbol{X}^{(1)\top} \boldsymbol{y}$$

with prediction at  $\tilde{x}$  given by

$$\hat{y}_{\text{underfit}} = \tilde{\boldsymbol{x}}^{(1)\top} \hat{\boldsymbol{\beta}}^{(1)}$$

• LS estimate based on true model

$$\hat{\boldsymbol{eta}} := (\boldsymbol{X}^{ op} \boldsymbol{X})^{-1} \boldsymbol{X}^{ op} \boldsymbol{y}$$

with prediction at  $ilde{x}$  given by

$$\hat{y}_{\text{true}} = [\tilde{x}^{(1)\top}, \tilde{x}^{(2)\top}]\hat{oldsymbol{eta}}$$

Model selection and Lasso

Suppose the ground truth is 
$$\boldsymbol{\beta} = \begin{bmatrix} \boldsymbol{\beta}^{(1)} \\ \boldsymbol{\beta}^{(2)} \end{bmatrix}$$
, then  

$$\mathbb{E} \begin{bmatrix} \hat{\boldsymbol{\beta}}^{(1)} \end{bmatrix} = \left( \boldsymbol{X}^{(1)\top} \boldsymbol{X}^{(1)} \right)^{-1} \boldsymbol{X}^{(1)\top} \left( \boldsymbol{X}^{(1)} \boldsymbol{\beta}^{(1)} + \boldsymbol{X}^{(2)} \boldsymbol{\beta}^{(2)} \right)$$

$$= \boldsymbol{\beta}^{(1)} + \underbrace{\left( \boldsymbol{X}^{(1)\top} \boldsymbol{X}^{(1)} \right)^{-1} \boldsymbol{X}^{(1)\top} \boldsymbol{X}^{(2)} \boldsymbol{\beta}^{(2)}}_{\text{bias}}$$

$$\implies \hat{oldsymbol{eta}}^{(1)}$$
 is a biased estimate of  $oldsymbol{eta}^{(1)}$ 

## Prediction variance due to underfitting

Fact 8.1

$$\mathbf{Var}\left[\hat{y}_{\mathrm{true}}
ight] \geq \mathbf{Var}\left[\hat{y}_{\mathrm{underfit}}
ight]$$

- Implications: the "apparent" prediction variance tends to decrease when we adopt small models
- (Exercise): compute the prediction variance under overfitting

Observe that

$$\begin{split} \mathbf{Cov}[\hat{\boldsymbol{\beta}}] &= \left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}\mathbf{Cov}\left[\boldsymbol{y}\right]\boldsymbol{X}\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1} = \sigma^{2}\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1} \\ &= \sigma^{2}\begin{bmatrix} \left(\boldsymbol{X}^{(1)\top}\boldsymbol{X}^{(1)}\right)^{-1} + \boldsymbol{L}\boldsymbol{M}\boldsymbol{L}^{\top} & -\boldsymbol{L}\boldsymbol{M} \\ -\boldsymbol{M}\boldsymbol{L}^{\top} & \boldsymbol{M} \end{bmatrix} \text{ (matrix inversion identity)} \end{split}$$

where 
$$\boldsymbol{L} = \left(\boldsymbol{X}^{(1)\top}\boldsymbol{X}^{(1)}\right)^{-1}\boldsymbol{X}^{(1)\top}\boldsymbol{X}^{(2)}$$
 and  
 $\boldsymbol{M} = \left\{\boldsymbol{X}^{(2)\top}\left(\boldsymbol{I} - \boldsymbol{X}^{(1)}\left(\boldsymbol{X}^{(1)\top}\boldsymbol{X}^{(1)}\right)^{-1}\boldsymbol{X}^{(1)\top}\right)\boldsymbol{X}^{(2)}\right\}^{-1} \succeq \boldsymbol{0}.$ 

This gives

$$\begin{split} \mathbf{Var}\left[\hat{y}_{\text{true}}\right] &= \left[\tilde{\boldsymbol{x}}^{(1)\top}, \tilde{\boldsymbol{x}}^{(2)\top}\right] \mathbf{Cov}\left[\hat{\boldsymbol{\beta}}\right] \left[\begin{array}{c} \tilde{\boldsymbol{x}}^{(1)} \\ \tilde{\boldsymbol{x}}^{(2)} \end{array}\right] \\ &= \sigma^{2} \tilde{\boldsymbol{x}}^{(1)\top} \left(\boldsymbol{X}^{(1)\top} \boldsymbol{X}^{(1)}\right)^{-1} \tilde{\boldsymbol{x}}^{(1)} + \sigma^{2} \left(\boldsymbol{L}^{\top} \tilde{\boldsymbol{x}}^{(1)} - \tilde{\boldsymbol{x}}^{(2)}\right)^{\top} \boldsymbol{M} \left(\boldsymbol{L}^{\top} \tilde{\boldsymbol{x}}^{(1)} - \tilde{\boldsymbol{x}}^{(2)}\right) \\ &\geq \sigma^{2} \tilde{\boldsymbol{x}}^{(1)\top} \left(\boldsymbol{X}^{(1)\top} \boldsymbol{X}^{(1)}\right)^{-1} \tilde{\boldsymbol{x}}^{(1)} = \mathbf{Var}\left[\hat{y}_{\text{underfit}}\right] \end{split}$$

Model selection and Lasso

Choosing a subset of explanatory variables might improve prediction

Question: which subset shall we select?

