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Motivation
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Motivation 1: recommendation systems

? ? ? ?

?

?
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?

?

• Netflix challenge: Netflix provides highly incomplete ratings from
0.5 million users for & 17,770 movies

• How to predict unseen user ratings for movies?
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In general, we cannot infer missing ratings



X ? ? ? X ?
? ? X X ? ?
X ? ? X ? ?
? ? X ? ? X
X ? ? ? ? ?
? X ? ? X ?
? ? X X ? ?


Underdetermined system (more unknowns than observations)
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... unless rating matrix has other structure
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?

A few factors explain most of the data

How to exploit (approx.) low-rank structure in prediction?
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... unless rating matrix has other structure
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A few factors explain most of the data −→ low-rank approximation

How to exploit (approx.) low-rank structure in prediction?
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Motivation 2: sensor localization

• n sensors / points xj ∈ R3, j = 1, · · · , n
• Observe partial information about pairwise distances

Di,j = ‖xi − xj‖22 = ‖xi‖22 + ‖xj‖22 − 2x>i xj

• Goal: infer distance between every pair of nodes
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Motivation 2: sensor localization
Introduce

X =


x>1
x>2

...
x>n

 ∈ Rn×3

then distance matrix D = [Di,j ]1≤i,j≤n can be written as

D =

 ‖x1‖22
...

‖xn‖22

 1>

︸ ︷︷ ︸
rank 1

+ 1 ·
[
‖x1‖22, · · · , ‖xn‖22

]
︸ ︷︷ ︸

rank 1

− 2XX>︸ ︷︷ ︸
rank 3

︸ ︷︷ ︸
low rank

rank(D)� n −→ low-rank matrix completion
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Motivation 3: structure from motion
Given multiple images and a few correspondences between image
features, how to estimate the locations of 3D points?

Snavely, Seitz, & Szeliski

Structure from motion: reconstruct 3D scene geometry︸ ︷︷ ︸
structure

and

camera poses︸ ︷︷ ︸
motion

from multiple images
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Motivation 3: structure from motion

Tomasi and Kanade’s factorization:

• Consider n 3D points {pj ∈ R3}1≤j≤n in m different 2D frames

• xi,j ∈ R2×1: locations of the jth point in the ith frame

xi,j = Mi︸︷︷︸
projection matrix ∈R2×3

pj︸︷︷︸
3D position ∈R3

• Matrix of all 2D locations

X =

x1,1 · · · x1,n
... . . . ...

xm,1 · · · xm,n

 =

 M1
...

Mm

 [ p1 · · · pn
]

︸ ︷︷ ︸
low-rank factorization

∈ R2m×n

Goal: fill in missing entries of X given a small number of entries
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Motivation 4: missing phase problem
Detectors record intensities of diffracted rays
• electric field x(t1, t2) −→ Fourier transform x̂(f1, f2)

Fig credit: Stanford SLAC

intensity of electrical field:
∣∣x̂(f1, f2)

∣∣2 =
∣∣∣∫ x(t1, t2)e−i2π(f1t1+f2t2)dt1dt2

∣∣∣2
Phase retrieval: recover signal x(t1, t2) from intensity |x̂(f1, f2)

∣∣2
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A discrete-time model: solving quadratic systems
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Solve for x ∈ Rn in m quadratic equations

yk = |a>k x|2, k = 1, . . . ,m
or y = |Ax|2 where |z|2 := {|z1|2, · · · , |zm|2}
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An equivalent view: low-rank factorization

Lifting: introduce X = xx∗ to linearize constraints

yk = |a∗kx|2 = a∗k(xx∗)ak =⇒ yk = a∗kXak = 〈aka∗k,X〉 (13.1)

find X � 0

s.t. yk = 〈aka∗k,X〉, k = 1, · · · ,m
rank(X) = 1
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Problem setup
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Setup

• Consider M ∈ Rn×n

• rank(M) = r � n

• Singular value decomposition (SVD) of M :

M = UΣV >︸ ︷︷ ︸
(2n−r)r degrees of freedom

=
r∑
i=1

σiuiv
>
i

where Σ =

 σ1
. . .

