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Motivation 1: recommendation systems
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e Netflix challenge: Netflix provides highly incomplete ratings from
0.5 million users for & 17,770 movies

e How to predict unseen user ratings for movies?
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In general, we cannot infer missing ratings
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Underdetermined system (more unknowns than observations)
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... unless rating matrix has other structure
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A few factors explain most of the data
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unless rating matrix has other structure
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A few factors explain most of the data —— low-rank approximation

How to exploit (approx.) low-rank structure in prediction?
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Motivation 2: sensor localization

e n sensors/points ¢; ER3, j=1,---,n

e Observe partial information about pairwise distances
2 2 2 T
Dij = llzi — x|z = [z + llz;2 — 22 «;

e Goal: infer distance between every pair of nodes
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Motivation 2: sensor localization

Introduce

X = € R™*3

then distance matrix D = [D; j]1<; j<n can be written as

13
D=| [ 1741 [lml3 - Jeal3] —2X X7
[ENE:
rank 1
low rank

rank(D) < n — low-rank matrix completion
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Motivation 3: structure from motion

Given multiple images and a few correspondences between image
features, how to estimate the locations of 3D points?

Snavely, Seitz, & Szeliski

Structure from motion: reconstruct 3D scene geometry and

i A structure
camera poses from multiple images
| —

motion

Matrix recovery
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Motivation 3: structure from motion

Tomasi and Kanade's factorization:

e Consider n 3D points {p; & Rg}lgjgn in m different 2D frames
o x;; € R¥?*!: |ocations of the jt" point in the i*" frame

~~ ~~
projection matrix €R2X3 3D position €R3
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Motivation 3: structure from motion

Tomasi and Kanade's factorization:

e Matrix of all 2D locations

X=|: -~ = ||[p - pu|erm

LTm,1 *°° LTmn Mm

low-rank factorization

Goal: fill in missing entries of X given a small number of entries
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Motivation 4: missing phase problem

Detectors record intensities of diffracted rays
e clectric field x(t1,t2) — Fourier transform Z(f1, f2)

Fig credit: Stanford SLAC

ffraction pattern
recorded in the far field

sample

Q

. 2
intensity of electrical field: |£(f17f2)’2 = ‘/x(tl,t2)6_12”(f1t1+f2t2)dt1dt2‘

Phase retrieval: recover signal x(t1,t2) from intensity |Z(f1, f2)|2 J
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A discrete-time model: solving quadratic systems

A x Ax y = |Az|?
HENE "E B ! !
nmE i _ :
BB = — :
H B N ‘ i
i TR :
N EEn = .
H PE R ¢ .

Solve for x € R™ in m quadratic equations
w = l|afx|? E=1,...,m
— |A 2 h 2 . 2 2
or y = |Ax| where |z|* = {|z1|, -, |zm|7}
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An equivalent view: low-rank factorization

Lifting: introduce X = xx™* to linearize constraints

Yp = |a2:1:|2 =aj(zx)ar, = yr=a;Xa; = (ara},X) (13.1)

=Ill HEEEEEN

| |

| |
[ |
| |
| |
| |
[ |

find X >0

s.t. yr = (agar, X), k=1,---.m

rank(X) =1
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Problem setup
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Setup

e Consider M € R™*"
o rank(M)=r<n
e Singular value decomposition (SVD) of M:

'
M = usv' =Y cuw,
(2n—r)r degrees of freedom =1
o1
where ¥ = contains all singular values {o;};
Or
U:=[ui, - ,u], V:=][vy,- - ,v,] consist of singular vectors
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Low-rank matrix completion

Observed entries

M ;, (G,7)e S
sampling set

Completion via rank minimization

minimizex rank(X) st. X5 =DM;; (4,7) €Q

Matrix recovery
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Low-rank matrix completion

Observed entries

M@j, (Z,]) S Q
sampling set

e An operator Pq: orthogonal projection onto the subspace of
matrices supported on {2

Completion via rank minimization

minimizex rank(X) sit. Pa(X)="Pa(M)
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More general: low-rank matrix recovery

Linear measurements

e An operator form

Recovery via rank minimization

minimizex rank(X) st y=A(X)
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Nuclear norm minimization
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Convex relaxation

minimize x cgnxn

s.t.

minimize x cgnxn

s.t.