One strategy

- (1) pick a criterion that measures how well a model performs
- (2) evaluate the criterion for each subset and pick the best

One popular choice: choose a model that predicts well

### Prediction error and model error

- training set:  $oldsymbol{y}, oldsymbol{X}$
- $\hat{eta}$ : an estimate based on training set
- new data:  $ilde{y} = ilde{X}oldsymbol{eta} + ilde{\eta} \in \mathbb{R}^m$ , where  $ilde{\eta} \sim \mathcal{N}(\mathbf{0}, I_m)$
- Goal: use  $\hat{oldsymbol{eta}}$  to predict  $ilde{oldsymbol{y}}$

One may assess the quality of the estimate based on its *prediction* error on  $\tilde{y}$ , i.e.

$$\begin{aligned} \mathsf{PE} &:= \mathbb{E}\left[\left\|\tilde{\boldsymbol{X}}\hat{\boldsymbol{\beta}} - \tilde{\boldsymbol{y}}\right\|^{2}\right] \\ &= \mathbb{E}\left[\left\|\tilde{\boldsymbol{X}}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\right\|^{2}\right] + 2\mathbb{E}\left[(\tilde{\boldsymbol{X}}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}))^{\top}(\tilde{\boldsymbol{y}} - \tilde{\boldsymbol{X}}\boldsymbol{\beta})\right] + \mathbb{E}\left[\left\|\tilde{\boldsymbol{y}} - \tilde{\boldsymbol{X}}\boldsymbol{\beta}\right\|^{2}\right] \\ &= \underbrace{\mathbb{E}\left[\left\|\tilde{\boldsymbol{X}}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\right\|^{2}\right]}_{&:=\mathsf{ME} \text{ (model error)}} + \underbrace{m\sigma^{2}}_{\text{variability of data}} \end{aligned}$$

We shall set  $\tilde{X} = X$  (and hence m = n) out of simplicity

• the case where the structures of new and old data are the same

Unfortunately, we do not have access to PE (as we don't know  $\beta$ )  $\implies$  need an operational criterion for estimating PE

• One candidate: estimate PE via residual sum of squares

$$\mathsf{RSS} := \left\| oldsymbol{y} - oldsymbol{X} \hat{oldsymbol{eta}} 
ight\|_2^2$$

#### $\implies$ training error

### Training error underestimates prediction error

Suppose  $X\hat{\beta} = \Pi y$  for some given  $\Pi$  with  $Tr(\Pi) > 0$  (e.g. LS), then  $PE = \mathbb{E}[RSS] + 2\sigma^2 Tr(\Pi) > \mathbb{E}[RSS]$  (8.1)

Proof:

$$\begin{aligned} \mathsf{PE} - \mathbb{E}[\mathsf{RSS}] &= \mathbb{E} \left[ \| \tilde{\boldsymbol{y}} - \boldsymbol{X} \hat{\boldsymbol{\beta}} \|^2 \right] - \mathbb{E} \left[ \| \boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}} \|^2 \right] \\ &= \mathbb{E} \left[ \| \tilde{\boldsymbol{y}} \|^2 + \| \boldsymbol{X} \hat{\boldsymbol{\beta}} \|^2 - 2 \langle \tilde{\boldsymbol{y}}, \boldsymbol{X} \hat{\boldsymbol{\beta}} \rangle \right] \\ &- \mathbb{E} \left[ \| \boldsymbol{y} \|^2 + \| \boldsymbol{X} \hat{\boldsymbol{\beta}} \|^2 - 2 \left\langle \boldsymbol{y}, \boldsymbol{X} \hat{\boldsymbol{\beta}} \right\rangle \right] \\ &= 2\mathbb{E} \left[ \langle \boldsymbol{y} - \tilde{\boldsymbol{y}}, \boldsymbol{X} \hat{\boldsymbol{\beta}} \rangle \right] = 2\mathbb{E} \left[ \langle \boldsymbol{\eta} - \tilde{\boldsymbol{\eta}}, \boldsymbol{\Pi} \boldsymbol{y} \rangle \right] \\ &= 2\mathbb{E} \left[ \langle \boldsymbol{\eta}, \boldsymbol{\Pi} \boldsymbol{\eta} \rangle \right] \stackrel{(a)}{=} 2\mathrm{Tr} \left( \boldsymbol{\Pi} \mathbb{E} \left[ \boldsymbol{\eta} \boldsymbol{\eta}^\top \right] \right) \\ &= 2\sigma^2 \mathrm{Tr}(\boldsymbol{\Pi}), \end{aligned}$$

where (a) follows from the identity  $Tr(\mathbf{A}^{\top}\mathbf{B}) = Tr(\mathbf{B}\mathbf{A}^{\top})$ . Model selection and Lasso The least squares solution is

$$\hat{oldsymbol{eta}}^{\mathsf{ls}} \coloneqq rg\min_{\hat{oldsymbol{eta}}} \|oldsymbol{y} - oldsymbol{X} \hat{oldsymbol{eta}}\|_2^2 = (oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{X}^ op oldsymbol{y}$$

The fitted values  $\hat{y}^{\mathsf{ls}}$  is given by

$$\hat{oldsymbol{y}}^{\mathsf{ls}} = oldsymbol{\Pi}^{\mathsf{ls}}oldsymbol{y} := oldsymbol{X}(oldsymbol{X}^{ op}oldsymbol{X})^{-1}oldsymbol{X}^{ op}oldsymbol{y}.$$

$$\implies \mathsf{PE} = \mathbb{E}[\mathsf{RSS}] + 2\sigma^2 \mathrm{Tr}(\mathbf{\Pi}^{\mathsf{ls}}) = \mathbb{E}[\mathsf{RSS}] + 2\sigma^2 p$$

Suppose the model (i.e. support of  $\beta$ ) is  $S \subseteq \{1, \dots, p\}$ . The least squares solution given S is

$$\hat{oldsymbol{eta}}_S := rg\min_{\hat{oldsymbol{eta}}} \{ \|oldsymbol{y} - oldsymbol{X} \hat{oldsymbol{eta}}\|_2^2 : \hat{eta}_i = 0 ext{ for all } i \notin S \}$$

The fitted values  $\hat{y}$  is then given by

$$\hat{\boldsymbol{y}} = \boldsymbol{\Pi}_{S} \boldsymbol{y} := \boldsymbol{X}_{S} (\boldsymbol{X}_{S}^{\top} \boldsymbol{X}_{S})^{-1} \boldsymbol{X}_{S}^{\top} \boldsymbol{y},$$

where  $X_S$  is formed by the columns of X at indices in S.