σr

 contains all singular values {σi};

U := [u1, · · · ,ur], V := [v1, · · · ,vr] consist of singular vectors
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Low-rank matrix completion

Observed entries

Mi,j , (i, j) ∈ Ω︸︷︷︸
sampling set

Completion via rank minimization

minimizeX rank(X) s.t. Xi,j = Mi,j , (i, j) ∈ Ω

• An operator PΩ: orthogonal projection onto the subspace of
matrices supported on Ω

Completion via rank minimization

minimizeX rank(X) s.t. PΩ(X) = PΩ(M)
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More general: low-rank matrix recovery

Linear measurements

yi = 〈Ai,M〉 = Tr(A>i M), i = 1, . . .m

• An operator form

y = A(M) :=

 〈A1,M〉
...

〈Am,M〉

 ∈ Rm

Recovery via rank minimization

minimizeX rank(X) s.t. y = A(X)
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Nuclear norm minimization
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Convex relaxation

minimizeX∈Rn×n rank(X)︸ ︷︷ ︸
nonconvex

s.t. PΩ(X) = PΩ(M)

minimizeX∈Rn×n rank(X)︸ ︷︷ ︸
nonconvex

s.t. A(X) = A(M)

Question: what is the convex surrogate for rank(·)?
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Nuclear norm

Definition 13.1
The nuclear norm of X is

‖X‖∗ :=
n∑
i=1

σi(X)︸ ︷︷ ︸
ith largest singular value

• Nuclear norm is a counterpart of `1 norm for rank function

• Relations among different norms

‖X‖ ≤ ‖X‖F ≤ ‖X‖∗ ≤
√
r‖X‖F ≤ r‖X‖

• (Tightness) {X : ‖X‖∗ ≤ 1} is the convex hull of rank-1
matrices obeying ‖uv>‖ ≤ 1 (Fazel ’02)
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Additivity of nuclear norm

Fact 13.2

Let A and B be matrices of the same dimensions. If AB> = 0 and
A>B = 0, then ‖A + B‖∗ = ‖A‖∗ + ‖B‖∗.

• If row (resp. column) spaces of A and B are orthogonal, then
‖A + B‖∗ = ‖A‖∗ + ‖B‖∗

• Similar to `1 norm: when x and y have disjoint support,

‖x + y‖1 = ‖x‖1 + ‖y‖1 (a key to study `1-min under RIP)
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Proof of Fact 13.2

Suppose A = UAΣAV
>
A and B = UBΣBV

>
B , which gives

AB> = 0
A>B = 0

⇐⇒ V >A VB = 0
U>AUB = 0

Thus, one can write

A = [UA,UB ,UC ]

 ΣA

0
0

 [VA,VB ,VC ]>

B = [UA,UB ,UC ]

 0
ΣB

0

 [VA,VB ,VC ]>

and hence
‖A + B‖∗ =

∥∥∥∥[UA,UB ]
[

ΣA

ΣB

]
[VA,VB ]>

∥∥∥∥
∗

= ‖A‖∗ + ‖B‖∗
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Dual norm

Definition 13.3 (Dual norm)
For a given norm ‖ · ‖A, the dual norm is defined as

‖X‖?A := max{〈X,Y 〉 : ‖Y ‖A ≤ 1}

• `1 norm dual←→ `∞ norm

• nuclear norm dual←→ spectral norm

• `2 norm dual←→ `2 norm

• Frobenius norm dual←→ Frobenius norm

Matrix recovery 13-23



Representing nuclear norm via SDP
Since the spectral norm is the dual norm of the nuclear norm,

‖X‖∗ = max{〈X,Y 〉 : ‖Y ‖ ≤ 1}

The constraint is equivalent to

‖Y ‖ ≤ 1 ⇐⇒ Y Y > � I
Schur complement⇐⇒

[
I Y
Y > I

]
� 0

Fact 13.4

‖X‖∗ = max
Y

{
〈X,Y 〉

∣∣∣∣∣
[

I Y
Y > I

]
� 0

}

Fact 13.5 (Dual characterization)

