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Gradient descent

minimizegerr  f(03)
where f(8) is convex and differentiable

Algorithm 10.1 Gradient descent

fort=0,1,---:

B =B — V(8"

where i;: step size / learning rate
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A proximal point of view of GD

1 t)12
518 =B 4o

T8 +(Vf(8Y).8-B")

B! = argmin {f(ﬂt) +(VH(B.8 -8+ 5118 - W}
N

linear approximation -
proximal term

e When fi; is small, 3+ tends to stay close to 3¢
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Proximal operator

If we define the proximal operator
prox (b) i= axgmin {3 118~ b|* + h(B) |
for any convex function h, then one can write
6t+1 — prox,, , (5t>
where f¢(8) := f(Bt) + (Vf(B1),8 — Br)
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Why consider proximal operators?

1
prox (b) += angmin {3 118~ b|* + h(B) |

e It is well-defined under very general conditions (including
nonsmooth convex functions)

e The operator can be evaluated efficiently for many widely used
functions (in particular, regularizers)

e This abstraction is conceptually and mathematically simple, and
covers many well-known optimization algorithms
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Example: characteristic functions

t
ERS— B

BHI

1 p
— 8- B+
5188

e If h is characteristic function

then

prox;, (b) = arg %ﬂllg |B —bll2  (Euclidean projection)
€
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Example: /; norm

1 1
—5 8- B2+ ~Lig-p
241y zlltHB ﬁH +c

e If h(B) = [|B]]1, then
proxy, (b) = s (b; \)

where soft-thresholding 14 (+) is applied in an entry-wise manner.
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Example: /5 norm

prox (b) = argmin {5 18~ bl + h(9)}
o If h(8) = ||, then
A
pI’OX)\h(b) = (1 — “)H) b
+

where a := max{a,0}. This is called block soft thresholding.
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Example: log barrier

prox (b) i= angmin {3 118~ b|* + h(B) |
o If h(B) = — 3", logf;, then

bi + /b7 + 4

(proxy,(b))i = 9
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Nonexpansiveness of proximal operators
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0, ifgecC
oo else
projection P¢ onto C, which is nonexpansive:

Recall that when h(83) = { , prox,,(3) is Euclidean

1Pe(BY) = Pe(B2)l < 18" — 87|
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Nonexpansiveness of proximal operators

Nonexpansiveness is a property for general prox,(-)

1 o
- §||ﬂ*ﬁ2\\2+02

1 .
—gHﬁ—ﬂlHZ +a

Fact 10.1 (Nonexpansiveness)

Iprox;, (B') — prox,,(8%)]| < 18" — 8%

e In some sense, proximal operator behaves like projection
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Proof of nonexpansiveness

Let 2! = prox,(B') and 22 = prox;(3?). Subgradient
characterizations of z! and 2?2 read

Bt — 2z € oh(z') and B2 — 2% € Oh(2?)

The claim would follow if

(B — ,5‘32)T(z1 —2%) > ||z —2%|* (together with Cauchy-Schwarz)
—= B -2 -2+ (-2 >0

h(z%) > h(z!) + (B' — 2!, 22 — 21)
€dh(zh)
h(z') > h(2%) + (B2 - 2%, 2! - 27)

——
€Oh(22)

<
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Proximal gradient methods
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Optimizing composite functions

L 1
(Lasso) minimizepcrs X8 —yl>+ |8l = £(8) + a(8)
~——
N—— o
=) =9

where f(8) is differentiable, and g(3) is non-smooth

e Since g(3) is non-differentiable, we cannot run vanilla gradient
descent
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Proximal gradient methods

One strategy: replace f(3) with linear approximation, and compute
the proximal solution

1
gt = arguin {189 + (V18,6 — ') + o(8) + 5 16— I
The optimality condition reads
= vf(ﬁt) +ag(ﬁt+1) + i (BtJrl _Bt>
Mt
which is equivalent to optimality condition of
. 1 2
gt = argmin {9(8) + 58~ (8"~ w78}
= prox,,, (ﬂt - utVf(ﬁt)>
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Proximal gradient methods