In view of (8.1),

$$\mathsf{PE}(\hat{\boldsymbol{\beta}}_S) = \mathbb{E}[\mathsf{RSS}(\hat{\boldsymbol{\beta}}_S)] + 2\sigma^2 \mathrm{Tr}(\boldsymbol{\Pi}_S) = \mathbb{E}[\mathsf{RSS}(\hat{\boldsymbol{\beta}}_S)] + 2|S|\sigma^2,$$

since

$$\operatorname{Tr}(\boldsymbol{\Pi}_S) = \operatorname{Tr}(\boldsymbol{X}_S(\boldsymbol{X}_S^{\top}\boldsymbol{X}_S)^{-1}\boldsymbol{X}_S^{\top}) = \operatorname{Tr}((\boldsymbol{X}_S^{\top}\boldsymbol{X}_S)^{-1}\boldsymbol{X}_S^{\top}\boldsymbol{X}_S) = |S|.$$

Definition 8.2 ( $C_p$  statistic, Mallows '73)

$$C_p(S) = \underbrace{\mathsf{RSS}(\hat{\beta}_S)}_{\text{training error}} + \underbrace{2\sigma^2|S|}_{\text{model complexity}}$$

 $C_p$  is an unbiased estimate of prediction error

- 1. Compute  $C_p(S)$  for each model S
- 2. Choose  $S^* = \arg \min_S C_p(S)$

This is essentially an  $\ell_0\text{-}\mathsf{regularized}$  least-squares problem

minimize<sub>$$\hat{\beta}$$</sub>  $\|\boldsymbol{y} - \boldsymbol{X}\hat{\beta}\|_{2}^{2} + \underbrace{2\sigma^{2}\|\hat{\beta}\|_{0}}_{\text{penalized by model complexity}}$  (8.2)

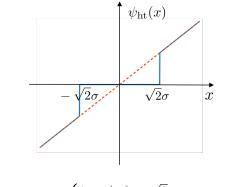
Suppose X = I, then (8.8) reduces to

$$\mathsf{minimize}_{\hat{\boldsymbol{\beta}}} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{\beta}_i)^2 + 2\sigma^2 \mathbf{1} \{ \hat{\beta}_i \neq 0 \}$$

Solving this problem gives

$$\hat{\beta}_i = \begin{cases} 0, & |y_i| \leq \sqrt{2}\sigma \\ y_i, & |y_i| > \sqrt{2}\sigma \end{cases} \qquad \text{hard thresholding}$$

• Keep large coefficients; discard small coefficients



$$\hat{\beta}_i = \psi_{\mathsf{ht}}(y_i; \sqrt{2}\sigma) := \begin{cases} 0, & |y_i| \le \sqrt{2}\sigma \\ y_i, & |y_i| > \sqrt{2}\sigma \end{cases}$$

hard thresholding

Hard thresholding preserves data outside threshold zone

Model selection and Lasso

### Lasso estimator

# Convex relaxation: Lasso (Tibshirani '96)

Lasso (Least absolute shrinkage and selection operator)

minimize
$$_{\hat{\boldsymbol{\beta}}} = \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}} \|_2^2 + \lambda \| \hat{\boldsymbol{\beta}} \|_1$$
 (8.3)

for some regularization parameter  $\lambda>0$ 

• It is equivalent to

$$egin{array}{lll} {
m minimize}_{\hat{oldsymbol{eta}}} & \|oldsymbol{y}-oldsymbol{X}\hat{oldsymbol{eta}}\|_2^2 \ {
m s.t.} & \|\hat{oldsymbol{eta}}\| \leq t \end{array}$$

for some t that depends on  $\lambda$ 

 $\circ\,$  a quadratic program (QP) with convex constraints

•  $\lambda$  controls model complexity: larger  $\lambda$  restricts the parameters more; smaller  $\lambda$  frees up more parameters

# Lasso vs. MMSE (or ridge regression)

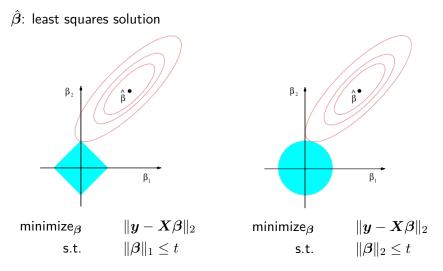
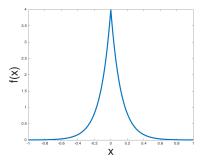


Fig. credit: Hastie, Tibshirani, & Wainwright

### A Bayesian interpretation

Orthogonal design:  $\boldsymbol{y} = \boldsymbol{\beta} + \boldsymbol{\eta}$  with  $\boldsymbol{\eta} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$ .



Impose an i.i.d. prior on  $\beta_i$  to encourage sparsity (Gaussian is not a good choice):

(Laplacian prior) 
$$\mathbb{P}(\beta_i = z) = \frac{\lambda}{2} e^{-\lambda|z|}$$

## A Bayesian interpretation of Lasso

Posterior of  $\beta$ :

$$\begin{split} \mathbb{P}\left(\boldsymbol{\beta} \mid \boldsymbol{y}\right) &\propto \quad \mathbb{P}(\boldsymbol{y}|\boldsymbol{\beta}) \mathbb{P}(\boldsymbol{\beta}) \propto \prod_{i=1}^{n} e^{-\frac{(y_i - \beta_i)^2}{2\sigma^2}} \frac{\lambda}{2} e^{-\lambda|\beta_i|} \\ &\propto \quad \prod_{i=1}^{n} \exp\left\{-\frac{(y_i - \beta_i)^2}{2\sigma^2} - \lambda|\beta_i|\right\} \end{split}$$

⇒ maximum *a posteriori* (MAP) estimator:

$$\arg\min_{\beta} \sum_{i=1}^{n} \left\{ \frac{(y_i - \beta_i)^2}{2\sigma^2} + \lambda |\beta_i| \right\} \quad (Lasso)$$

Implication: Lasso is MAP estimator under Laplacian prior

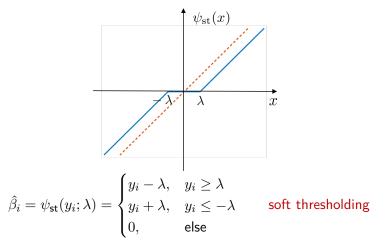
Suppose X = I, then Lasso reduces to

$$\mathsf{minimize}_{\hat{oldsymbol{eta}}} = rac{1}{2}\sum_{i=1}^n (y_i - \hat{eta}_i)^2 + \lambda |\hat{eta}_i|$$

The Lasso estimate  $\hat{oldsymbol{eta}}$  is then given by

$$\hat{\beta}_{i} = \begin{cases} y_{i} - \lambda, & y_{i} \ge \lambda \\ y_{i} + \lambda, & y_{i} \le -\lambda \\ 0, & \text{else} \end{cases} \text{ soft thresholding}$$