‖X‖∗ = min
W1,W2

{
1
2Tr(W1) + 1

2Tr(W2)
∣∣∣∣∣
[
W1 X
X> W2

]
� 0

}

• Optimal point: W1 = UΣU>, W2 = V ΣV > (where
X = UΣV >)
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Aside: dual of semidefinite program

(primal) minimizeX 〈C,X〉
s.t. 〈Ai,X〉 = bi, 1 ≤ i ≤ m

X � 0

m

(dual) maximizey b>y

s.t.
m∑
i=1

yiAi + S = C

S � 0

Exercise: use this to verify Fact 13.5
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Nuclear norm minimization via SDP

Convex relaxation of rank minimization

M̂ = argminX‖X‖∗ s.t. y = A(X)

This is solvable via SDP

minimizeX,W1,W2
1
2Tr(W1) + 1

2Tr(W2)

s.t. y = A(X),
[
W1 X
X> W2

]
� 0
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RIP and low-rank matrix recovery
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RIP for low-rank matrices

Almost parallel results to compressed sensing ...1

Definition 13.6
The r-restricted isometry constants δub

r (A) and δlb
r (A) are the

smallest quantities s.t.

(1− δlb
r )‖X‖F ≤ ‖A(X)‖F ≤ (1 + δub

r )‖X‖F, ∀X : rank(X) ≤ r

1One can also define RIP w.r.t. ‖ · ‖2
F rather than ‖ · ‖F.
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RIP and low-rank matrix recovery

Theorem 13.7 (Recht, Fazel, Parrilo ’10, Candes, Plan ’11)

Suppose rank(M) = r. For any fixed integer K > 0, if
1+δub

Kr

1−δlb
(2+K)r

<
√

K
2 , then nuclear norm minimization is exact

• It allows δub
Kr to be larger than 1

• Can be easily extended to account for noisy case and
approximately low-rank matrices
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Geometry of nuclear norm ball

Level set of nuclear norm ball:
∥∥∥∥∥
[
x y
y z

]∥∥∥∥∥
∗
≤ 1

Fig. credit: Candes ’14
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Some notation

Recall M = UΣV >

• Let T be the span of matrices of the form (called tangent space)

T = {UX> + Y V > : X,Y ∈ Rn×r}

• Let PT be the orthogonal projection onto T :

PT (X) = UU>X + XV V > −UU>XV V >

• Its complement PT⊥ = I − PT :

PT⊥(X) = (I −UU>)X(I − V V >)

◦ MP>T⊥(X) = 0 and M>PT⊥(X) = 0
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Proof of Theorem 13.7

Suppose X = M + H is feasible and obeys ‖M + H‖∗ ≤ ‖M‖∗.
The goal is to show that H = 0 under RIP.

The key is to decompose H into H0 + H1 + H2 + . . .︸ ︷︷ ︸
Hc

• H0 = PT (H) (rank 2r)
• Hc = P⊥T (H) (obeying MH>c = 0 and M>Hc = 0)
• H1: the best rank-(Kr) approximation of Hc (K is const)
• H2: the best rank-(Kr) approximation of Hc −H1

• ...
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Proof of Theorem 13.7

Informally, the proof proceeds by showing that

1. H0 “dominates”
∑
i≥2 Hi (by objective function)

— see Step 1
2. (converse)

∑
i≥2 Hi “dominates” H0 +H1 (by RIP + feasibility)

— see Step 2

These cannot happen simultaneously unless H = 0
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Proof of Theorem 13.7
Step 1 (which does not rely on RIP). Show that∑

j≥2
‖Hj‖F ≤ ‖H0‖∗/

√
Kr. (13.2)

This follows immediately by combining the following 2 observations:
(i) Since M + H is assumed to be a better estimate:

‖M‖∗ ≥ ‖M + H‖∗ ≥ ‖M + Hc‖∗ − ‖H0‖∗ (13.3)
≥ ‖M‖∗ + ‖Hc‖∗︸ ︷︷ ︸

Fact 13.2 (MH>c =0 and M>Hc=0)