Question: what is the convex surrogate for rank(-)?

rank(X)

———
nonconvex

Pa(X) = Pa(M)

rank(X)
nonconvex

A(X) = A(M)

Matrix recovery
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Nuclear norm

Definition 13.1
The nuclear norm of X is

XL =Y ox)

i=1 . )
it largest singular value

e Nuclear norm is a counterpart of /1 norm for rank function

e Relations among different norms
1X1 < [ X[ < IX][« < VX < | X

e (Tightness) {X : || X« < 1} is the convex hull of rank-1
matrices obeying ||uv | < 1 (Fazel '02)
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Additivity of nuclear norm

Fact 13.2

Let A and B be matrices of the same dimensions. If ABT = 0 and
ATB =0, then | A+ B = | Al + | B].

e If row (resp. column) spaces of A and B are orthogonal, then
|A + Bl|. = [|All« + | B«

e Similar to /1 norm: when x and y have disjoint support,

lz+ylli = ||zlli + lylli  (a key to study £1-min under RIP)

Matrix recovery 13-21



Proof of Fact 13.2

Suppose A =UsX 4V, and B =UgpX3Vjy, which gives

ABT =0 — V/Vs =0
A'TB =0 UXUB =0
Thus, one can write
YA .
A =[U4,Up,U¢| 0 [Va, Vg, Vgl
0
0
B =[U4,Ug,Uc] Yp [Va, Vi, Vo'
0

and hence

by
la+Bl. = |wavsl | ®4 o | waval”| <14l + 181,

*
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Dual norm

Definition 13.3 (Dual norm)
For a given norm || - || 4, the dual norm is defined as

1 X% = max{(X,Y) : [|[Y]l4 < 1}

dual

e /1 norm +— Lo norm
dual

e nuclear norm < spectral norm
dual

e /5 norm < {9 norm
dual

e Frobenius norm <= Frobenius norm
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Representing nuclear norm via SDP

Since the spectral norm is the dual norm of the nuclear norm,
| X[« = max{(X,Y) : [Y[| <1}
The constraint is equivalent to

”Y” S 1 — YYT j I Schur complement [ I Y

Fact 13.4

1]l —m;;tX{<X,Y> ’ [Y?T ﬂ - o}

Matrix recovery 13-24



Representing nuclear norm via SDP

Since the spectral norm is the dual norm of the nuclear norm,
[ X[l = max{{(X,Y) : [Y] <1}
The constraint is equivalent to

”Y” S 1 — YYT j I Schur complement [ I Y

Fact 13.5 (Dual characterization)

w, X
X" W,

)

. 1 1
[ X ||« = W {QTF(Wl) + §TF(W2) | [

~of
e Optimal point: W, =UXU", Wy = VEV T (where
X =U%V")
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Aside: dual of semidefinite program

(primal)  minimizex (C,X)
s.t. <Ai,X>=bZ‘, 1<:<m

(dual) maximize, b'y

s.t. 2%14Z +S8=C

Exercise: use this to verify Fact 13.5

Matrix recovery
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Nuclear norm minimization via SDP

Convex relaxation of rank minimization

A

M = argminy || X[« st y=A(X)

This is solvable via SDP
N 1 1
minimizex w, w, §Tr(W1) + §Tr(W2)

st. y=A(X), l

Matrix recovery
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RIP and low-rank matrix recovery
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RIP for low-rank matrices

Almost parallel results to compressed sensing ...1

Definition 13.6

The r-restricted isometry constants 62°(.A) and 6!P(A) are the
smallest quantities s.t.