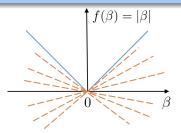
### Example: orthogonal design



Soft thresholding shrinks data towards 0 outside threshold zone

Model selection and Lasso

For any convex function  $f(\beta)$ ,  $\beta^*$  is an optimal solution iff  $\mathbf{0} \in \partial f(\beta^*)$ , where  $\partial f(\beta)$  is the set of all subgradients at  $\beta$ 



• s is a subgradient of  $f(\beta) = |\beta|$  if

$$\begin{cases} s = \operatorname{sign}(\beta), & \text{if } \beta \neq 0\\ s \in [-1, 1], & \text{if } \beta = 0 \end{cases}$$
(8.4)

Model selection and Lasso

For any convex function  $f(\beta)$ ,  $\beta^*$  is an optimal solution iff  $\mathbf{0} \in \partial f(\beta^*)$ , where  $\partial f(\beta)$  is the set of all subgradients at  $\beta$ 

• The subgradient of  $f(\beta) = \frac{1}{2}(y-\beta)^2 + \lambda |\beta|$  can be written as

$$g = \beta - y + \lambda s$$
 with  $s$  defined in (8.4)

- We see that  $\hat{\beta}=\psi_{\rm st}(y;\lambda)$  by checking optimality conditions for two cases:
  - $\circ$  If  $|y| \leq \lambda$ , taking  $\beta = 0$  and  $s = y/\lambda$  gives g = 0

$$\circ \ \ {\rm If} \ |y|>\lambda, \ {\rm taking} \ \beta=y-{\rm sign}(y)\lambda \ {\rm gives} \ g=0$$

Consider the case where there is only a single parameter  $\hat{\beta} \in \mathbb{R}$ :

$$\mathsf{minimize}_{\hat{eta} \in \mathbb{R}} \quad rac{1}{2} \| oldsymbol{y} - \hat{eta} oldsymbol{z} \|_2^2 + \lambda |\hat{eta}|.$$

Then one can verify that (homework)

$$\hat{\beta} = \psi_{\mathsf{st}} \left( \frac{\boldsymbol{z}^{\top} \boldsymbol{y}}{\|\boldsymbol{z}\|_{2}^{2}}; \frac{\lambda}{\|\boldsymbol{z}\|_{2}^{2}} \right) = \begin{cases} \frac{\boldsymbol{z}^{\top} \boldsymbol{y}}{\|\boldsymbol{z}\|_{2}^{2}} - \frac{\lambda}{\|\boldsymbol{z}\|_{2}^{2}}, & \text{if } \boldsymbol{z}^{\top} \boldsymbol{y} > \lambda \\ 0, & \text{if } |\boldsymbol{z}^{\top} \boldsymbol{y}| \le \lambda \\ \frac{\boldsymbol{z}^{\top} \boldsymbol{y}}{\|\boldsymbol{z}\|_{2}^{2}} + \frac{\lambda}{\|\boldsymbol{z}\|_{2}^{2}}, & \text{else} \end{cases}$$

**Idea:** repeatedly cycle through the variables and, in each step, optimize only a single variable

• When updating  $\hat{\beta}_j$ , we solve

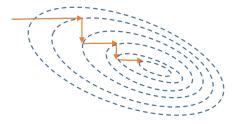
$$\mathsf{minimize}_{\hat{\beta}_j \in \mathbb{R}} \; \frac{1}{2} \Big\| \boldsymbol{y} - \sum_{i:i \neq j} \boldsymbol{X}_{:i} \hat{\beta}_i - \boldsymbol{X}_{:,j} \hat{\beta}_j \Big\|_2^2 + \lambda |\hat{\beta}_j| + \lambda \sum_{i:i \neq j} |\hat{\beta}_i|$$

where  $oldsymbol{X}_{:,j}$  is  $j ext{th}$  column of  $oldsymbol{X}$ 

• This is exactly the single-parameter setting, and hence

$$\hat{\beta}_j \leftarrow \psi_{\mathsf{st}} \left( \frac{\boldsymbol{X}_{:,j}^{\top} \left( \boldsymbol{y} - \sum_{i:i \neq j} \boldsymbol{X}_{:i} \hat{\beta}_i \right)}{\|\boldsymbol{X}_{:j}\|^2}; \frac{\lambda}{\|\boldsymbol{X}_{:j}\|^2} \right)$$

### Algorithm: coordinate descent



Algorithm 8.1 Coordinate descent for Lasso

Repeat until convergence

for 
$$j = 1, \cdots, n$$
:  
 $\hat{\beta}_j \leftarrow \psi_{\mathsf{st}} \left( \frac{\boldsymbol{X}_{:,j}^\top \left( \boldsymbol{y} - \sum_{i:i \neq j} \boldsymbol{X}_{:i} \hat{\beta}_i \right)}{\|\boldsymbol{X}_{:j}\|_2^2}; \frac{\lambda}{\|\boldsymbol{X}_{:j}\|_2^2} \right)$ 
(8.5)

## **Risk inflation**

$$y_i = \beta_i + \eta_i, \qquad i = 1, \cdots, n$$

Let's first select / fix a model and then estimate: for a fixed model  $S \subseteq \{1, \dots, n\}$ , the LS estimate  $\hat{\beta}_S$  is

$$(\hat{oldsymbol{eta}}_S)_i = egin{cases} y_i, & ext{if } i \in S \ 0, & ext{else} \end{cases}$$

• Mean square estimation error for a fixed model S:

$$\mathsf{MSE}(\hat{\beta}_S, \beta) := \mathbb{E}[\|\hat{\beta}_S - \beta\|^2] = \sum_{i \in S} \mathbb{E}[(y_i - \beta_i)^2] + \sum_{i \notin S} \beta_i^2$$
$$= \underbrace{|S|\sigma^2}_{\text{variance due to noise}} + \underbrace{\sum_{i \notin S} \beta_i^2}_{i \notin S}$$

bias (since we don't estimate all coefficients)