− ‖H0‖∗

=⇒ ‖Hc‖∗ ≤ ‖H0‖∗ (13.4)

(ii) Since nonzero singular values of Hj−1 dominate those of Hj (j ≥ 2):

‖Hj‖F ≤
√
Kr‖Hj‖ ≤

√
Kr
[
‖Hj−1‖∗/(Kr)

]
≤ ‖Hj−1‖∗/

√
Kr

=⇒
∑
j≥2
‖Hj‖F ≤

1√
Kr

∑
j≥2
‖Hj−1‖∗ ≤

1√
Kr
‖Hc‖∗ (13.5)



Proof of Theorem 13.7
Step 2 (using feasibility + RIP). Show that ∃ρ <

√
K/2 s.t.

‖H0 + H1‖F ≤ ρ
∑

j≥2
‖Hj‖F (13.6)

If this claim holds, then

‖H0 + H1‖F ≤ ρ
∑

j≥2
‖Hj‖F

(13.2)
≤ ρ

1√
Kr
‖H0‖∗

≤ ρ 1√
Kr

(√
2r‖H0‖F

)
= ρ

√
2
K
‖H0‖F

≤ ρ
√

2
K
‖H0 + H1‖F (13.7)

where the last line holds since, by construction, H0 and H1 lie in
orthogonal subspaces.

This bound (13.7) cannot hold with ρ <
√
K/2 unless H0 + H1 = 0︸ ︷︷ ︸

equivalently, H0=H1=0
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Proof of Theorem 13.7

We now prove (13.6). To connect H0 + H1 with
∑
j≥2 Hj , we use

feasibility:

A(H) = 0 ⇐⇒ A(H0 + H1) = −
∑

j≥2
A(Hj),

which taken collectively with RIP yields

(1− δlb
(2+K)r)‖H0 + H1‖F ≤

∥∥A(H0 + H1)
∥∥

F =
∥∥∥∑

j≥2
A(Hj)

∥∥∥
F

≤
∑

j≥2

∥∥A(Hj)
∥∥

F

≤
∑

j≥2
(1 + δub

Kr)‖Hj‖F

This establishes (13.6) as long as ρ := 1+δub
Kr

1−δlb
(2+K)r

<
√

K
2 .

Matrix recovery 13-36



Gaussian sampling operators satisfy RIP

If the entries of {Ai}mi=1 are i.i.d. N (0, 1/m), then

δ5r(A) <
√

3−
√

2√
3 +
√

2

with high prob., provided that

m & nr (near-optimal sample size)

This satisfies the assumption of Theorem 13.7 with K = 3
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Precise phase transition

Using the statistical dimension machienry, we can locate precise phase
transition (Amelunxen, Lotz, McCoy & Tropp ’13)

nuclear norm min
{

works if m > stat-dim
(
D (‖ · ‖∗,X)

)
fails if m < stat-dim

(
D (‖ · ‖∗,X)

)
where

stat-dim
(
D (‖ · ‖∗,X)

)
≈ n2ψ

(
r

n

)
and

ψ (ρ) = inf
τ≥0

{
ρ+ (1− ρ)

[
ρ(1 + τ2) + (1− ρ)

∫ 2

τ

(u− τ)2
√

4− u2

π
du
]}
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Aside: subgradient of nuclear norm

Subdifferential (set of subgradients) of ‖ · ‖∗ at M is

∂‖M‖∗ =
{
UV > + W : PT (W ) = 0, ‖W ‖ ≤ 1

}

• Does not depend on the singular values of M

• Z ∈ ∂‖M‖∗ iff

PT (Z) = UV >, ‖PT⊥(Z)‖ ≤ 1.
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Derivation of the statistical dimension

WLOG, suppose X =
[

Ir
0

]
, then ∂‖X‖∗ =

{[
Ir

W

]
| ‖W ‖ ≤ 1

}
.

Let G =
[

G11 G12
G21 G22

]
be i.i.d. standard Gaussian.

