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Multivariate Gaussians

Consider a random vector x ∼ N (0,Σ) with probability density

f(x) = 1
(2π)p/2 det (Σ)1/2 exp

{
−1

2x
>Σ−1x

}
∝ det (Θ)1/2 exp

{
−1

2x
>Θx

}
where Σ = E[xx>] � 0 is the covariance matrix, and Θ = Σ−1 is
the inverse covariance matrix or precision matrix
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Undirected graphical models

x1 ⊥⊥ x4 | {x2, x3, x5, x6, x7, x8}

• Represent a collection of variables x = [x1, · · · , xp]> by a vertex
set V = {1, · · · , p}
• Encode conditional independence by a set E of edges

◦ For any pair of vertices u and v,

(u, v) /∈ E ⇐⇒ xu ⊥⊥ xv | xV\{u,v}
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Gaussian graphical models

Fact 11.1
(Homework) Consider a Gaussian vector x ∼ N (0,Σ). For any u and
v,

xu ⊥⊥ xv | xV\{u,v}

iff Θu,v = 0, where Θ = Σ−1

conditional independence ⇐⇒ sparsity
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Gaussian graphical models



∗ ∗ 0 0 ∗ 0 0 0
∗ ∗ 0 0 0 ∗ ∗ 0
0 0 ∗ 0 ∗ 0 0 ∗
0 0 0 ∗ 0 0 ∗ 0
∗ 0 ∗ 0 ∗ 0 0 ∗
0 ∗ 0 0 0 ∗ 0 0
0 ∗ 0 ∗ 0 0 ∗ 0
0 0 ∗ 0 ∗ 0 0 ∗


︸ ︷︷ ︸

Θ
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Likelihoods for Gaussian models

Draw n i.i.d. samples x(1), · · · ,x(n) ∼ N (0,Σ), then the
log-likelihood (up to additive constant) is

` (Θ) = 1
n

n∑
i=1

log f(x(i)) = 1
2 log det (Θ)− 1

2n

n∑
i=1
x(i)>Θx(i)

= 1
2 log det (Θ)− 1

2 〈S,Θ〉 ,

where S = 1
n

∑n
i=1 x

(i)x(i)>: sample covariance; 〈S,Θ〉 = tr(SΘ)

Maximum likelihood estimation

maximizeΘ�0 log det (Θ)− 〈S,Θ〉
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Challenge in high-dimensional regime

Classical theory says MLE coverges to the truth as sample size n→∞

Practically, we are often in the regime where the sample size n is
small (n < p)
• In this regime, S is rank-deficient, and the MLE does not even

exist (why?)
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Graphical lasso (Friedman, Hastie, &Tibshirani ’08)

In practice, many pairs of variables might be conditionally independent
⇐⇒ many missing links in the graphical model (sparsity)

Key idea: use `1 regularization to promote sparsity

maximizeΘ�0 log det (Θ)− 〈S,Θ〉 − λ‖Θ‖1︸ ︷︷ ︸
lasso penalty

• Convex program! (homework)
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Graphical lasso (Friedman, Hastie, &Tibshirani ’08)

maximizeΘ�0 log det (Θ)− 〈S,Θ〉 − λ‖Θ‖1︸ ︷︷ ︸
lasso penalty

• First-order optimality condition

0 ∈ Θ−1 − S − λ ∂‖Θ‖1︸ ︷︷ ︸
subdifferential

(11.1)

• For diagonal entries, one has 1 ∈ ∂|Θi,i| (since Θi,i > 0)

=⇒ (Θ−1)i,i = Si,i + λ, 1 ≤ i ≤ p
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(Optional) Blockwise coordinate descent
Idea: repeatedly cycle through all columns / rows and, in each step,
optimize only a single column / row

Notation: use W to denote a working version of Θ−1. Partition all
matrices into 1 column / row vs. the rest

Θ =
[

Θ11 θ12
θ>12 θ22

]
S =

[
S11 s12
s>12 s22

]
W =

[
W11 w12
w>12 w22

]
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(Optional) Blockwise coordinate descent

Blockwise step: suppose we fix all but the last row / column. It
follows from (11.1) that

0 ∈W11β − s12 − λ∂‖θ12‖1 = W11β − s12 + λ∂‖β‖1 (11.2)

where β = −θ12/θ̃22 (since
[

Θ11 θ12
θ>12 θ22

]−1
=
[

∗ − 1
θ̃22

Θ−1
11 θ12

∗ ∗

]
︸ ︷︷ ︸

matrix inverse formula

) with

θ̃22 = θ22 − θ>12Θ
−1
11 θ12 > 0

This coincides with the optimality condition for

minimizeβ
1
2
∥∥W 1/2

11 β −W
−1/2
11 s12

∥∥2
2 + λ‖β‖1 (11.3)
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(Optional) Blockwise coordinate descent

Algorithm 11.1 Block coordinate descent for graphical lasso
Initialize W = S + λI and fix its diagonals {wi,i}.
Repeat until covergence:

for t = 1, · · · p:
(i) Partition W (resp. S) into 4 parts, where the upper-left part

consists of all but the jth row / column
(ii) Solve

minimizeβ
1
2
∥∥W 1/2

11 β −W
−1/2
11 s12

∥∥2
2 + λ‖β‖1

(iii) Update w12 = W11β

Set θ̂12 = −θ̂22β with θ̂22 = 1/(w22 −w>12β)

Graphical lasso 11-12



(Optional) Blockwise coordinate descent

The only remaining thing is to ensure W � 0. This is automatically
satisfied:

Lemma 11.2 (Mazumder & Hastie ’12)

If we start with W � 0 satisfying ‖W − S‖∞ ≤ λ, then every
row / column update maintains positive definiteness of W .

• If we start with W (0) = S + λI, then W (t) will always be
positive definite
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