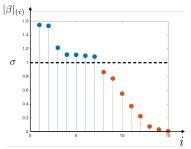
• Smallest MSE for a fixed model size: If we fix the model size |S| = k, then the best model achieves

$$\mathsf{MSE}_{k}(\boldsymbol{\beta}) := \min_{S:|S|=k} \mathsf{MSE}(\hat{\boldsymbol{\beta}}_{S}, \boldsymbol{\beta}) = k\sigma^{2} + \min_{S:|S|=k} \sum_{i \notin S} \beta_{i}^{2}$$
$$= k\sigma^{2} + \sum_{i=k+1}^{n} |\boldsymbol{\beta}|_{(i)}^{2}$$

where  $|\beta|_{(1)} \ge |\beta|_{(2)} \ge \cdots \ge |\beta|_{(n)}$  are order statistics of  $\{|\beta_i|\}$ 

**Implication:** good estimation is possible when  $\beta$  compresses well

## Optimizing the risk over all possible models



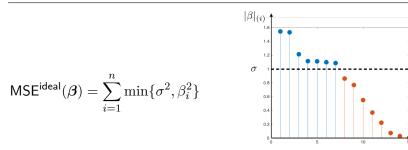
• Ideal risk (smallest MSE over all models): minimizing over all possible model size k gives

$$\begin{split} \mathsf{MSE}^{\mathsf{ideal}}(\boldsymbol{\beta}) &:= \min_{k} \min_{S:|S|=k} \mathsf{MSE}(\hat{\boldsymbol{\beta}}_{S}, \boldsymbol{\beta}) = \min_{k} \left\{ k\sigma^{2} + \sum_{i=k+1}^{n} |\boldsymbol{\beta}|_{(i)}^{2} \right\} \\ &= \sum_{i=1}^{n} \min\{\sigma^{2}, \beta_{i}^{2}\} \end{split}$$

Model selection and Lasso

n

## Oracle lower bound



- $\beta_i$  is worth estimating iff  $|\beta_i| > \sigma^2$
- MSE<sup>ideal</sup> is the optimal risk *if an oracle reveals which variables are* worth estimating and which can be safely ignored
- With the oracle information, one can achieve  $\mathsf{MSE}^{\mathsf{ideal}}$  via

$$\hat{\beta}_{i}^{\text{ideal}} = \begin{cases} y_{i}, & \text{if } |\beta_{i}| > \sigma, \\ 0 & \text{else} \end{cases} \quad (\text{eliminate irrelevant variables})$$

- **Problem:** unfortunately, we do NOT know which model S is the best and hence cannot attain MSE<sup>ideal</sup> ...
- Instead, we shall treat it as an oracle lower bound, and consider the increase in estimation error due to selecting rather than knowing the correct model

Definition 8.3 (risk inflation, Foster & George '94)

The risk inflation of an estimator  $\hat{oldsymbol{eta}}$  is

$$\mathsf{RI}(\hat{oldsymbol{eta}}) = \sup_{oldsymbol{eta}} rac{\mathsf{MSE}(\hat{oldsymbol{eta}},oldsymbol{eta})}{\mathsf{MSE}^{\mathsf{ideal}}(oldsymbol{eta})},$$

where  $\mathsf{MSE}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) := \mathbb{E}[\|\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}\|_2^2].$ 

- Idea: calibrate the actual risk against the ideal risk for each  $\beta$  to better reflect the potential gains / loss
- Suggestion: find a procedure that achieves low risk inflation!

Consider identity design X = I, and  $\hat{\beta}_i = \psi_{\text{ht}} (y_i; \lambda)$  or  $\hat{\beta}_i = \psi_{\text{st}} (y_i; \lambda)$  with threshold zone  $[-\lambda, \lambda]$ 

• For the extreme case where  $oldsymbol{eta}=\mathbf{0}$ ,

$$\mathsf{MSE}^{\mathsf{ideal}}(\boldsymbol{\beta}) = \sum_{i=1}^{p} \min\{\sigma^2, \beta_i^2\} = 0$$

• In order to control risk inflation,  $\lambda$  needs to be sufficiently large so as to ensure  $\hat{\beta}_i \approx 0$  for all *i*. In particular,

$$\begin{aligned} \max_{1 \le i \le p} |y_i| &= \max_{1 \le i \le p} |\eta_i| \approx \sigma \sqrt{2 \log p} \quad (\text{exercise}) \\ &\implies \lambda \ge \sigma \sqrt{2 \log p} \end{aligned}$$

### Theorem 8.4 (Foster & George '94, Johnstone, Candes)

Let  $\hat{\beta}$  be either a soft or hard thresholding procedure with threshold  $\lambda = \sigma \sqrt{2 \log p}$ . Then

$$\mathsf{MSE}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) \le (2\log p + c) \left(\sigma^2 + \mathsf{MSE}^{\mathsf{ideal}}(\boldsymbol{\beta})\right)$$

where c = 1 for soft thresholding and c = 1.2 for hard thresholding.

For large p, one typically has  $\mathsf{MSE}^{\mathsf{ideal}}(\beta) \gg \sigma^2$ . Then Theorem 8.4 implies

$$\mathsf{RI}(\hat{\boldsymbol{\beta}}) \approx 2\log p$$

WLOG, assume that  $\sigma=1.$  The risk of soft thresholding for a single coordinate is

$$r_{\rm st}(\lambda,\beta_i) := \mathbb{E}[(\psi_{\rm st}(y_i;\lambda) - \beta_i)^2]$$

where  $y_i \sim \mathcal{N}(\beta_i, 1)$ .

1. There are 2 very special points that we shall single out:  $\beta_i = 0$ and  $\beta_i = \infty$ . We start by connecting  $r_{\rm st}(\lambda, \beta_i)$  with  $r_{\rm st}(\lambda, 0)$  and  $r_{\rm st}(\lambda, \infty)$ .

#### Lemma 8.5

$$egin{aligned} r_{\mathrm{st}}(\lambda,eta) &\leq r_{\mathrm{st}}(\lambda,0)+eta^2 & (\textit{quadratic upper bound}) \\ r_{\mathrm{st}}(\lambda,eta) &\leq r_{\mathrm{st}}(\lambda,\infty)=1+\lambda^2 \end{aligned}$$

## Proof of Theorem 8.4 for soft thresholding

2. The next step is to control  $r_{
m st}(\lambda,0)$ 

Lemma 8.6

$$r_{
m st}(\lambda,0) \leq 2\phi(\lambda)/\lambda \overset{\lambda=\sqrt{2\log p}}{\ll} 1/p$$
 (very small)  
where  $\phi(z) := \frac{1}{\sqrt{2\pi}} \exp(-z^2/2)$ .