From the convex geometry lecture, we know that

stat-dim
(
D(‖ · ‖∗,X)

)
≈ inf

τ≥0
E
[

inf
Z∈∂‖X‖∗

‖G− τZ‖2
F

]
= inf
τ≥0

E

[
inf

W :‖W‖≤1

∥∥∥∥[ G11 G12
G21 G22

]
− τ

[
Ir

W

]∥∥∥∥2

F

]
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Derivation of statistical dimension

Observe that

E

[
inf

W :‖W‖≤1

∥∥∥∥[ G11 G12
G21 G22

]
− τ

[
Ir

W

]∥∥∥∥2

F

]

= E
[
‖G11 − τIr‖2

F + ‖G21‖2
F + ‖G12‖2

F + inf
‖W‖≤1

‖G22 − τW ‖2
F

]
= r
(
2n− r + τ2)+ E

[∑n−r

i=1
(σi (G22)− τ)2

+

]
.

empirical distributions of {σi(G22)/
√
n− r}

Recall from random matrix theory (Marchenko-Pastur law)

1
n− rE

[
n−r∑
i=1

(
σi
(
G̃22

)
− τ
)2

+

]
→
∫ 2

0
(u− τ)2

+

√
4− u2

π
du,

where G̃22 ∼ N
(
0, 1

n−rI
)

. Taking ρ = r/n and minimizing over τ lead to
closed-form expression for phase transition boundary.
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Numerical phase transition (n = 30)

Figure credit: Amelunxen, Lotz, McCoy, & Tropp ’13
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Sampling operators that do NOT satisfy RIP

Unfortunately, many sampling operators fail to satisfy RIP
(e.g. none of the 4 motivating examples in this lecture satisfies RIP)

Two important examples:

• Phase retrieval / solving random quadratic systems of equations

• Matrix completion

Matrix recovery 13-43



Phase retrieval / solving random quadratic
systems of equations
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Rank-one measurements

Measurements: see (13.1)

yi = a>i xx
>︸ ︷︷ ︸

:=M

ai =
〈
aia

>
i︸ ︷︷ ︸

:=Ai

,M
〉
, 1 ≤ i ≤ m

A (X) =


〈A1,X〉
〈A2,X〉

...
〈Am,X〉

 =


〈a1a

>
1 ,X〉

〈a2a
>
2 ,X〉
...

〈ama>m,X〉


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Rank-one measurements

Suppose ai
ind.∼ N (0, In)

• If x is independent of {ai}, then〈
aia

>
i ,xx

>〉 =
∣∣a>i x∣∣2 � ‖x‖22 ⇒ ∥∥∥A(xx>)∥∥∥

F
�
√
m‖xx>‖F

• Consider Ai = aia
>
i : with high prob.,〈

aia
>
i ,Ai

〉
= ‖ai‖42 ≈ n‖aia>i ‖F

=⇒ ‖A(Ai)‖F ≥ |
〈
aia

>
i ,Ai

〉
| ≈ n‖Ai‖F

• If the sample size m � n (information limit) and K � 1, then

maxX: rank(X)=1
‖A(X)‖F
‖X‖F

minX: rank(X)=1
‖A(X)‖F
‖X‖F

&
n√
m

&
√
n

=⇒ 1 + δub
K

1− δlb
2+K

≥
maxX: rank(X)=1

‖A(X)‖F
‖X‖F

minX: rank(X)=1
‖A(X)‖F
‖X‖F

&
√
n�

√
K

◦ Violate RIP condition in Theorem 13.7 unless K is exceeding large

Matrix recovery 13-46



Rank-one measurements

Suppose ai
ind.∼ N (0, In)

• If x is independent of {ai}, then〈
aia

>
i ,xx

>〉 =
∣∣a>i x∣∣2 � ‖x‖22 ⇒ ∥∥∥A(xx>)∥∥∥

F
�
√
m‖xx>‖F

• Consider Ai = aia
>
i : with high prob.,〈

aia
>
i ,Ai

〉
= ‖ai‖42 ≈ n‖aia>i ‖F

=⇒ ‖A(Ai)‖F ≥ |
〈
aia

>
i ,Ai

〉
| ≈ n‖Ai‖F

• If the sample size m � n (information limit) and K � 1, then

maxX: rank(X)=1
‖A(X)‖F
‖X‖F

minX: rank(X)=1
‖A(X)‖F
‖X‖F

&
n√
m

&
√
n

=⇒ 1 + δub
K

1− δlb
2+K

≥
maxX: rank(X)=1

‖A(X)‖F
‖X‖F

minX: rank(X)=1
‖A(X)‖F
‖X‖F

&
√
n�

√
K

◦ Violate RIP condition in Theorem 13.7 unless K is exceeding large
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Why do we lose RIP?