(1= o)X [r < JAX)[F < (1 +6) | XF, VX :rank(X) <

'One can also define RIP w.r.t. || - ||& rather than || - ||r.
Matrix recovery 13-28



RIP and low-rank matrix recovery

Theorem 13.7 (Recht, Fazel, Parrilo '10, Candes, Plan '11)

Suppose rank(M) = r. For any fixed integer K > 0, if
14330,

175“)

< % then nuclear norm minimization is exact
(2+K)r

o |t allows 5}‘3 to be larger than 1

e Can be easily extended to account for noisy case and
approximately low-rank matrices
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Geometry of nuclear norm ball

Level set of nuclear norm ball: H[ ;j Z w <1
*

Fig. credit: Candes '14
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Some notation

Recal M =UXV'
e Let T be the span of matrices of the form (called tangent space)
T={UX"+YV':X,Y cR™"}
e Let Pr be the orthogonal projection onto 7"
Pr(X)=UU'X +XVV' -UU'XVV'
e lts complement Py =7 — Pr:
Pr(X)=I-UUNHXIT-VVT)

o MP].(X)=0and M'Pr.(X)=0
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Proof of Theorem 13.7

Suppose X = M + H is feasible and obeys | M + H||. < || M||..
The goal is to show that H = 0 under RIP.

The key is to decompose H into Hy+ Hy + Hy + ...
T

Hy=Pr(H) (rank 2r)

H.=P#(H) (obeying MH =0 and M H,. = 0)

H;: the best rank-(K'r) approximation of H. (K is const)

Hj: the best rank-(K'r) approximation of H. — H;

Matrix recovery 13-32



Proof of Theorem 13.7

Informally, the proof proceeds by showing that

® Hj “dominates” > ,~, H; (by objective function)
— see Step 1

@ (converse) >-,~o H; "dominates” Hy+ Hy (by RIP + feasibility)
— see Step 2

These cannot happen simultaneously unless H = 0
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Proof of Theorem 13.7

Step 1 (which does not rely on RIP). Show that
S IH; I < || Holl/VET. (13.2)

j>2
This follows immediately by combining the following 2 observations:
(i) Since M + H is assumed to be a better estimate:
M|« > [[M + HI|. > [[M + Hcl|. — || Hol|« (13.3)
> [|M|l. + | Hell.  — [[Holl«
—_— ——

Fact 13.2 (MH_] =0 and M T H.=0)

= [[Hell+ < [|Holl (13.4)
(ii) Since nonzero singular values of H;_; dominate those of H; (j > 2):

1H;lle < VEr|Hjl| < VEr[|Hj-all/(Kr)] < [|Hj-1]lo/VET

= > IH)lr< ZIIHJ 1l < FIIH cll+  (13.5)

Jj=2



Proof of Theorem 13.7

Step 2 (using feasibility 4+ RIP). Show that 3p < \/K/2 s.t.

|Ho + Hilp < szzz 1 Hjlr (13.6)

If this claim holds, then

H,+ H H w1 H
< ; < p—— .
|Ho+ Hille <pd_ _ [Hjle < p e ol
1 2
< p——(var|H, ): | H,
<p T{r( rlHollr ) = p\/ 7z 1 Hollv
2
< p\| 2 | Ho + H e (13.7)

where the last line holds since, by construction, Hy and H; lie in

orthogonal subspaces.

This bound (13.7) cannot hold with p < \/K/2 unless Hy+ H; =0
—_————

equivalently, Ho=H =0
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Proof of Theorem 13.7

We now prove (13.6). To connect Ho + Hi with }_ -, Hj, we use
feasibility: -

AH)=0 <= A(Ho+H))=- ijg A(H;),
which taken collectively with RIP yields
(1= 8034 ) )| Ho + Hillr < [|A(Ho + Hy) |, = H >

<2, A

<Z (1 + 055 |1 H ||

AH)|

Jj=2

. . . 14630,
This establishes (13.6) as long as p := T <

(24+K)r
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Gaussian sampling operators satisfy RIP

If the entries of {A;}™, are i.i.d. N(0,1/m), then

V-2

A< Vs

with high prob., provided that

m 2 nr (near-optimal sample size)