3. With these lemmas in mind, we are ready to prove Theorem 8.4  $\sum_{i=1}^{p} \mathbb{E}[(\beta_i - \hat{\beta}_i)^2] \leq pr_{st}(\lambda, 0) + \sum_{i=1}^{p} \min\left\{\beta_i^2, \lambda^2 + 1\right\}$   $< 1 + \sum_{i=1}^{p} \min\left\{\beta_i^2, 2\log p + 1\right\}$   $\leq (2\log p + 1)\left[1 + \sum_{i=1}^{p} \min\left\{\beta_i^2, 1\right\}\right]$   $= (2\log p + 1)\left(1 + \mathsf{MSE}^{\mathsf{ideal}}\right)$ 

# Proof of Lemma 8.5

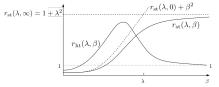


Figure adapted from Johnstone '15

WLOG, assume  $\beta \geq 0$ .

(1) To prove 
$$r_{\rm st}(\lambda,\beta) \leq r_{\rm st}(\lambda,0) + \beta^2$$
, it suffices to show  $\frac{\partial r_{\rm st}}{\partial \beta} \leq 2\beta$ , as  $r_{\rm st}(\lambda,\beta) - r_{\rm st}(\lambda,0) = \int_0^\beta \frac{\partial r_{\rm st}(\lambda,\beta)}{\partial \beta} d\beta \leq \int_0^\beta 2\beta d\beta = \beta^2$ .

This follows since (exercise)

$$\frac{\partial r_{\rm st}(\lambda,\beta)}{\partial \beta} = 2\beta \mathbb{P}\left(Z \in [-\lambda - \beta, \lambda - \beta]\right) \in [0, 2\beta],\tag{8.6}$$

with  $Z \sim \mathcal{N}(0,1)$ 

Model selection and Lasso

# Proof of Lemma 8.5

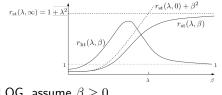


Figure adapted from Johnstone '15

WLOG, assume  $\beta \geq 0$ .

(2) The identity (8.6) also shows  $r_{\rm st}$  is increasing in  $\beta > 0$ , and hence  $r_{\rm st}(\lambda,\beta) \le r_{\rm st}(\lambda,\infty) = \mathbb{E}[((\beta + z - \lambda) - \beta)^2] = 1 + \lambda^2 \qquad (8.7)$ 

$$\begin{aligned} \frac{r_{\rm st}(\lambda,0)}{2} &= \int_{\lambda}^{\infty} (y-\lambda)^2 \phi(y) \mathrm{d}y \\ &= \int_{\lambda}^{\infty} (y-2\lambda) \, y \phi(y) \mathrm{d}y + \lambda^2 \int_{\lambda}^{\infty} \phi(y) \mathrm{d}y \\ \stackrel{(a)}{=} &- \int_{\lambda}^{\infty} (y-2\lambda) \, \phi'(y) \mathrm{d}y + \lambda^2 \mathbb{P} \left\{ Z > \lambda \right\} \\ \stackrel{(b)}{=} &- (y-2\lambda) \, \phi(y) \Big|_{\lambda}^{\infty} + \int_{\lambda}^{\infty} \phi(y) \mathrm{d}y + \lambda^2 \mathbb{P} \left\{ Z > \lambda \right\} \\ &= &-\lambda \phi(\lambda) + \left(1 + \lambda^2\right) \mathbb{P} \left\{ Z > \lambda \right\} \\ \stackrel{(c)}{\leq} &-\lambda \phi(\lambda) + \left(1 + \lambda^2\right) \frac{\phi(\lambda)}{\lambda} = \frac{\phi(\lambda)}{\lambda}, \end{aligned}$$

where (a) follows since  $\phi'(y) = -y\phi(y)$ , (b) follows from integration by parts, and (c) holds since  $\mathbb{P}\left\{Z > \lambda\right\} \leq \frac{\phi(\lambda)}{\lambda}$ .

Model selection and Lasso

# Optimality

Theorem 8.7 (Foster & George '94, Jonestone)

$$\inf_{\hat{\boldsymbol{\beta}}} \sup_{\boldsymbol{\beta}} \frac{\mathsf{MSE}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})}{\sigma^2 + \mathsf{MSE}^{\mathsf{ideal}}(\boldsymbol{\beta})} \geq (1 + o(1))2\log p$$

- Soft and hard thresholding rules—depending only on available data without access to an oracle—can achieve the ideal risk up to the multiplicative factor  $(1+o(1))2\log p$
- This  $2\log p$  factor is asymptotically optimal for unrestricted  $oldsymbol{eta}$

## Comparison with canonical selection procedure

1. Minimax-optimal procedure w.r.t. risk inflation

$$\hat{eta}_i = \psi_{\mathsf{ht}} \left( y_i; \; \sigma \sqrt{2\log p} 
ight)$$

2. Canonical selection based on  $C_p$  statistics

$$\hat{\beta}_i = \psi_{\mathsf{ht}} \left( y_i; \ \sqrt{2}\sigma \right)$$

- $\circ~$  Optimal procedure employs a much larger threshold zone
- **Reason:**  $\min_{S} C_p(S)$  underestimates  $\min_{S} \mathbb{E}[\mathsf{PE}(S)]$  since

$$\mathbb{E}\left[\min_{S} C_p(S)\right] \underbrace{\leq}_{\text{sometimes} \ll} \min_{S} \mathbb{E}\big[C_p(S)\big] = \min_{S} \mathbb{E}\big[\mathsf{PE}(S)\big]$$

 $\circ$  e.g. when  $m{eta} = m{0}$ ,  $\|\psi_{\mathsf{ht}}\left(m{y};\sqrt{2}\sigma
ight) - m{eta}\|^2 symp n \gg 0$  with high prob.