Problems:

• Some low-rank matrices X (e.g. aia>i ) might be too aligned
with some (rank-1) measurement matrices
◦ loss of “incoherence” in some measurements

• Some measurements 〈Ai,X〉 might have too high of a leverage
on A(X) when measured in ‖ · ‖F
◦ Solution: replace ‖ · ‖F by other norms!
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Mixed-norm RIP

Solution: modify RIP appropriately ...

Definition 13.8 (RIP-`2/`1)
Let ξub

r (A) and ξlb
r (A) be the smallest quantities s.t.

(1− ξlb
r )‖X‖F ≤ ‖A(X)‖1 ≤ (1 + ξub

r )‖X‖F, ∀X : rank(X) ≤ r

• More generally, it only requires A to satisfy

supX:rank(X)≤r
‖A(X)‖1
‖X‖F

infX:rank(X)≤r
‖A(X)‖1
‖X‖F

≤ 1 + ξub
r

1− ξlb
r

(13.8)
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Analyzing phase retrieval via RIP-`2/`1

Theorem 13.9 (Chen, Chi, Goldsmith ’15)

Theorem 13.7 continues to hold if we replace δub
r and δlb

r with ξub
r

and ξlb
r (defined in (13.8)), respectively

• Follows the same proof as for Theorem 13.7, except that ‖ · ‖F
(highlighted in red) is replaced by ‖ · ‖1 in Slide 13-36

• Back to the example in Slide 13-46:
◦ If x is independent of {ai}, then〈

aia
>
i ,xx

>〉 =
∣∣a>i x∣∣2 � ‖x‖22 ⇒

∥∥A(xx>)∥∥1 � m‖xx
>‖F

◦ ‖A(Ai)‖1 = |
〈
aia

>
i ,Ai

〉
|+
∑
j:j 6=i |

〈
aia

>
i ,Aj

〉
| ≈ (n+m)‖Ai‖F

◦ For both cases, ‖A(X)‖1
‖X‖F

are of the same order if m� n
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Analyzing phase retrieval via RIP-`2/`1

Theorem 13.9 (Chen, Chi, Goldsmith ’15)

Theorem 13.7 continues to hold if we replace δub
r and δlb

r with ξub
r

and ξlb
r (defined in (13.8)), respectively

• Follows the same proof as for Theorem 13.7, except that ‖ · ‖F
(highlighted in red) is replaced by ‖ · ‖1 in Slide 13-36

• Back to the example in Slide 13-46:
◦ If x is independent of {ai}, then〈

aia
>
i ,xx

>〉 =
∣∣a>i x∣∣2 � ‖x‖22 ⇒

∥∥A(xx>)∥∥1 � m‖xx
>‖F

◦ ‖A(Ai)‖1 = |
〈
aia

>
i ,Ai

〉
|+
∑
j:j 6=i |

〈
aia

>
i ,Aj

〉
| ≈ (n+m)‖Ai‖F

◦ For both cases, ‖A(X)‖1
‖X‖F

are of the same order if m� n
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Analyzing phase retrieval via RIP-`2/`1

Informally, a debiased operator satisfies RIP condition of Theorem
13.9 when m & nr (Chen, Chi, Goldsmith ’15)

B(X) :=

 〈A1 −A2,X〉
〈A3 −A4,X〉

...

