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Multivariate Gaussians

Consider a random vector  ~ A (0, X) with probability density
1 1
flx) = exp{azTE_lzz:}
(=) (2m)P/2 det ()12 2

1
o det (@)1/2 exp {—QxT@cc}

where ¥ = E[zz "] - 0 is the covariance matrix, and @ = X1 is
the inverse covariance matrix or precision matrix
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Undirected graphical models

X1 X5 X1 X5
Xy Xy

X Xg X2 Xg
X X6

X3 x; X3 Xy
1 uis T4 ’ {.’I}Q,x3,x5,$6,$7,$8}

e Represent a collection of variables = [z1,- -+ ,x,] by a vertex
set V={1,---,p}

e Encode conditional independence by a set £ of edges
o For any pair of vertices u and v,

(u,v) €€ = xy L2y | Ty\fu0)
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Gaussian graphical models

Fact 11.1

(Homework) Consider a Gaussian vector x ~ N'(0,X). For any u and

UV
Ty _LL.TU ‘ mv\{u’v}

iff ©y, =0, where © = >

conditional independence <=  sparsity
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Likelihoods for Gaussian models

Draw 7 i.i.d. samples (1), ... (™ ~ N(0, %), then the
log-likelihood (up to additive constant) is

1 & . 1 1 A 4
(@) = ” > log f(27) = 5 log det (©) — o S 2T @z
=1

_ %mg det () — = (S, 0),

_1
2
where § =157 20z()T: sample covariance; (S, ©) = tr(SO)

Maximum likelihood estimation

maximizeg=o logdet (®) — (S, ®)
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Challenge in high-dimensional regime

Classical theory says MLE coverges to the truth as sample size n — oo

Practically, we are often in the regime where the sample size n is
small (n < p)
e In this regime, S is rank-deficient, and the MLE does not even
exist (why?)
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Graphical lasso (Friedman, Hastie, & Tibshirani’08)

In practice, many pairs of variables might be conditionally independent
<= many missing links in the graphical model (sparsity)

Key idea: use /1 regularization to promote sparsity

maximizeg-o logdet (®) — (S,0) — A||O|:
——

lasso penalty

e Convex program! (homework)
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Graphical lasso (Friedman, Hastie, & Tibshirani’08)

maximizeg=o logdet (@) — (S,0) — \||O|;
——

lasso penalty

e First-order optimality condition

0c®@'-85-) 90| (11.1)
N——

subdifferential

e For diagonal entries, one has 1 € 0|0; ;| (since ©;; > 0)

= (@Y, =S+ 1<i<p

Graphical lasso 11-9



(Optional) Blockwise coordinate descent

Idea: repeatedly cycle through all columns / rows and, in each step,
optimize only a single column / row

P -

- -~

- ~

- ~
~

-
~
-~ -

Notation: use W to denote a working version of ® !, Partition all
matrices into 1 column /row vs. the rest

©; 012 S11 s12 Wi wio
l 0], 02 ] l 81y S22 ] [ wy W ]
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(Optional) Blockwise coordinate descent

Blockwise step: suppose we fix all but the last row / column. It
follows from (11.1) that

0ec W13 — 8512 — )\8”912“1 = W18 — s12+ )\8”,@”1 (11.2)

where B8 = —015/605; (since { Su o1 }71 = { T }) with

12 022 * *

égg = 9y — 9]—291711012 >0

This coincides with the optimality condition for

minimizeg f|| W8 - Wi, sk + MBI (11.3)
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(Optional) Blockwise coordinate descent

Algorithm 11.1 Block coordinate descent for graphical lasso
Initialize W = S + AI and fix its diagonals {w;;}.
Repeat until covergence:

fort=1,---p:

(i) Partition W (resp. S) into 4 parts, where the upper-left part
consists of all but the jth row / column

(ii) Solve
L 1 -
minimizeg 5“ W111/2,8 — Wnl/QsmHz + |81

(iii) Update w1z = W118

Set ém = —5225 with éQQ = 1/(’[1)22 — wlTQ,B)
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(Optional) Blockwise coordinate descent

The only remaining thing is to ensure W > 0. This is automatically
satisfied:

Lemma 11.2 (Mazumder & Hastie '12)

If we start with W = 0 satisfying ||W — S||cc < A, then every
row / column update maintains positive definiteness of W'.

o If we start with W(©) = § 4+ I, then W® will always be
positive definite
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