Model selection and Lasso

Let's turn to a general design matrix X:

$$oldsymbol{y} = oldsymbol{X}oldsymbol{eta} + oldsymbol{\eta} ~~$$
 where  $oldsymbol{\eta} \sim \mathcal{N}(oldsymbol{0},oldsymbol{I})$ 

One can take the ideal risk to be

$$\mathsf{MSE}^{\mathsf{ideal}} := \min_{S} \mathsf{PE}(S) = \min_{S} \left\{ \underbrace{\mathbb{E}[\|\boldsymbol{X}_{S}\hat{\boldsymbol{\beta}}_{S} - \boldsymbol{X}\boldsymbol{\beta}\|_{2}^{2}]}_{\mathsf{model error}} + |S|\sigma^{2} \right\}$$

Consider the  $\ell_0\text{-penalized}$  selection procedure

minimize<sub>$$\hat{\boldsymbol{\beta}}$$</sub>  $\|\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}\|_{2}^{2} + \lambda^{2}\sigma^{2}\|\hat{\boldsymbol{\beta}}\|_{0}$  (8.8)

for some  $\lambda \asymp \sqrt{\log p}$ 

Theorem 8.8 (Foster & George '94, Birge & Massart '01, Jonestone, Candes)

$$\left| \text{achievability} \right| \qquad \mathsf{MSE}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) \lesssim \left( \log p \right) \left\{ \sigma^2 + \mathsf{MSE}^{\mathrm{ideal}}(\boldsymbol{\beta}) \right\}$$

(minimax lower bound)  $\inf_{\hat{\beta}} \sup_{\beta} \frac{\mathsf{MSE}(\hat{\beta}, \beta)}{\sigma^2 + \mathsf{MSE}^{\mathsf{ideal}}(\beta)} \gtrsim \log p$ 

### (8.8) is nearly minimax optimal for arbitrary designs!

Model selection and Lasso

$$\boldsymbol{X} = \begin{bmatrix} 1 & & & \epsilon \\ & 1 & & & \vdots \\ & & \ddots & & \epsilon \\ & & & 1 & 1 \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ -1/\epsilon \\ 1/\epsilon \end{bmatrix}, \quad \text{and} \quad \boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} = \begin{bmatrix} 1 \\ \vdots \\ 1 \\ 0 \end{bmatrix}$$

When  $\epsilon \rightarrow 0,$  solution to Lasso is

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} 1\\ \vdots\\ 1\\ 0 \end{bmatrix} \qquad \qquad \text{far from the truth}$$

ullet lssue: the last 2 columns of  ${\boldsymbol X}$  are too similar / correlated

## Minimax risk for sparse vectors

So far we've considered risk without any restriction on  $\beta$ . Practically, prior knowledge (like sparsity of  $\beta$ ) might be exploited to yield more accurate estimates.

#### Theorem 8.9

Suppose X = I. For any k-sparse  $\beta$  with  $k \ll p$ , the asymptotic minimax risk is

$$\inf_{\hat{\boldsymbol{\beta}}} \sup_{\boldsymbol{\beta}: \|\boldsymbol{\beta}\|_0 \le k} \mathsf{MSE}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) = (1 + o(1)) 2\sigma^2 k \log(p/k)$$

## Minimaxity of soft thresholding estimator

Consider  $\hat{\beta}_i = \psi_{\rm st}(y_i; \lambda)$  with  $\lambda = \sigma \sqrt{2\log p}$  as before

- If  $oldsymbol{eta}=\mathbf{0}$ , one has  $\hat{oldsymbol{eta}}pprox\mathbf{0}$  as discussed before
- If  $\beta_1 \gg \beta_2 \gg \cdots \gg \beta_k \gg \sigma$  and  $\beta_{k+1} = \cdots = \beta_p = 0$ , then

$$\begin{split} \hat{\beta}_i &\approx \begin{cases} y_i - \lambda, & \text{if } i \leq k \\ 0, & \text{else} \end{cases} \\ \implies \quad \mathsf{MSE}(\hat{\beta}, \beta) &\approx \sum_{i=1}^k \mathbb{E}\left[(y_i - \beta_i - \lambda)^2\right] = k(\sigma^2 + \lambda^2) \\ &= k\sigma^2(2\log p + 1) > \underbrace{2k\sigma^2\log(p/k)}_{\text{minimax risk}} \end{split}$$

 $\circ~$  Need to pick a smaller threshold  $\lambda$ 

# Minimaxity of soft thresholding estimator

#### Theorem 8.10

Suppose X = I. For any k-sparse  $\beta$  with  $k \ll p$ , the soft thresholding estimator  $\hat{\beta}_i = \psi_{\rm st}(y_i; \lambda)$  with  $\lambda = \sigma \sqrt{2\log(p/k)}$  obeys  ${\sf MSE}(\hat{\beta}, \beta) \le (1 + o(1))2\sigma^2 k \log(p/k)$ 

• Threshold  $\lambda$  determined by sparsity level

If  $\beta_1 \gg \cdots \gg \beta_k \gg \sigma$  and  $\beta_{k+1} = \cdots = \beta_p = 0$ , then

$$\hat{\beta}_i \approx \begin{cases} y_i - \lambda, & \text{if } i \leq k \\ 0, & \text{else} \end{cases}$$

$$\implies \mathsf{MSE}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) \approx k(\sigma^2 + \lambda^2) \quad (\text{as shown before}) \\ = k\sigma^2(2\log(p/k) + 1) \\ \approx \underbrace{2k\sigma^2\log(p/k)}_{k \neq 1}$$

minimax risk

WLOG, suppose  $\sigma = 1$ . Under the sparsity constraint,

$$\begin{aligned} \mathsf{MSE}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) &= \sum_{i=1}^{p} r_{\mathrm{st}}(\lambda, \beta_{i}) = \sum_{i:\beta_{i} \neq 0} r_{\mathrm{st}}(\lambda, \beta_{i}) + (p-k) r_{\mathrm{st}}(\lambda, 0) \\ &\leq k r_{\mathrm{st}}(\lambda, \infty) + (p-k) r_{\mathrm{st}}(\lambda, 0) \\ &\leq k \left(1 + \lambda^{2}\right) + 2p \frac{\phi(\lambda)}{\lambda} \end{aligned} \tag{8.9}$$
$$&= (1 + o(1))2k \log(p/k) + \frac{k}{\sqrt{\pi \log(p/k)}} \\ &= (1 + o(1))2k \log(p/k), \end{aligned}$$

where (8.9) follows since  $r_{\rm st}(\lambda,\beta)$  is increasing in  $\beta$ , and (8.10) comes from (8.7) and Lemma 8.6

- **Problem of "optimal" soft thresholding:** knowing the sparsity level *a priori* is often unrealistic
- **Question:** can we develop an estimator that is adaptive to unknown sparsity?