 ∈ Rm/2

• Debiasing is crucial when r � 1

• A consequence of the Hanson-Wright inequality for quadratic
form (Hanson & Wright ’71, Rudelson & Vershynin ’03)
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Theoretical guarantee for phase retrieval

(PhaseLift) minimize
X∈Rn×n

trX︸ ︷︷ ︸
‖·‖∗ for PSD matrices

s.t. yi = a>i Xai, 1 ≤ i ≤ m
X � 0 (since X = xx>)

Theorem 13.10 (Candès, Strohmer, Voroninski ’13, Candès,
Li ’14)

Suppose ai
ind.∼ N (0, I). With high prob., PhaseLift recovers xx>

exactly as soon as m & n
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Extension of phase retrieval

(PhaseLift) minimize
X∈Rn×n

trX︸ ︷︷ ︸
‖·‖∗ for PSD matrices

s.t. a>i Xai = a>i Mai, 1 ≤ i ≤ m
X � 0

Theorem 13.11 (Chen, Chi, Goldsmith ’15, Cai, Zhang ’15)

Suppose M � 0, rank(M) = r, and ai
ind.∼ N (0, I). With high

prob., PhaseLift recovers M exactly as soon as m & nr
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Matrix completion
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Sampling operators for matrix completion
Observation operator (projection onto matrices supported on Ω)

Y = PΩ(M)

where (i, j) ∈ Ω with prob. p (random sampling)
• PΩ does NOT satisfy RIP when p� 1!
• For example,

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

M


? X ? X X
X ? X ? X
? X X ? ?
X ? ? X ?
X ? X ? X


︸ ︷︷ ︸

Ω

‖PΩ(M)‖F = 0, or equivalently, 1+δub
K

1−δlb
2+K

=∞
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Which sampling pattern?

Consider the following sampling pattern
X X X X X
? ? ? ? ?
X X X X X
X X X X X
X X X X X


• If some rows / columns are not sampled, recovery is impossible
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Which low-rank matrices can we recover?

Compare the following rank-1 matrices:
1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

0 0 0 · · · 0

 ←−


? 0 ? · · · 0
0 ? 0 · · · ?
...

...
...

? 0 ? · · · 0



if we miss the top-left entry, then we cannot hope to recover the
matrix
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Which low-rank matrices can we recover?

Compare the following rank-1 matrices:
1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

1 1 1 · · · 1

 ←−


? 1 ? · · · 1
1 ? 1 · · · ?
...

...
...

? 1 ? · · · 1



it is possible to fill in all missing entries by exploiting the rank-1
structure
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Which low-rank matrices can we recover?

Compare the following rank-1 matrices:
1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

0 0 0 · · · 0


︸ ︷︷ ︸

hard

vs.


1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

1 1 1 · · · 1


︸ ︷︷ ︸

easy

Column / row spaces cannot be aligned with canonical basis vectors
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Coherence

Definition 13.12
Coherence parameter µ of M = UΣV > is the smallest quantity s.t.

max
i
‖U>ei‖22 ≤

µr

n
and max

i
‖V >ei‖22 ≤

µr

n

(primal) minimizeX hC, Xi
s.t. hAi, Xi = bi, 1  i  m

X ⌫ 0

m

(dual) maximizey b>y

s.t.
mX

i=1

yiAi + S = C

S ⌫ 0

A (X) =

2
6664

hA1, Xi
hA2, Xi

...
hAm, Xi

3
7775 =

2
6664

ha1a
>
1 , Xi

ha2a
>
2 , Xi
...

hama>
m, Xi

3
7775

ei U PUei

1

(primal) minimizeX hC, Xi
s.t. hAi, Xi = bi, 1  i  m

X ⌫ 0

m

(dual) maximizey b>y

s.t.
mX

i=1

yiAi + S = C

S ⌫ 0

A (X) =

2
6664

hA1, Xi
hA2, Xi

...
hAm, Xi

3
7775 =

2
6664

ha1a
>
1 , Xi

ha2a
>
2 , Xi
...

hama>
m, Xi

3
7775

ei U PUei

1

(primal) minimizeX hC, Xi
s.t. hAi, Xi = bi, 1  i  m

X ⌫ 0

m

(dual) maximizey b>y

s.t.
mX

i=1

yiAi + S = C

S ⌫ 0

A (X) =

2
6664

hA1, Xi
hA2, Xi

...
hAm, Xi

3
7775 =

2
6664

ha1a
>
1 , Xi

ha2a
>
2 , Xi
...