This satisfies the assumption of Theorem 13.7 with K =3

Matrix recovery
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Precise phase transition

Using the statistical dimension machienry, we can locate precise phase
transition (Amelunxen, Lotz, McCoy & Tropp '13)

works if m > stat-dim(D (| - ||+, X))

nuclear norm min
{ fails if  m <stat-dim(D (] - ||+, X))

where
stat-dim(D (|- ., X)) ~ % (©)
and
w(p)=g{){p+(1—p) p(1+72)+(1—p)/ (u—7)° 4;u2du”
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Aside: subgradient of nuclear norm

Subdifferential (set of subgradients) of || - || at M is

oMl ={UVT+W: Pp(W)=0, [W| <1}

e Does not depend on the singular values of M

o Z c 9| M|, iff

Pr(Z)=UV', |Pr(2)|<1.

Matrix recovery
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Derivation of the statistical dimension

I, _ L.
WLOG, suppose X = [ 0 } then 9|| X || = { [ W } | W] < 1}.

Gll G12

Let G = { Gai G

} be i.i.d. standard Gaussian.

From the convex geometry lecture, we know that

>0 | Ze€d|X|l«

Gii Gio . I,
Ga1 G2 %4

stat—dim(D(H . ||*,X)) ~ inf E { inf |G- TZ|12;:|

)

Matrix recovery 13-40
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Derivation of statistical dimension

Gu G| __| I ’
G211 Ga wWolle

=E [IIGu = 7L |5 + |G |§ + |Gzl + s NG22 — TW||F:|

Observe that

E [ inf
wW:||W]<1

n—r

=r (2n —r+ 7'2) +E [Zi=1 (0i (G22) — T)i] .

Matrix recovery empirical distributions of {0;(G22)/v/n — 7} 1341



Derivation of statistical dimension
Observe that

E inf G Gz . I, 2
wW:||W| <1 Go1 Goo \%% .

=E [|G11 — L5 + |G} + |Gzl + | inf [[Ga2 — TW|§}

W<t

n—r

=r(on—r+7) +E Y (i (G) - 712 ]

i=
Recall from random matrix theory (Marchenko-Pastur law)

—E [Z (0 (G=2) T>i] o [,

n—r
i=1

where Gz ~ N (0, ﬁI) Taking p = r/n and minimizing over 7 lead to

closed-form expression for phase transition boundary.

Matrix recovery
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Numerical phase transition (n = 30)

Low-rank matrix recovery via Schatten 1-norm minimization
900

600

300

95% success
50% success
5% success
Theory

Number of random measurements

0

10 2
Rank of Xy

Figure credit: Amelunxen, Lotz, McCoy, & Tropp '13
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Sampling operators that do NOT satisfy RIP

Unfortunately, many sampling operators fail to satisfy RIP
(e.g. none of the 4 motivating examples in this lecture satisfies RIP)

Two important examples:

e Phase retrieval / solving random quadratic systems of equations

e Matrix completion
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Phase retrieval / solving random quadratic
systems of equations
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Rank-one measurements

Measurements: see (13.1)

yi = a;, zx ' a; = (a;a] , M), 1<i<m
=M
- Y
(Ar, X) (ara], X)
Ay, X asa, , X
A(X) = (A2, X) | <2? )
<Am,X> <ama;,X>

Matrix recovery 13-45



Rank-one measurements

Suppose a; nd. N(0,1,)

e If x is independent of {a;}, then
(wa] wa’) = o]l < |2} = |A(ea?)] = Vilea"|r
e Consider A; = aiaZT: with high prob.,
(aiaf , A;) = |laill; = n||aia] |

= [A(A)p = ’<aia’;rvAi>’ ~ n||Aillr
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Rank-one measurements

Suppose a; nd. N(0,1,)

e If the sample size m =< n (information limit) and K < 1, then

o TAX) g
AXX: rank(X)=1" [XTp " >n
n
AN ~ \/m ~

min . rank(X)=1 XTe

IAX) [

1 +5ub Mmaxx: rank(X)=1 X
1-— (515< = . ||J(X”)F||F R vn> vE
2K MINx: rank(X)=1 XMy

o Violate RIP condition in Theorem 13.7 unless K is exceeding large
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Why do we lose RIP?