Adaptivity cannot be achieved via soft thresholding with fixed thresholds, but what if we adopt data-dependent thresholds?

Let  $|y|_{(1)} \ge \cdots \ge |y|_{(p)}$  be the order statistics of  $|y_1|, \cdots, |y_p|$ Key idea: use a different threshold for  $y_i$  based on its rank

$$\hat{\beta}_i = \psi_{\text{st}}(y_i; \lambda_j) \quad \text{if } |y_i| = |y|_{(j)}$$
(8.11)

• originally due to Benjamini & Hochberg '95 for controlling false discovery rate

## How to set thresholds? (non-rigorous)

Consider k-sparse vectors, and WLOG suppose  $\sigma = 1$ . Recall that when we use soft thresholding with  $\lambda = \sqrt{2\log(p/k)}$ , the least favorable signal is

$$\beta_1 \gg \dots \gg \beta_k \gg \sigma$$
 and  $\beta_{k+1} = \dots = \beta_p = 0$  (8.12)

If we use data-dependent thresholds and if  $\{\lambda_i\}_{i>k}$  are sufficiently large, then

$$\hat{\beta}_i \approx \begin{cases} y_i - \lambda_i, & \text{if } i \leq k \\ 0, & \text{else} \end{cases}$$

$$\mathsf{MSE}(\hat{\boldsymbol{\beta}},\boldsymbol{\beta}) \approx \sum_{i=1}^{k} \mathbb{E}[(y_i - \lambda_i - \beta_i)^2] = \sum_{i=1}^{k} \left(1 + \lambda_i^2\right)$$

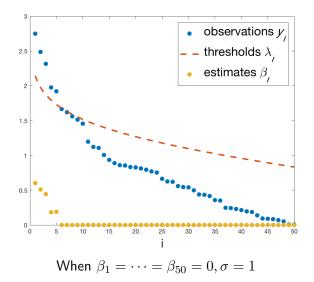
If the estimator is minimax for each k and if the worst-case  $\beta$  for each k is given by (8.12), then

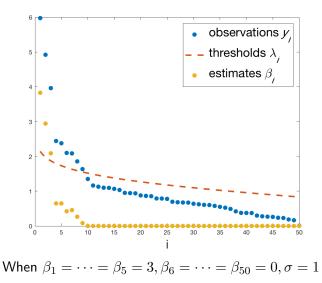
$$\mathsf{MSE}(\hat{\boldsymbol{\beta}},\boldsymbol{\beta})\approx 2k\log(p/k), \qquad k=1,\cdots,p$$

$$\implies \quad \sum_{i=1}^k \lambda_i^2 \approx 2k \log(p/k), \qquad k=1, \cdots, p$$

This suggests a choice (think of  $\lambda_i^2$  as the derivative of  $g(x) := 2x \log(p/x)$ )

$$\lambda_i^2 \approx 2\log(p/i) - 2 \approx 2\log(p/i)$$





# Minimaxity

### Theorem 8.11 (Abramovich '06, Su & Candes '16)

Suppose X = I, and  $k \ll p$ . The estimator (8.11) with  $\lambda_i = \sigma \sqrt{2 \log(p/i)}$  is minimax, i.e.

$$\mathsf{MSE}(\hat{\boldsymbol{\beta}},\boldsymbol{\beta}) = (1+o(1))2\sigma^2k\log(p/k)$$

• Adaptive to unknown sparsity

# Generalization to arbitrary design: SLOPE

SLOPE (Sorted L-One Penalized Estimation): a generalization of LASSO

$$\operatorname{minimize}_{\hat{\boldsymbol{\beta}} \in \mathbb{R}^p} \quad \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}\|_2^2 + \lambda_1 |\hat{\boldsymbol{\beta}}|_{(1)} + \lambda_2 |\hat{\boldsymbol{\beta}}|_{(2)} + \dots + \lambda_p |\hat{\boldsymbol{\beta}}|_{(p)}$$

where  $\lambda_i = \sigma \Phi^{-1}(1 - iq/(2p)) \approx \sigma \sqrt{2\log(p/i)}$ , 0 < q < 1 is constant, and  $\Phi$  is CDF of  $\mathcal{N}(0, 1)$ 

- This is a convex program if  $\lambda_1 \geq \cdots \geq \lambda_p \geq 0$  (homework)
- This can be computed efficiently via proximal methods
- SLOPE is minimax and adaptive to unknown sparsity under i.i.d. Gaussian design  $\boldsymbol{X}$

# Reference

- "Lecture notes, Theory of Statistics (Stats 300C)," E. Candes.
- "Statistical machine learning for high-dimensional data," J. Fan, R. Li, C. Zhang, H. Zou, 2018.
- "Linear regression analysis," G. Seber and A. Lee, Wiley, 2003.
- "Gaussian estimation: sequence and wavelet models," I. Johnstone, 2015.
- "Some comments on  $C_p$ ," C. Mallows, Technometrics, 1973.
- "The risk inflation criterion for multiple regression," D. Foster and E. George, Annals of Statistics, 1994.
- "Regression Shrinkage and Selection via the lasso," R. Tibshirani, Journal of the Royal Statistical Society, 1996.
- "Statistical learning with sparsity: the Lasso and generalizations," T. Hastie, R. Tibshirani, and M. Wainwright, 2015.

- "Gaussian model selection," L. Birge and P. Massart, Journal of the European Mathematical Society, 2011.
- "Controlling the false discovery rate: a practical and powerful approach to multiple testing," Y. Benjamini and Y. Hochberg, Journal of the Royal Statistical Society, 1995
- "Adapting to unknown sparsity by controlling the false discovery rate,"
   F. Abramovich, Y. Benjamini, D. Donoho and I. Johnstone, Annals of Statistics, 2006.
- "SLOPE is adaptive to unknown sparsity and asymptotically minimax," W. Su and E. Candes, Annals of Statistics, 2016.