Alternate between gradient updates on f and proximal minimization
on g

Algorithm 10.2 Proximal gradient methods
fort=0,1,---:

B = prox,,,, (8" - mVF(8")

where i;: step size / learning rate
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Projected gradient methods

0, ifge C
When ¢(B8) = convex is Characteristic function:
oo, else

B =Pe (B — mV(B))
= argréleircl Hﬁ — (B - ,utVf(,Bt))H

This is a first-order method to solve the constrained optimization

minimizeg  f(8)
s.t. BecC
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Proximal gradient methods for lasso

For lasso: f(B) = || X8 — yl|*> and g(8) = A||B||1,

prox,(8) = argmin { 5116~ bl + Al |
= gt (67 )\>

— BT =y (B - X (XB —y); )

(iterative soft thresholding)
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Proximal gradient methods for group lasso

Sometimes variables have a natural group structure, and it is desirable to set
all variables within a group to be zero (or nonzero) simultaneously

1 9 k
(group lasso) o[ XB—yl*+23 " _ 118

=f(B) =9(B)

B
where 3; € RP/* and B = |
Bk

prox, (8) = mt (8: 1) = [(1 -7 2,”) ﬂj]
ill/

1<j<k
= B =y (B — X T (XB —y); )
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Proximal gradient methods for elastic net

Lasso does not handle highly correlated variables well: if there is a
group of highly correlated variables, lasso often picks one from the
group and ignore the rest.

e Sometimes we make a compromise between lasso and /5 penalties

(clastic net) 2| X8~ >+ A {1811 + (1/2) I3}
=1(8) =9(8)

1
proxy,(8) = m%t (B; )

= A= 1+ T (8 — X T(XB' —y); m))

e soft thresholding followed by multiplicative shrinkage
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Interpretation: majorization-minimization

1
fuuB,8Y) 1= 18 + (VI(8),8 - 8') + 3 -8 - B'I]

linearization

trust region penalty

majorizes f((3) if 0 <y, < 1, where L is Lipschitz constant® of V f(-)

Proximal gradient descent is a majorization-minimization algorithm

B! = argmin {£(8.8) +9(8)}

— majorization
minimization

'This means |V f(3) — Vf(b)|| < L||3 — b for all 3 and b
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Convergence rate of proximal gradient methods

Theorem 10.2 (fixed step size; Nesterov '07)

Suppose g is convex, and f is differentiable and convex whose
gradient has Lipschitz constant L. If iy =y € (0,1/L), then

£(8) +9(8) —uin {8) + 90} < 0(7)

e Step size requires an upper bound on L
e May prefer backtracking line search to fixed step size

e Question: can we further improve the convergence rate?
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Nesterov’s accelerated gradient methods
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Nesterov’s accelerated method

Problem of gradient descent: zigzagging

Nesterov’s idea: include a momentum term to avoid overshooting
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Nesterov’s accelerated method

Nesterov’s idea: include a momentum term to avoid overshooting

B = Prox,,. (bt_1 —wVf (bt_l))
b = B +ay (ﬁt — ,Btfl) (extrapolation)

| S —
momentum term

e A simple (but mysterious) choice of extrapolation parameter

t—1

=35

o Fixed size yis = p € (0,1/L) or backtracking line search

e Same computational cost per iteration as proximal gradient
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Convergence rate of Nesterov’s accelerated method

Theorem 10.3 (Nesterov ‘83, Nesterov '07)

Suppose f is differentiable and convex and g is convex. If one takes

o = ;—; and a fixed step size y = p € (0,1/L), then

589 + (8~ mpn (58) + 99} < 0 (3)

In general, this rate cannot be improved if one only uses gradient
information!
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Numerical experiments (for lasso)
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Figure credit: Hastie, Tibshirani, & Wainwright '15
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