Problems:

e Some low-rank matrices X (e.g. aiaiT) might be too aligned
with some (rank-1) measurement matrices

o loss of “incoherence” in some measurements

e Some measurements (A;, X ) might have too high of a leverage
on A(X) when measured in || - ||p

o Solution: replace || - ||r by other norms!
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Mixed-norm RIP

Solution: modify RIP appropriately ...

Definition 13.8 (RIP-(5/(1)

Let £'P(A) and £P(A) be the smallest quantities s.t.

(L= &EMNXF < A1 < L+ D)X lr,  ¥X :rank(X) <7

e More generally, it only requires A to satisfy

= (13.8)
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Analyzing phase retrieval via RIP-/5//;

Theorem 13.9 (Chen, Chi, Goldsmith '15)

Theorem 13.7 continues to hold if we replace 6% and 5 with £
and & (defined in (13.8)), respectively

e Follows the same proof as for Theorem 13.7, except that || - ||¢
(highlighted in red) is replaced by || - ||; in Slide 13-36
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Analyzing phase retrieval via RIP-/5//;

Theorem 13.9 (Chen, Chi, Goldsmith '15)

Theorem 13.7 continues to hold if we replace 6% and 5 with £
and & (defined in (13.8)), respectively

e Back to the example in Slide 13-46:
o If x is independent of {a;}, then

(aia] ,zzx’) = |aiT$|2 =z} = [A(zz") e

||1 = m|xx

o [A(A)], = {aia], Ai)|+32 ), [(aial Aj)| = (ntm)] Ailp

o For both cases, % are of the same order if m > n
F
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Analyzing phase retrieval via RIP-/5//;

Informally, a debiased operator satisfies RIP condition of Theorem
13.9 when m 2 nr (Chen, Chi, Goldsmith '15)

(A; — Ao, X)
B(X):= | (As— A4, X) | e R?

e Debiasing is crucial when r > 1

e A consequence of the Hanson-Wright inequality for quadratic
form (Hanson & Wright '71, Rudelson & Vershynin '03)
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Theoretical guarantee for phase retrieval

(PhaselLift) minimize tr X
X eRnXn ~——
|||+ for PSD matrices

s.t. yi:aiTXai, 1<:<m
X >0 (since X =zx')

Theorem 13.10 (Candés, Strohmer, Voroninski’1l3, Candeés,
Li’14)

Suppose a; ind. N(0,I). With high prob., Phaselift recovers xx "
exactly as soon asm > n
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Extension of phase retrieval

(Phaselift) minimize tr X
X eRnxn ~
|||+ for PSD matrices

s.t. aiTXa,;:aZTMaZ-, 1<i<m
X >0

Theorem 13.11 (Chen, Chi, Goldsmith '15, Cai, Zhang'15)

Suppose M = 0, rank(M) = r, and a; ing. N(0,I). With high
prob., Phaselift recovers M exactly as soon as m 2 nr
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Matrix completion
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Sampling operators for matrix completion

Observation operator (projection onto matrices supported on 2)
Y = Pq(M)

where (i,7) €  with prob. p (random sampling)
e Pq does NOT satisfy RIP when p <« 1!
e For example,

10 0 0 O0 TV T vV
000 0O v 1 vV
0 00 0O [ A S
000 0O v o1 o1 v
00000 v 1 1 v
M Q
|Pa(M)|lp = 0, or equivalently, 11_;# = 0o
24+ K
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Which sampling pattern?

Consider the following sampling pattern

AR
ANENENRRN
ANENENPREN
AN
ANENENPOEN

e If some rows / columns are not sampled, recovery is impossible
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Which low-rank matrices can we recover?