hama>
m, Xi

3
7775

ei U PU (ei)

1

• µ ≥ 1 (since
∑n
i=1 ‖U>ei‖22 = ‖U‖2F = r)

• µ = 1 if 1√
n

1 = U = V (most incoherent)

• µ = n
r if ei ∈ U (most coherent)
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Performance guarantee

Theorem 13.13 (Candes & Recht ’09, Candes & Tao ’10, Gross
’11, ...)
Nuclear norm minimization is exact and unique with high probability,
provided that

m & µnr log2 n

• This result is optimal up to a logarithmic factor

• Established via a RIPless theory
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Numerical performance of nuclear-norm
minimization

n = 50

Fig. credit: Candes, Recht ’09
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KKT condition

Lagrangian:

L (X,Λ) = ‖X‖∗+〈Λ,PΩ(X)−PΩ(M)〉 = ‖X‖∗+〈PΩ(Λ),X−M〉

When M is the minimizer, the KKT condition reads

0 ∈ ∂XL(X,Λ)
∣∣
X=M ⇐⇒ ∃Λ s.t. − PΩ(Λ) ∈ ∂‖M‖∗

⇐⇒ ∃W s.t. UV > + W is supported on Ω,
PT (W ) = 0, and ‖W ‖ ≤ 1
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Optimality condition via dual certificate

Slightly stronger condition than KKT guarantees uniqueness:

Lemma 13.14

M is the unique minimizer of nuclear norm minimization if
• the sampling operator PΩ restricted to T is injective, i.e.

PΩ(H) 6= 0, ∀ nonzero H ∈ T

• ∃W s.t.

UV > + W is supported on Ω,
PT (W ) = 0, and ‖W ‖ < 1
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Proof of Lemma 13.14

For any W0 obeying ‖W0‖ ≤ 1 and PT (W0) = 0, one has

‖M + H‖∗ ≥ ‖M‖∗ +
〈
UV > + W0,H

〉
= ‖M‖∗ +

〈
UV > + W ,H

〉
+ 〈W0 −W ,H〉

= ‖M‖∗ +
〈
PΩ
(
UV > + W

)
,H
〉

+ 〈PT⊥(W0 −W ),H〉
= ‖M‖∗ +

〈
UV > + W ,PΩ(H)

〉
+ 〈W0 −W ,PT⊥(H)〉

if we take W0 s.t. 〈W0,PT⊥(H)〉 = ‖PT⊥(H)‖∗︸ ︷︷ ︸
exercise: how to find such an W0

≥ ‖M‖∗ + ‖PT⊥(H)‖∗ − ‖W ‖ · ‖PT⊥(H)‖∗
= ‖M‖∗ + (1− ‖W ‖) ‖PT⊥(H)‖∗ > ‖M‖∗

unless PT⊥(H) = 0.

But if PT⊥(H) = 0, then H = 0 by injectivity. Thus, ‖M +H‖∗ > ‖M‖∗
for any H 6= 0. This concludes the proof.
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Constructing dual certificates

Use the “golfing scheme” to produce an approximate dual certificate
(Gross ’11)

• Think of it as an iterative algorithm (with sample splitting) to
find a solution satisfying the KKT condition
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(Optional) Proximal algorithm

In the presence of noise, one needs to solve

minimizeX
1
2‖y −A(X)‖2F + λ‖X‖∗

which can be solved via proximal methods
Proximal operator:

proxλ‖·‖∗(X) = arg min
Z

{1
2‖Z −X‖2F + λ‖Z‖∗

}
= UTλ(Σ)V >

where SVD of X is X = UΣV > with Σ = diag({σi}), and

Tλ(Σ) = diag({(σi − λ)+})
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(Optional) Proximal algorithm

Algorithm 13.1 Proximal gradient methods
for t = 0, 1, · · · :

Xt+1 = Tµt
(
Xt − µtA∗A(Xt)

)
where µt: step size / learning rate
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