Compare the following rank-1 matrices:

100 --- 0 70 7 0
000 -0 0 70 ?
%

0 00 0 70 7 0

if we miss the top-left entry, then we cannot hope to recover the
matrix

Matrix recovery
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Which low-rank matrices can we recover?

Compare the following rank-1 matrices:

111 .- 1 7107 1

111 .- 1 1 71 ?
— .

111 --- 1 717 -1

it is possible to fill in all missing entries by exploiting the rank-1
structure

Matrix recovery

13-57



Which low-rank matrices can we recover?

Compare the following rank-1 matrices:

100 --- 0 111 --- 1
000 --- 0 111 -1
VS.

000 ---0 111 -1
hard easy

Column / row spaces cannot be aligned with canonical basis vectors
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Coherence

Definition 13.12
Coherence parameter ;i of M = UXV T is the smallest quantity s.t.

max |UTe;[2 <™ and  max [V elf2 < &
7 n ) n

~

o
[ ]
—_

(since 3Ly U Teil3 = [UF =)
if ﬁl =U =V  (most incoherent)

o u=7= ife,elU (most coherent)

~
[ ]

|
_

Pu(ei)
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Performance guarantee

Theorem 13.13 (Candes & Recht '09, Candes & Tao '10, Gross
'11, ...)

Nuclear norm minimization is exact and unique with high probability,
provided that

m > pnrlog®n

e This result is optimal up to a logarithmic factor

e Established via a RIPless theory
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Numerical performance of nuclear-norm
minimization

Fig. credit: Candes, Recht '09
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KKT condition

Lagrangian:

L(X,A) = [|X[[«+(A, Po(X)=Pa(M)) = | X[l.+(Pa(A), X —M)

When M is the minimizer, the KKT condition reads

0 e 8xﬁ(X,A) ‘ x=-Mm << dJA st -— PQ(A) € 6HM|]*

— dW st UV + W is supported on ,
Pr(W) =0, and ||[W| <1
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Optimality condition via dual certificate

Slightly stronger condition than KKT guarantees uniqueness:
Lemma 13.14

M is the unique minimizer of nuclear norm minimization if

e the sampling operator Pq restricted to T' is injective, i.e.
Pa(H) # 0, Y nonzero H € T
e dW s.t.

UV + W is supported on (2,
Pr(W)=0, and |[W] <1

Matrix recovery
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Proof of Lemma 13.14

For any Wy obeying ||[Wy| < 1 and Pr(Wy) = 0, one has

IM+H|.>|M|.+(UV'+W,, H)
=|M|,+{(UV" + W, H)+ (W, - W, H)
= ||M|. +(Po (UVT + W) H) + (Pr.(Wy — W), H)
= ||M||. +(UVT +W,Po(H)) + (Wy — W, Pr.(H))
if we take Wy s.t. (W, Pro(H)) = ||Pre(H)||«
exercise: how to find such an W
> | M|« + | Pr (H)|[« — [[W]] - [Pr (H)||«
=M.+ Q= (W) [Pre(H)|« > [|M].

unless Pr. (H) = 0.
But if Py (H) =0, then H = 0 by injectivity. Thus, |M + H||. > | M|«
for any H # 0. This concludes the proof.
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Constructing dual certificates

Use the “golfing scheme” to produce an approximate dual certificate
(Gross '11)

e Think of it as an iterative algorithm (with sample splitting) to
find a solution satisfying the KKT condition

Matrix recovery 13-65



(Optional) Proximal algorithm

In the presence of noise, one needs to solve
o 1 2
minimizex o ly — A(X)|F + Al X

which can be solved via proximal methods

Proximal operator:
. [1 9
proxy. .. (X) = argmin | o || Z — X[ + Al Z]«
=UT\(Z)VT
where SVD of X is X = USV " with ¥ = diag({c;}), and

TA(X) = diag({(oi = A)+})

Matrix recovery
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(Optional) Proximal algorithm

Algorithm 13.1 Proximal gradient methods
fort=0,1,---:

Xt — T (Xt o ,ut.A*A(Xt))

where p;: step size / learning rate
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